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ABSTRACT 

 

 

A REAL-TIME, LOW-LATENCY, FPGA IMPLEMENTATION OF THE TWO 

DIMENSIONAL DISCRETE WAVELET TRANSFORM 

 

 

Benderli, Oğuz 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Yusuf Çağatay Tekmen 

 

August 2003, 146 pages 

 

This thesis presents an architecture and an FPGA implementation of the two 

dimensional discrete wavelet transformation (DWT) for applications where row-

based raw image data is streamed in at high bandwidths and local buffering of the 

entire image is not feasible. The architecture is especially suited for multi-spectral 

imager systems, such as on board an imaging satellite, however can be used in any 

application where time to next image constraints require real-time processing of 

multiple images. The latency that is introduced as the images stream through the 
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DWT module and the amount of locally stored image data, is a function of the 

image and tile size. For an n1 × n2 size image processed using (n1/k1) × (n2/k2) sized 

tiles the latency is equal to the time elapsed to accumulate a (1/k1) portion of one 

image. In addition, a (2/k1) portion of each image is buffered locally. The proposed 

hardware has been implemented on an FPGA and is part of a JPEG 2000 

compression system designed as a payload for a low earth orbit (LEO) micro-

satellite to be launched in September 2003. The architecture can achieve a 

throughput of up to 160Mbit/s. The latency introduced is 0.105 sec (6.25% of total 

transmission time) for tile sizes of 256×256. The local storage size required for the 

tiling operation is 2 MB. The internal storage requirement is 1536 pixels. Equivalent 

gate count for the design is 292,447.  

Keywords: JPEG 2000, Wavelet Transform, FPGA, Multispectral Imaging, Image 

Processing  
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ÖZ 

 

 

İKİ BOYUTLU AYRIK DALGACIK DÖNÜŞÜMÜNÜN, GERÇEK ZAMANLI 

VE DÜŞÜK GECİKMELİ OLARAK, FPGA UZERINDE 

GERÇEKLEŞTİRİLMESİ 

 

 

Benderli, Oğuz 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Yusuf Çağatay Tekmen 

 

Ağustos 2003, 146 sayfa 

 

Bu tezde, satõr tabanlõ ham görüntü verisinin yüksek bant genişliğinde duraksõz 

iletildiği ve tüm veriyi yerel bellekte saklamanõn mümkün olmadõğõ uygulamalara 

yönelik, iki boyutlu ayrõk dalgacõk dönüşümü (ADD) mimarisi ve FPGA 

gerçekleştirimi sunulmaktadõr. Mimari, özellikle görüntüleme uydusu üzerinde 

bulunan çok bantlõ görüntüleme sistemleri için uygun olup, birden fazla görüntünün 

gerçek zamanlõ işlenmesini gerektiren ve görüntüler arasõ zamanlama kõsõtõnõn 
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olduğu uygulamalar için de kullanõlabilir. Görüntüler ADD modülünden geçerken 

oluşan gecikme ve yerel olarak saklanmasõ gereken görüntü verisi miktarõ, görüntü 

ve parsel büyüklüğünün bir fonksiyonudur. (n1/k1) × (n2/k2) büyüklüğündeki 

parsellerle işlenen n1 × n2 büyüklüğündeki bir görüntü için, gecikme zamanõ, tüm 

resmin (1/k1) kadarlõk bölümünün biriktirilmesi için geçen zaman kadardõr. Ayrõca, 

tüm resmin (2/k1) kadarlõk bölümü yerel olarak saklanmaktadõr. Önerilen donanõm, 

bir FPGA üzerinde gerçekleştirilmiştir ve Eylül 2003 tarihinde fõrlatõlõcak olan alçak 

yörüngeli bir mikro uydu için faydalõ yük olarak tasarlanmõş bir JPEG 2000 resim 

sõkõştõrma sisteminin parçasõdõr. Mimari 160 Mbits/s�e kadar veri işleyişi 

sağlayabilmektedir. 256×256�lõk parsel boyutu için eklenen gecikme zamanõ 0.105 

saniyedir (Tüm iletim zamanõnõn %6.25�i). Parselleme işlemi için gereken yerel 

bellek miktarõ 2 MB�dir. İç bellek ihtiyacõ ise 1536 pikseldir. Tasarõmõn eşdeğer 

geçit sayõsõ 292,447�dir. 

Anahtar Kelimeler: JPEG 2000, Dalgacõk Dönüşümü, FPGA, Çok Bantlõ 

Görüntüleme, Görüntü İşleme 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Digital imaging, whether it be professional or recreational, is a common reality 

today, allowing the capture of images using solid-state devices and image sensor 

devices instead of traditional film. The basic functioning of a digital camera is by 

means of recording the incident light through analog-to-digital conversion, thereby 

creating a digital representation of the image. Digital images have numerous 

advantages over traditional film images, such as ease of storage, access, 

transportation and manipulation.  

For a digital image to be comparable in quality to an analog image generated 

through traditional film photography, a considerable amount of digital data should 

be stored. At 1200 dpi (dots per inch), a 5� by 4� image would translate into a 6000 

pixel by 4800 pixel digital image, or 28.8 million pixels total. If each pixel is 

represented by 24 bits (8 bits for each spectral channel: Red, Green and Blue) this 

means storing roughly 9.1 Mbytes of digital data. Due to this large storage 

requirement, in digital imaging equipment, some compression algorithm is generally 

applied prior to storage.  

Image compression algorithms comprise a sequence of treatment to image data such 

as transform, quantization, coding etc. Two dimensional discrete wavelet transform, 

2-D DWT, is a powerful one of such transforms used in image compression. This 

work presents an architecture and an FPGA implementation of the two dimensional 
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discrete wavelet transform for applications where row-based image data is streamed 

in at high-bandwidths, and local buffering and random accessing the entire image is 

not feasible.  The architecture is especially suited for , but not limited to, multi-

spectral imager systems, such as on board an imaging satellite.  

The proposed hardware has been implemented on an FPGA and is part of a JPEG 

2000 compression system designed as a payload for a low earth orbit (LEO) micro-

satellite, which will be launched in September 2003. The fundamental mission of 

the system is to process (compress) the output of digital imaging sensors in real-

time, as the high bandwidth image data is output from the sensors, while storing 

only a small portion of the incoming image stream at any given time. This work 

includes the presentation and the report of the optimization of an ASIC co-processor 

which performs the required tasks before entropy coding in such a system.   

This chapter is dedicated to providing introductions to several issues dealt with in 

this work and is organized as follows: In Section 1.1 a brief introduction to the 

concept of image compression is given followed by basics in wavelet transform in 

Section 1.2 and its application in image compression in Section 1.3. In Section 1.4 a 

method -which constitutes an important reference in this work- used to implement 

the wavelet transform using a lifting scheme is introduced. Section 1.5 is dedicated 

to the introduction of the new still image compression standard, JPEG 2000. In 

Section 1.6 introduces the application of the JPEG 2000 algorithm on-board the 

imaging satellite BILSAT-1. 

In Chapter 2 hardware implementations of the 2-D DWT reported in related 

literature is presented. Chapter 3 presents in detail the proposed architecture for a 2-

D DWT processor in a multi-spectral imaging application environment. Chapter 4 is 

dedicated to the implementation and simulation results. Chapter 5 summarizes the 

work done and results obtained, and possibilities of future work is mentioned.   
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1.1 Image Compression  

An image is represented by a positive scalar function or  �as a generalization- a 

multidimensional vector function of a plane. The value of this function at each point 

specifies the luminance or brightness of the color components of the picture at that 

point. Digital images are sampled versions of such functions, where the value of the 

function is specified only at discrete locations on the image plane, known as pixels. 

Luminance of each pixel is represented in a predefined precision of B bits. A typical 

value for B is eight which sufficiently accommodates the dynamic range of the 

human eye and is suitable for the commonly used computer memory structure since 

eight bit precision is suitable for existing computer memory structure (1 byte=8 

bits). 

The prevalent custom is that the samples (pixels) reside on a rectangular lattice of 

size N1 × N2. The brightness at each pixel can be any number between  0 and 2B-1 �1. 

The raw representation which is the simplest representation of an image is a list of 

matrix entries which give the brightness value of the corresponding pixel. The 

storage required for such a list is MN1N2B bits, where M is the number of color 

components. 

In many imaging applications, exact reproduction of the image is not necessary. In 

this case, one can perturb the image slightly to obtain a shorter representation. If this 

perturbation is much smaller than the blurring and noise introduced in the formation 

of the image in the first place, there is no point in using the more accurate 

representation. Such a coding procedure, where perturbations reduce storage 

requirements, is known as lossy coding.  The goal of lossy coding is to reproduce a 

given image with minimum distortion, given some constraint on the total number of 

bits in the coded representation.  

The underlying reason that digital images can be compressed is the contained 

redundancy in representation of the images. The example of Nosratinia [1] can be 

given to illustrate this phenomenon: Suppose that we seek to efficiently store 

photographs of all natural scenes. In principle, we can enumerate all such pictures 
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and represent each image by its associated index. Assume we position hypothetical 

cameras at the vantage point of every atom in the universe (there are roughly 1080 of 

them), and with each of them take pictures in one trillion directions, with one trillion 

magnifications, exposure settings, and depths of field, and repeat this process one 

trillion times during each year in the past 10,000 years (once every 0.003 seconds). 

This will result in a total of 10144 images. But 10144≈2479, which means that any 

image in this enormous ensemble can be represented with only 479 bits, or less than 

60 bytes. This collection includes any image that a modern human eye has ever 

seen, including artwork, medical images, and so on, because we include pictures of 

everything in the universe from essentially every vantage point. And yet the 

collection can be conceptually represented with a small number of bits. If we 

assume that images are 512 × 512 and 8-bit, the remaining vast majority of the 

2512×512 ×8 ≈ 10600,000 possible images in the canonical representation are not of 

general interest because they contain little or no structure, and are noise-like.  

The example illustrates the two main properties that image compression algorithms 

exploit: First, a very small fraction of the possible images that the representation 

provides are likely to be meaningful. If short code words for likely images and 

longer codewords for less likely images are used, a much shorter representation of 

the images can be achieved. This is the fundamental principle of operation of an 

Entropy Coder. Second, in our initial image gathering procedure we assign different 

representations for  images which are visually indistinguishable from the other. 

Additional reductions in stored image size can be achieved by discretizing our 

database of images more coarsely. By mapping  visually indistinguishable images to 

the same representation, we reduce the number of  code words needed to encode 

images, at the price of a small amount of distortion.  

Discretizing the database of images can be made by means of quantizing. Each pixel 

can be quantized separately, which is known as scalar quantization, or a group of 

pixels can be quantized together, which is called vector quantization, VQ. Since 

each pixel is quantized independent of the others, direct scalar quantization cannot 

capture the interdependency of the samples, and suffers of distortion at high 
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compression ratios. In principle, maximum compression that is theoretically 

possible can be achieved by VQ [1], however VQ reaches optimality only 

asymptotically as its dimensions increase. Furthermore, computational complexity 

and delay grow exponentially with the dimension of the VQ. limiting the 

practicality of VQ. Due to these and other difficulties, most practical image 

compression algorithms have turned to transform coding.  

Transform coding consists of scalar quantization applied after a linear transform. 

This method captures much of the VQ gain, with only a fraction of the effort. 

Compression is performed in the transform domain. The main purpose of 

performing a transformation is to make the task of compression easier in the 

transform domain.  Some of the well known transforms applied in transform coding 

are the Karhunen-Loéve transform (KLT), the discrete cosine transform (DCT), and 

sub-band transforms.     

The success of the transform coding depends on how well the basis functions of the 

transform represent the features of the signal. A good candidate transformation 

should be able to offer flexible image representation with decorrelation (to facilitate 

efficient entropy coding) and good energy compaction in the transform domain (so 

that fewer quantized coefficients are needed to be encoded and rest can be discarded 

with minimum distortion). At present, one of the most successful representations is 

the wavelet transform, application of which is a special case of sub-band transform 

[2]. In Section 1.2 and 1.3 a brief background of the wavelets and applications will 

be provided. For more background on wavelet theory and wavelet transform one can 

refer to [3-6].   

State-of-the-art wavelet coders such as EZW [7], SPIHT [8], Trellis Coded 

quantization (TCQ) [9], EBCOT [10] are all derived from the transform coder 

paradigm. There are three basic components that underlie current wavelet coders: a 

decorrelating transform, a quantization procedure, and an entropy coding procedure. 

The next section provides a brief background to wavelets and explain why wavelets 

are useful for image compression. 
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1.2 Wavelet Basics  

One of the most commonly used approaches for analyzing a signal  is to 

represent it as weighted sum of simple building blocks, called basis functions [11] :  

)(xf

  (1.1) ∑=
i

ii xcxf )()( Ψ

where  are basis functions and the c)(xiΨ i are coefficients, or weights.  are 

predefined fixed values, and therefore the signal information is contained by the 

coefficients. If we assume that are the translates of impulse function, this 

yields a representation in which coefficients only contain information about the time 

domain behavior of the signal. As an example for the other extreme, choosing 

sinusoids as the basis functions yields a Fourier representation that reveals 

information only about the signal�s frequency domain behavior.  

)(xiΨ

)(xiΨ

For the purpose of signal compression, neither of the representation is ideal. What 

we would like to have is a representation which contains information about both the 

time and frequency behavior of the signal. More specifically, a useful 

transformation should give the frequency  content of the signal at a particular instant 

in time. However, resolution in time (∆x) and resolution in frequency  (∆ω) cannot 

both be made arbitrarily small at the same time because their product is lower 

bounded by the Heisenberg inequality [6].  

 
2
1

≥∆∆ ωx  (1.2) 

This inequality indicates that a trade off should be done between resolution in time 

an resolution in frequency. For example it is possible to obtain a good resolution in 

time if we are satisfied with the low resolution in frequency, and a good resolution 

in frequency if we are satisfied with the low resolution in time. 

For efficient image compression, the aim is to use a transform in which transformed 

coefficients efficiently contain useful time-frequency information about a signal. By 

their very nature, low frequency events are spread out (or non-local) in time and 

6 



high frequency events are concentrated (or localized) in time. This means that if we 

split the signal�s bandwidth in half, and repeat the halving operation on the low-pass 

portion of the bandwidth, we would have high-pass information analyzed by time-

localized (but spread frequency) basis functions, and low-pass information would be 

analyzed by frequency-localized (but non-local in time) basis functions. Thus, an 

efficient representation of the signal would be possible.  

Suppose that we have the impulse function as the basis function. The impulse 

function cannot provide information about the frequency behavior of a signal 

because its support �the interval over which it is non-zero� is infinitesimal. At the 

opposite extreme are the sinusoids, which cannot provide information about the time 

behavior of a signal because they have infinite support. Therefore, a compromise 

should be done between these two extremes: what should be chosen as basis 

functions, , are those having finite support of different widths. The different 

support widths allow us to trade off time and frequency resolution in different ways; 

for example, we can analyze large regions of the signal and resolve low frequency 

details accurately by using wide basis functions, while we can use a short basis 

function to analyze a small region of the signal to resolve time details accurately. 

{ iΨ }

Basis functions can be chosen as the scaled and translated version of the same 

prototype function Ψ, known as the mother wavelet. The scaling is an operation in 

which x is multiplied by a scale factor. If we choose the scale factor to be a power of 

2, yielding  where ν is some integer, we obtain a set of octave band-pass 

filters. Since Ψ has finite support, it will need to be translated along the time axis in 

order to cover an entire signal. This translation is accomplished by shifting Ψ in 

steps of size 2

)2( xνΨ

-νk  , yielding; 

  (1.3) ΖΨ ∈− kkx ),2( ν

 

With the new basis function, ,  the wavelet decomposition of the signal is 

represented as :  

)(xkνΨ
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 , (1.4) ∑∑=
ν
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k

kk xcxf )()( Ψ

where 

 )2(2)( 2 kxxk −= ν
ν

ν ΨΨ  (1.5) 

In order to have an orthonormal set of basis, functions must be multiplied by  2ν/2. 

The wavelet coefficients cνk are computed by the wavelet transform, which is just 

the inner product of the signal f(x) with the basis functions : )(xkνΨ

 )(),( xxfc kk νν Ψ=  (1.6) 

1.2.1 Application of Wavelet Transform in Image Compression 

Wavelet-based image coding can be viewed as a form of a sub-band coding. The 

forward and inverse wavelet transforms can be implemented by a pair of quadrature 

mirror filters (QMFs). Each QMF pair consists of a low-pass filter, H, and a high-

pass filter, G which split the input signal�s bandwidth in half. The impulse responses 

of H and G  are mirror images, and are related by : 

  (1.7) n
n

n hg −
−−= 1

1)1(

The impulse response of the forward and inverse transform QMF�s are related by : 

  (1.8a) nn gg −= )

  (1.8b) nn hh −=
)

 

Let  and h be the impulse responses of the forward transform and let  and 

be the impulse responses of the inverse transform. Note that  is also the 

mother wavelet function of the orthogonal wavelet transform system.  

ng~ n
~

ng

nh nh
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Output of a filtering operation can be computed by convolving the filter coefficients 

with the signal values:  kh~

  (1.9) ∑
−

=
−=

1

0

�
L

k
knkn shs

)

where L is the number of coefficients, or in other words the taps of the filter. The 

one-dimensional forward wavelet transform of a signal sn is performed by 

convolving sn  with both   and  and then down-sampling by 2:  nh~ ng~

  (1.10a) ∑
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Figure 1.1 shows the one dimensional forward and inverse wavelet transform. The 

low-pass output of the first stage is filtered for further levels1. Figure 1.2 illustrates 

the two dimensional separable forward wavelet transform for two dimensional 

signals. Note that throughout this discussion for a 2-D signal f(x,y), x denotes the 

vertical axis and y denotes the horizontal axis.  

                                                           
1 In literature recursive steps of wavelet transforming is referred to as either octaves or levels. In this 
work it is preferred to use the term level as in [19].  
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Figure 1.1 One dimensional forward and inverse wavelet transform. Each QMF pair 

consists of a low-pass filter, H, and a high-pass filter, G which split the input 

signal�s bandwidth in half.   

 

Owed to the separability of the filters, the transform can be performed in two steps 

each involving one dimensional filtering along different directions. The image I(x,y) 

is first filtered along the y direction, resulting in a low-pass image and a high-pass 

image. Since the bandwidth of I along the y direction is split into two, we can safely 

down�sample each of the filtered images in the y direction by 2 without loss of 

information and obtain two images L(x,y), and H(x,y). The down-sampling or 

decimation is accomplished by dropping one sample in every two samples. Both 

L(x,y) and H(x,y) are then filtered along the x direcion, and once again we can 

down-sample the subimages by 2, this time along the x direction resulting four 

subimages (sub-bands)  LL(x,y), LH(x,y), HL(x,y), and HH(x,y). As illustrated in 

Figure 1.2 the 2-D filtering decomposes an image into an average signal (LL) and 

three detail signals which are directionally sensitive: LH emphasizes the horizontal 

image features such as vertical edges and temporal changes along horizontal 

direction, HL emphasizes the vertical image features, and HH the diagonal features. 

The sensitivity of the detail signals is a result of the frequency ranges they contain.  
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Figure 1.2 Two dimensional separable forward wavelet transform 

 

In wavelet compression, the average signal is usually recursively transformed to 

higher levels as shown in Figure 1.3, the scheme was proposed by Mallat [12]. The 

wavelet decomposition is also called as dyadic wavelet transform or Mallat tree 

decomposition. The pass-band structure of the output signals is illustrated on Figure 

1.4 for three levels of wavelet . 
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LL1(x,y)

LL0(x,y)

LL2(x,y)

LH2(x,y)

HL2(x,y)
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Figure 1.3 Dyadic (Mallat Tree) Wavelet Transform. In wavelet compression, the 

average signal is usually recursively transformed to higher levels. 
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Figure 1.4 Pass-band structure of Sub-bands for three level wavelet transform 

 

The number of transformations performed depends on several factors, including the 

amount of compression desired, the size of the original image, and the length of the 

QMF filters.    

After the forward wavelet transform is completed, we have a matrix of coefficients 

which is equal in size to the original image containing the average signal and the 

detail signals of each scale. Up to this point we have accomplished no compression, 

moreover, each iteration of the forward wavelet transform causes the magnitude of 

the coefficients to grow, so the storage size for the image has actually been 

increased. Compression is achieved by quantizing and encoding the wavelet 

coefficients.  

Figure 1.5 shows the wavelet transform of test images. 2.5a is a natural image and 

2.5b is a checker board test image. Since the high-pass sub-bands contain samples 

centered around zero, absolute values of the samples with an offset is used for 

illustration purposes. Note that the vertical edges and temporal changes along 

horizontal direction are emphasized in HL sub-band whereas horizontal edges and 

temporal changes along vertical direction are emphasized in LH sub-band.  The LL 

sub-band contains the coarse information of the image.   
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(a) 

 

(b) 

Figure 1.5 2-D Wavelet Transform outputs: (a) A natural image, (b) A checkerboard 

test pattern. The vertical edges and temporal changes along horizontal direction are 

emphasized in HL sub-band, whereas horizontal edges and temporal changes along 

vertical direction are emphasized in LH sub-band. The LL sub-band, the average 

signal, contains the coarse information of the image. 

 



 

Reconstruction of the original image is by the 2-D inverse wavelet transform which  

is illustrated in Figure 1.6. The sub-bands are first up-sampled by 2 along the 

vertical axis (along x) and filtered along vertical axis with the corresponding inverse 

filters. LL and LH sub-bands are summed up to obtain sub-image L while HL and 

HH sub-bands are summed up to obtain sub-image H. Then the two sub-images are 

up-sampled along the horizontal axis (along y)   and filtered with the corresponding 

inverse filters. Finally the outputs are summed up to obtain the reconstructed image, 

or the LL sub-band for the next iteration. 
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Figure 1.6 Two dimensional inverse wavelet transform 
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1.2.2 Factoring Wavelet Transforms into Lifting Steps 

In this section a brief explanation of the lifting concept and how a QMF filter bank 

implementation of wavelet transform is factorized into lifting steps is given. More 

rigorous mathematical analysis of the subject can be found in [13-15].  

Lifting factorization of a filter bank involves the polyphase representation of filter 

kernels. The polyphase representation of  analysis filters  and is given by :  h
)

g)

  (1.11a) )()()( 212 zhzzhzh oe

)))
−+=

 )  (1.11b) ()()( 212 zgzzgzg oe
))) −+=

where and contain the even coefficients, and and  contain the odd 

coefficients. The wavelet transform of Figure 1.1 can be represented in polyphase 

form as illustrated in Figure 1.7. The input signal s is first split into even and odd 

parts, then the polyphase matrix is applied to the signals. In the inverse path, first 

polyphase matrix is  applied and then the even and odd signals are joined properly. 

Polyphase matrix is given as:  
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and the outputs of the transform are expressed as : 
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Figure 1.7 Polyphase representation of wavelet transform. The input signal s is first 

split into even and odd parts, then the polyphase matrix is applied to the signals. 

 

The polyphase matrix can be factorized into several triangular matrices by Euclidian 

algorithm  as follows:  
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where and  are called prediction and update filters of the lifting steps 

implementation of wavelet transform, which is illustrated in Figure 1.8. First the 

low-pass samples (even terms) are filtered by prediction filters, , and are 

subtracted from the high-pass samples (odd terms) to obtain a �detail� signal. Then, 

the detail samples are filtered by the update filters, U  and the low-pass samples 

are �updated� by adding the update filter outputs. This constitutes a single �lifting 

step� of the scheme. This lifting procedure is repeated as many times as the number 

of lifting steps N.  
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Figure 1.8 Lifting steps implementation of wavelet transform 

 

The advantageous of lifting can be listed as follows:  

1. It is easier to build non-linear wavelet transforms by using lifting. A typical 

example for non-linear transforms are the transforms that map integers to 

integers [15]. Such transforms are important for hardware implementations 

and for lossless image coding.    

2. Every transform built with lifting is immediately invertible where the inverse 

transform has exactly the same computational complexity as the forward 

transform. 

3. Lifting exposes the parallelism inherent in a wavelet transform. All 

operations within one lifting step can be done entirely parallel while the only 

sequential part is the order of the lifting operations.    

4. Lifting involves poly-phase filtering which provides two channel input 

feeding, thus the clock cycle required to implement wavelet transform can be 

reduced.   

1.3 A New Image Compression Standard : JPEG 2000 

JPEG 2000 is an upcoming image compression standard published by the committee 

of JPEG, Joint Photographic Experts Group to serve the needs of current and future 

applications that uses still image coding. The committee�s first published standard 
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JPEG is a simple and efficient discrete cosine transform (DCT) based lossy 

compression algorithm that uses Huffman Coding and is restricted to 8 bits/pixel. 

Though various extensions has appeared to JPEG to provide broader applicability 

and lossless compression, these extensions introduced only limited capability and 

faced with the intellectual copyright properties. Since 1996, various image 

compression algorithms were proposed and evaluated for the new image 

compression standard, and the one that was published at the end of 2000 by ISO 

(ISO I5444 | ITU-T Recommendation T.800) has been adopted as the new 

comprehensive still image compression standard, JPEG2000. 

JPEG 2000 has many features, some of which are [16] 

• Superior, Low bit-rate compression performance 

• Progressive transmission by quality, resolution, component, or spatial 

locality 

• Multiple resolution representation of still images 

• Lossy and lossless compression  

• Multispectral Image Support 

• Random access to bit stream  

• Pan and zoom (with decompression of only a subset of the compressed data) 

• Compressed domain processing (eg. rotation and cropping) 

• Region of interest coding  

• More flexible file format 

• Limited memory implementations 

• Error Resilience 
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1.3.1 JPEG 2000 Coding Algorithm 

In this section the JPEG 2000 algorithm is described. Figure 1.9 shows the block 

diagram of the JPEG 2000 coding algorithm. Comparative results are provided in 

[17-18].  
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Figure 1.9 Block diagram of JPEG 2000 coding algorithm 

 

The input image is first DC-level shifted, and then component transform is applied. 

For images having multiple color components, a point-wise decorrelating transform 

may be applied across the components. However this transform is optional. The 

standard Part I [19] defines 2 component transforms. These are : 1) the YCrCb 

transform commonly used in image compression systems and color format 

exchangers, and 2) the Reversible Component Transform (RCT) which provides 

similar decorrelation, but allows for lossless reconstruction of color components. 

Both color transforms are applied to first three components of the image data and 

the remaining components, if exist, are left unchanged. After the component 

transform, the image components are treated independently.  
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A color component can be processed in arbitrary sized non-overlapping rectangular 

blocks called tiles or the entire color component can be processed at a time (i.e. no 

tiles).  

Given a tile, a J-level dyadic 2-D wavelet transform is applied. JPEG-2000 Part I  

offers two filtering methods which differ in filter kernels: Wavelet transform can be 

performed using either (9,7) filter, floating point wavelet [20], or (5,3) filter, integer 

wavelet [15]. For lossless compression (5,3) filter must be used. For a J-level 

transformation; from  the lowest frequency sub-band (which is denoted in this work 

by S0), up to the Jth resolution (which is denoted by S(J)), there are J+1 possible 

resolutions to reconstruct an image.   

After wavelet transformation, uniform scalar quantization is applied to all sub-band 

coefficients. Uniform quantization involves a fixed dead-zone around zero. This 

corresponds to magnitude division and magnitude flooring.  Further quantization 

can be applied during coding process by truncation of coefficients, thus rate control 

is achieved. For integer transform quantization step size is essentially �but not 

necessarily- 1, which means there is no pre-coding quantization, however rate 

control is achieved by truncation of coefficients as in floating-point transform.  

After quantization each sub-band is subjected to packet partition, where each sub-

band is divided into regular non-overlapping rectangles. After this step, code-blocks 

are obtained by dividing each packet partition location into regular non-overlapping 

rectangles. The code-blocks are the fundamental entities for the purpose of entropy 

coding.  

Entropy coding is performed on each code-block independently. A context 

dependent, binary arithmetic coding is applied to bit planes of code-blocks. 

Algorithm employs the MQ-Coder which is defined in JBIG-2 standard [21] with 

some minor modifications. 
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1.4 GEZGİN: A JPEG 2000 Compression Sub-system On-board BILSAT-1 

BİLSAT-1 [22] [68] is a 100kg class, low earth orbit (LEO), micro-satellite being 

constructed in accordance with a technology transfer agreement between 

TÜBİTAK-BİLTEN (Turkey) and SSTL (UK) and planned to be placed into a 650 

km sun-synchronous orbit in Fall 2003. One of the missions of BİLSAT-1 is 

constructing a Digital Elevation Model of Turkey using both multi-spectral and 

panchromatic imagers. Due to limited down-link bandwidth and on-board storage 

capacity, employment of a real-time image compression scheme is highly 

advantageous for the mission.  

Prof. Dr. Murat Aşkar has initiated resource and development projects which lead to 

the development of payloads for small satellites [68], one of which was planned to 

be an image processing subsystem while the other is a multi-spectral camera, 

ÇOBAN. GEZGİN [23] is a real-time image processing subsystem, developed for 

BILSAT-1. GEZGİN is one of the two R&D payloads hosted on BILSAT-1 in 

addition to the two primary imager payloads (a 4 band multi-spectral 26m GSD 

imager and a 12m GSD panchromatic imager). GEZGİN processes 4 images in 

parallel, each  representing a spectral band (Red, Green, Blue and near Infra-Red) 

and captured by 2048 × 2048 CCD array type image sensors. Each image pixel is 

represented by 8-bits. The imaging mission of BILSAT-1 imposes a 5.5 seconds 

interval for real-time image processing between two consecutive multi-spectral 

images with 20% overlap in a 57 × 57km2 swat. The image processing consists of 

streaming in the image data, compressing it with the JPEG2000 algorithm and 

forwarding the compressed multi-spectral image frames as a single stream to the 

Solid State Data Recorders (SSDR) of BILSAT-1 for storage and down-link 

transmission. Compression of image data in real-time is critical in micro-satellites in 

general, where the down-link and on-board storage capacity are limited. GEZGİN 

achieves concurrent compression of large multi-spectral images by employing a 

high degree of parallelism among image processing units.  

The JPEG2000 compression on GEZGİN is distributed to dedicated Wavelet 

Transformation and Entropy Coding units. An SRAM based Field Programmable 
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Gate Array (FPGA) performs the computationally intensive tasks of image stream 

acquisition and wavelet transformation. A 32-bit floating-point Digital Signal 

Processor (DSP) implements the entropy coding (compression), formatting and 

streaming out of the compressed image data. The system allows for adjustment of 

the compression ratio to be applied to the images by means of run-time supplied 

quality measures. This results in great flexibility in the implementation of the 

JPEG2000 algorithm. Data flow into and out of GEZGİN is through dedicated high-

speed links employing Low Voltage Differential Signalling (LVDS) at the physical 

layer. GEZGİN accommodates sufficient amount of on-board memory elements for 

temporary storage of the image data during acquisition and compression. The 

command/control interface of GEZGİN has an integrated Controller Area Network 

(CAN) bus. The configuration of the SRAM based FPGA together with the program 

code of the DSP can be uploaded in orbit through CAN bus, allowing for 

reconfiguration of the system. 
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CHAPTER 2 

 

HARDWARE IMPLEMENTATIONS OF 2-D DISCRETE WAVELET 

TRANSFORMS, A LITERATURE REVIEW  

 

 

The 2-D Discrete Wavelet Transform has a fundamental role in recently developed 

still and moving picture compression algorithms. However, because of its 

complexity in hardware implementations, a significant number of studies in the 

literature have been devoted to the design of architectures that effectively utilize 

available resources. Methods and algorithms have been proposed for the 

implementation of the 2-D DWT for the sake of simplifying the control circuitry, or 

architectures proposed for the implementations of such methods and algorithms. 

The publications in the literature are dedicated to proposing solutions for specific 

problems such as computation time, latency, memory requirements, routing 

complexity, inverse transform facilitation, utilization, etc.  

This chapter is organized as follows: To provide a background, 1-D DWT 

architectures will be given in Section 2.1. Section 2.2, briefly discusses Mallat tree 

decomposition architectures, followed by a summary and a comparison of these 

architectures from an FPGA implementation perspective.  

2.1 1-D DWT Architectures 

Most 2-D DWT can be implemented with the use of one dimensional transform 

modules. Therefore, at this point, a brief background of one dimensional DWT 

architectures will be given. There have been a number of 1-D DWT architectures 
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studied so far [24-31], we will only discuss those relevant to hardware 

implementation of 2-D architectures. 

Throughout this section N represents the length of the 1-D signal, L is the filter 

length, x(n) is the input,  g(n) and h(n) are the low-pass and high-pass filter outputs  

respectively. J denotes the maximum number of decomposition levels, and j  is the 

current resolution level. Timing values are given in clock cycles (ccs) and storage 

sizes are given in terms of pixels.  

2.1.1 Recursive Pyramid Algorithm Implementations 

The recursive pyramid algorithm is a reformulation of the pyramid algorithm [12] 

introduced by Vishwanath [30]. It allows computation of the DWT in real-time, and 

provides an important storage size reduction. The algorithm uses storage of size 

.  ( )1log −NL

The output scheme is the linearized form of the pyramid structure.  The algorithm is 

based on scheduling the outputs of any level j  at the earliest instance that it can be 

scheduled. Instead of computing the jth level after the completion of  j-1th level, the 

outputs from all levels are computed in an interleaved fashion. The outputs from the 

first level are computed once in every two received input sample. Therefore the 

higher levels can be interspersed between the first level. For an input of length N=8 

and the decomposition level of J=3 the outputting schedule is as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) −− ,8,4,7,2,6,3,5,,4,2,3,1,2,1,1 12131211213121 hhhhhhhhhhhhhh    

where  is the nth output of the  jth level.  ( - ) sign indicates that there is no 

scheduled output at that instance.  

( )nhj

The pseudo code for the RPA is as follows : 
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begin {Recursive Pyramid}

input : W[0,i]=x[i], i:[1,N] /* N is a power of 2 */
low-pass filter  : h[m]m:[0,L-1]
high-pass filter : g[m]m:[0,L-1]

for (i=1 to N) /* Once for each output */
rdwt(i,1)

end {Recursive Pyramid}

rdwt(i,j)

begin {rdwt}

if (i is odd)
k=(i+1)/2 /* Compute output number k of level j
sumL=0 This is computed using the last L outputs
sumH=0 of level (j-1). */
for (m=0 to (L-1))

sumL=sumL+W[j-1,i-m]*h[m]
sumH=sumH+W[j-1,i-m]*g[m]

W[j,k]=sumL /* Low-pass output */
W[j,k]=sumH /* High-pass output */

else
rdwt(i/2,j+1) /* Recursion to determine correct level */

end {rdwt}

 

Figure 2.1 Pseudo code for RPA 

 

2.1.2 One Dimensional RPA Architectures 

The first architecture for computing 1-D DWT was reported by Knowles [31]. 

Although this work was published before Vishwanath�s RPA algorithm [30], this 

design can be classified as a RPA implementing architecture. Figure 2.2 shows the 

proposed DWT architecture.  
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Figure 2.2 One dimensional RPA Architecture proposed by Knowles 

 
The input x(n) is loaded into an L depth shift-in parallel-out shift register. Where L 

is the maximum of the lengths of the low-pass and high-pass filters; L = 

max{Lg,Lh}. Each intermediate result hj(n) obtained from the low-pass filter is also 

fed into a shift-in parallel-out shift register, while the high-pass filter outputs gj(n) 

are sent to output without being stored. 

Since the architecture uses large multiplexors for routing intermediate results, it is 

not well suited for VLSI architectures. Several other architectures have been 

proposed in order to reduce the large routing introduced in DWT architectures. 

2.1.2.1.Systolic/Semi-systolic Architectures 

Viswanath proposed systolic and semi-systolic architectures which eliminate the 

wiring complexity in [32]. The architecture consists of filters handling low-pass and 
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high-pass filtering and a systolic routing network as shown in Figure 2.3. The 

routing network is a mesh of cells consisting of J-1 rows and L column, where J is 

the number of levels and L is the length of the filter.  

 

...

...
...

...

...... ......

L columns

J rows

x(n)

g1..J-1(n)

h1..J-1(n)

low-pass...

... high-pass

routing network

 

Figure 2.3 Systolic Architecture of Vishvanath 

 
The architecture implements RPA as follows : The first level is computed 

conventionally in linear array and all the other levels are computed 

unconventionally. During the odd clock cycles each cell of the filters shifts in the 

input stream x(n), while during the even cycles it takes the input from the proper 

level through the routing network. Thus the interspersion of higher levels between 

the first level is achieved.    

In systolic structure the cells are capable of shifting data up and to the left. Several 

control signals such as shift-up shift-right, clock-up, clock-right are routed through 
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the network. The design of cells may be rather complex however the systolic 

network can be replaced with a semi-systolic one which  provides global 

connections in vertical directions, eliminating the need for clock-up signals and 

extra control registers with the expense of wiring complexity. 

2.1.2.2.Memory-Based Implementations 

The routing network of systolic/semi-systolic architecture can be replaced with a 

RAM and address generators as shown in Figure 2.4. 

Linear Array
Low-pass Filter

RAM of size L(J-1)

...

address
counter of

J bits
address decoders

...

L lines

Input

Linear Array
High-pass Filter...

Output

 

Figure 2.4 RAM based implementation of systolic architecture 

 

2.1.2.3.Parallel Filtering 

A similar structure to that of the systolic transformer in [32] is presented in [33], 

however with minor modifications. The x inputs are first fed into the storage instead 

of the linear array, and then loaded in parallel to the two parallel filters. This 

introduces a delay of L clock cycles.  
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The architecture is illustrated in Figure 2.5. The storage unit consists of J serial-in 

parallel-out shift registers each of length L. Each parallel filter consists of L 

multipliers and a tree of (L-1) adders. The parallel filter structure allows high 

sampling rates by adding pipe-lining stages, hence introduces computing latency to 

the filters. The latency introduced forces the use of a scheduling algorithm which 

takes into consideration this latency and is known as modified RPA (MRPA). 

parallel filter (low-pass) parallel filter (high-pass)

shift register of size L

...
shift register of size L

shift register of size L

g1..J-1(n)

x(n)

h1..J-1(n)

L

ts

2ts

2J-1ts

c1

cJ

c2

a1

a2

aJ

Storage Unit
 

Figure 2.5 Parallel filter architecture 

 

2.2 2-D Mallat Tree Decomposition Architectures 

Mallat tree decomposition is the most popular of the 2-D wavelet transforms and is 

used in most image processing applications (see Figure 2.3). There are many Mallat 

tree decomposition architectures in the literature [27][33-45].  Some of these 

architectures will be discussed in two groups: Whole image storing and Memory-

optimized. We will not consider off-chip data storing architectures such as [27][34-
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35] since bottleneck of such implementations in high bandwidth applications is 

mainly the memory access not the architecture itself.   

For the notation of Mallat tree, it is preferred to stick to the representation in [37]:  

High and low pass outputs after the j+1th stage computations along the row are 

denoted by (LL)jH and (LL)jL respectively.  (LL)jHH and (LL)jHL denote the high-

pass and low-pass outputs after computing along the columns of (LL)jH while 

(LL)jLH and (LL)jLL denote the high-pass and low-pass outputs after computing 

along the columns of (LL)jL.  

2.2.1 Whole Image Storing Structures  

2.2.1.1.Direct Approach 

 
Direct approach for the computation of 2-D wavelet transform is presented in [32]. 

The architecture implements Mallat tree decomposition with the repeated use of a 

single 1-D DWT module. Figure 2.6 shows the architecture of the 2-D DWT 

module. A memory of size equal to the input image, and an address generator which 

will handle the transposition of the intermediate coefficients is needed. To compute 

1-D DWT of a row of length N,  2N clock cycles are needed hence the number of 

clock cycles needed to compute 1-D DWT of the whole image having N rows is 

2N2. It is clear that 4N2 clock cycles are required in order to compute the 2-D DWT 

of the image.  The first output is produced 2N2 cycles after the first input has 

arrived.  

Despite the simplicity of the architecture, it may be an expensive task to store N2 

samples for large images. Moreover the latency of 2N2 cycles introduced before the 

first output is released may not be tolerable for many applications.  

30 



1-D DWT Module

Storage of size N2

Mux

Address
Generator

Input

LLj

 

Figure 2.6 Direct Approach 

 

2.2.1.2.Single Instruction Multiple Data (SIMD) Architectures 

A SIMD architecture for the 2-D DWT is presented in [33], [37], where N x N  

image data is mapped onto an SIMD array of  N x N processors. Each processor can 

be configured as �active� or �inactive� at each stage as follows: If a processor is set 

to �inactive� it behaves like a simple wire which passes data through it with a 

negligible delay. If it is set to �active�, the processor does multiply-add operation 

and passes its data to the neighboring processor with a delay of one cycle. The 

interconnections of  the �active� processors for the first three stages where N=8 is 

shown in Figure 2.7. At each stage the high-pass and low-pass filter coefficients are 

broadcast to each processor; the coefficients and data are multiplied by �active� 

processors and the partial results are updated. Then, data is shifted upwards during 

column operations and leftwards during row operations along the  
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Stage 0

Stage 1

Stage 2

 

Figure 2.7 Interconnections of the �active� processors for three stages where N=8 

 

 �active� processors. Another possible way of computation is to fix the data locations 

and shift the partial products. If each processor has only one multiplier at each stage 

row operations will take 2L cycles and column operations will take 2L cycles. This 

results a total processing time of 4JL cycles. Intermediate outputs of the processors 

are shown in Figure 2.8 for row and column operations. The memory requirement of 

the architecture is 2N2-3N2. 
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Figure 2.8 Intermediate outputs of the processors 

 

2.2.2 Memory Optimized Architectures 

2.2.2.1.Parallel Filter Algorithms 

2-D discrete wavelet transforming using parallel filtering method explained above is 

presented in [33], [37] and [38]. Figure 2.9 shows the architecture for the 2-D DWT, 

where, filter 1 and 2 are the filters which operate on the rows and filter 3 and 4 are 

the filters which operate along the columns. the outputs of filter 1 (L and H) and the 

outputs of filter 2 ( (LL)j-1L and (LL)j-1H) are stored in storage 1 and read out by 

filters 3 and 4 in transposed form. Similarly, the output of filter 3, (LL)j is stored in 

storage 2 and read out in transposed form by filter 2.   
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filter 1

Storage Unit 1

filter 1
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Figure 2.9 Two dimensional parallel filter architecture I of Chakrabarti et al 

 

Input to the structure is in row-major order. Filter 1 computes L and H outputs in an 

interleaved fashion. Filter 2 first computes the output  (LL)j-1L and N cycles later 

computes  (LL)j-1H. Filter 3 computes the outputs  (LL)j and (LL)j-1HL along the 

columns. It first computes  (LL)j and N cycles later computes (LL)j-1HL. These 

outputs are stored in Storage 2. Similar to filter 3, filter 4 computes along the 

columns; it first computes  (LL)j-1LH and N cycles later computes (LL)j-1HH.  

Li,j is scheduled at time T +Ni + 2j. (LL)j and (LL)j-1LH are scheduled to be 

computed at the same time and (LL)j-1Li,j is scheduled to be computed T cycles after 

(LL)j-1
i,2j where T  is the latency of the parallel filters in terms of clock cycles. 

The scheduling of LLa
i,j is can be arranged in two ways depending on whether a 

reduced complexity and storage size or a reduced forward latency is desired. 

Scheduling algorithms are explained in detail in [37].  
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A modified version of the architecture in Figure 2.9 is shown in Figure 2.10. The 

modified architecture has been proposed for encoder-decoder systems where latency 

is an important issue. Outputs of all sub-bands are produced at the same time 

eliminating the extra buffering requirements at the decoder side.  

filter 1 (low-pass)

filter 2 (high-pass)

Storage Unit 1i

Storage Unit 1ii

Mux

filter 3i (low-pass)

filter 3ii (high-pass)

filter 4i (low-pass)

filter 4ii (high-pass)

Storage Unit 2

Input

(LL)j-1L

(LL)j-1H

(LL)j

(LL)j-1LH (LL)j-1HL (LL)j-1HH
 

Figure 2.10 Two dimensional parallel filter architecture II of Chakrabarti et al 

 

Storage units 1 and 2 of Figure 2.9 are of size ( )( )JLNN 2/1122/ −+  and 

( )( )12/11 −− JN  respectively. Sum of the size of storage units 1i and 1ii and the size 

of storage unit 2 of Figure 2.10 are ( )( )JLN 2/112 −   and ( )( )12/11 −− JN  respectively. 

Both architectures have a computation time of approximately N2 clock cycles. 

A similar architecture to the ones explained above was proposed by Masud et al in 

[39]. It differs from the above architectures mainly in the scheduling method it uses. 

Architecture is presented as semi-recursive pyramid algorithm architecture. 
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The architecture is shown in Figure 2.11. It consists of two serial filters (filter 1 and 

2) which operate on rows, a parallel filter (filter 3) which operates on columns, and 

two storage units, one of which stores L and H outputs while the other stores  (LL)jL 

and (LL)jH outputs.  

 

filter 1 filter 2

filter 1 filter 1

Mux

filter 3

LH,LL,HH,HL

Input

 

Figure 2.11 Semi-recursive pyramid algorithm architecture of Masud et al 

 

The image is input in row-major order into the filter 1. Outputs of filter 1 are stored 

in memory 1. The rows in the memory are shifted by two row places. The parallel 

filter waits for a row to be complete in memory 1 and then begins to compute its 

outputs. The data needed for the computation of further levels are immediately 

filtered along the rows by filter 2 and then stored in memory 2. The parallel filter 

computes at twice the rate of filter 1. It computes the outputs of levels other than the 

first one as the filter 1 fills up the necessary rows for the first level. The scheduling 

algorithm of the architecture is shown in Figure 2.12. This scheduling results a more 
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simplified scheduling circuitry than the MRPA and RPA algorithms. And also 

boundary handling can be simplified.  

Memory 1 is of size 2  and memory 2 is of size   

. The architecture computes the 2-D DWT of an N×N 

image in 3/2N

( ) ( )( 12/1 ++⋅− LNL

 )
 )

( ) ( )( 12/12 ++⋅− LNjL
2 clock cycles. 
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Figure 2.12 Scheduling of semi-recursive architecture 

 
 

2.2.2.2.Non-Separable Filtering Architectures 

 

A 2-D non-separable DWT architecture is presented in [33]. The architecture 

implements the MRPA algorithm in 2-D (ie higher level computations are 

interspersed between the first level computations). Figure 2.13 shows block diagram 

of the non-separable parallel filter architecture.  

Each parallel filter consists of L2  multipliers and a tree of (L2-1) adders to add the 

products. The storage unit consists of J serial-in parallel-out shift register units, 

where the jth unit consists of 2-D array of storage cells of size L x N/2j-1 .  Input data 
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is shifted into the storage units in rows. When a row is filled up data is shifted up 

one row. The architecture needs 2L2 multipliers, 2(L2-1) adders, and 2NL storage 

cells. Computation time in terms of clock cycles for an image size of N×N is N2. 

 

parallel filter (low-pass) parallel filter (high-pass)

...

shift register of size
NL

L2

Storage Unit

shift register of size
(N/2)L

shift register of size
(N/2J)L

LH, HL, HH

input

 

Figure 2.13 Non-separable filter architecture 

 

This architecture results in a complex routing, however it is capable of applying 

non-separable filtering. 

2.2.2.3.Systolic-Parallel Architectures 

Viswanath et al have proposed a systolic-parallel architecture which implements the 

RPA in 2-D in [32]. The architecture consists of a systolic filter, a parallel filter and 

a systolic storage unit. The block diagram of the architecture is given in Figure 2.14. 

The systolic filter handles the filtering along the horizontal direction while the 

parallel filters handle the filtering along the vertical direction.  
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Figure 2.14 Systolic-parallel architecture 

 

Two consecutive rows of the input frame are fed into S1  and S2 . The data of the 

routing network will come to  S1 from parallel filter P1. The outputs of filters S1  and 

S2  are fed into the holding cells which shift their contents into the block cells once 

in every 2N cycles. The outputs in the block cells are stored in the same order as the 

output scheme of 1-D RPA. The filters P1 and P2  compute 4 rows over 2N cycles. 

These four rows constitute four outputs at that level. One of them is fed to S1 . The 

parallel filters produce the outputs in the same order as the row filters and this is the 

required order for the row filter and routing network operation. The architecture 

computes 2-DWT of an N x N  frame in N2+N cycles. The storage is of size 2NL. 

2.2.2.4.Row-parallel RPA Architectures 

An architecture which processes an entire row at the same time is proposed in [40]. 

This architecture does not use any MAC operators but bit-serial operation units 
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(PE�s). It uses a scheduling scheme which can be interpreted as the 1-D RPA, in 

which the entire row is treated as a single pixel.  

In Figure 2.15 the image data and wavelet coefficients are illustrated for a 3 level 

DWT with a filter length of 3 and a row size of 8 pixels. 8 PE�s are required for the 

computation of 8-point DWT.  The dash line illustrates the boundary of the data. 

Shaded coefficients are the ones required for the computation of the next level. Each 

PE computes one wavelet coefficient which resides in the corresponding column.(ie. 

Each column represents the computations of the corresponding PE)  The data 

outside the boundary are obtained by mirror-extension. 

x0 x1 x2 x3 x4 x5 x6 x7 x6x1

h1,0 h1,1 h1,2 h1,3g1,0 g1,1 g1,2 g1,3 h1,2h1,1

h2,0 h2,1g2,0 g2,1 h2,1h2,1

h3,0 g3,0

level 2

level 3

level 1

 

Figure 2.15 Row-parallel processing for three levels and image size of 8 

  

Figure 2.16 shows the row-parallel processing architecture.  The architecture has 

five main components: N number of PE�s, a routing network,  memory cells, the 

addressing elements and a controller.  Input row to the structure is received and 

stored in memory. When the entire row has been received, the routing network reads 

the row and dispatches it to the N PE�s. After the row operation is completed, 

column operation takes place. After the row and column operations LL band is 

stored in memory for higher levels of computation and other three bands are output. 

Higher bands computations are interspersed between the first bands computation as 
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in RPA algorithm. The method makes boundary handling much simpler than the 

architectures described earlier. Programming filter coefficients is also simplified.  

The architecture uses 4N  full-adders and memory of size (L+1)NJ and no MAC 

operators. The computation time for an image size of N×N is ,as reported in [40],  

approximately N2+N clock cycles. 

controller
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.(L+1)J
adressing
elements

(L+1)NJ memory cells

routing network

N PE's

 

Figure 2.16 Row-parallel architecture 

 

2.2.2.5.Lattice Architecture  

Another architecture which has lattice structure filters is proposed in [41].  It is 

based on the extension of the lattice structure based 1-D DWT architecture proposed 

in [29]. Figure 2.17 illustrates the architecture, which consists of 4L processing 

elements (PE), two data format converters (DFC), and 4L delay control units 

(DCU). The architecture implements paraunitary QMF factorization. The theory 

behind this type of factorization is beyond the scope of this work, but for a more 

detailed discussion one can refer to [10]. 
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Figure 2.17 (a) Lattice architecture. (b) Processing element. 

 

In summary, the architecture accepts data from two rows at a time, while output 

rows of each level are scheduled row by row. Higher levels� rows are interspersed 

between the first level�s rows. 

The computation time for this method is N2/2 since the architecture computes two 

rows at a time. The memory requirement is 2L(N+J). 8L multipliers and 8L adders 

are used. 

2.2.2.6.Level-by-level transforming 

A level-by-level transforming architecture is proposed in [42]. The block diagram of 

the architecture is shown in Figure 2.18. The architecture includes a transform 
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module which handles both horizontal and vertical filtering operations, a RAM 

module of size N2/4, an address generator and a multiplexor. The computation 

scheme is as follows: In the first-level decomposition, the input is fed to the 

transform module, and the outputs LL, LH, HL and HH are generated. LL is stored 

in RAM in order to compute the second level outputs. After the  completion of the 

first level, the data stored in RAM is fed to the transform module in order to 

compute LL1 , LH1 , HL1 and HH1.This procedure is repeated until the Jth level 

computations. This scheme provides a regular output flow.  
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Figure 2.18 Level-by-level transforming architecture 

 

The proposed architecture employs a polyphase decomposition technique in which 

the filter coefficients are decomposed into even-ordered and odd-ordered parts. 

During even clock cycles  the input sample is fed to the odd-part and multiplied 

with the odd-ordered coefficients, during odd cycles the input sample is fed to the 

even-part and multiplied with the even-ordered coefficients as shown in Figure 2.19. 

The results from the two parts are summed up and output. This provides the internal 

clock of the architecture to be half the sampling rate. Hence the architecture 

computes 2-DWT of an N×N frame in N2/2-0.67N2 cycles depending on the J value. 

The total memory requirement for the architecture is N2/4+LN+L.   
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Figure 2.19 Splitted signal implementation 

 

2.2.2.7.Quadri-filter  

Two different 2-D DWT architectures employing �quadri-filter� blocks, which are 

suitable for non-separable 2-D filtering as well as separable filtering are presented in 

[45].  The qaudri-filter described in [45] is a modified type of 2-D convolver which 

splits the 2-D computation into several 1-D computations [46]. The Figure 2.20 

illustrates a 2-D convolver having (LxM) taps. Each 1-D convolver Ci has M taps 

corresponding to the ith row of the 2-D filter. The row-adder computes the 

simultaneous sums of each partial result.  
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Figure 2.20 2-D convolver having L×M taps 

 
Figure 2.21 illustrates the �Quadri-filter� block. �Quadri-filter� is capable of down-

sampling and interleaved computation which are employed in DWT. The pipe of 

row-delays of 4.19 are split into two distinct pipes working in parallel. In this way, 

the even-ordered and odd-ordered rows can be fed simultaneously, thereby 

achieving down-sampling along rows. The processors Pi  replace the 1-D convolvers 

of 4.19, and handle the computations of partial results  ll{i},m,n, lh{i},m,n, hl{i},m,n, 

hh{i},m,n m,n=0,1..N/2j  in an interleaved fashion.  
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Figure 2.21 Quadri-filter structure 

 

One of the two architectures proposed in [45] is a folded architecture which 

implements a MRPA-like scheduling algorithm as shown in Figure 2.22. The 

quadri-filter used in the folded implementation has J distinct row-delay pipe-lines. 

The data is fed to these pipe-lines through a demux and  Pi�s are fed through 

multiplexors which decide on the j value.     

The other architecture is the pipe-lined approach which has as many processing 

units as the levels of decomposition as shown in Figure 2.23. In a pipe-lined 2-D 

DWT, the sub-band coefficients  lhj
{i},m,n, hlj

{i},m,n and  hhj
{i},m,n are generated in  

slice j of the pipe-line and directly output. llj
{i},m,n sub-band generated at slice j is fed 

into slice j+1. The quadri-filter blocks at each level differs from others in the size of 

the input it processes; the filter at level j processes an input of size .  

Note that  the lh

11 2/2/ −− × jj NN
j
{i},m,n and  llj

{i},m,n outputs are generated in an interleaved fashion. 

Therefore, an adapter is required to handle the separation of sub-bands. The adaptor 

46 



also handles splitting the even-ordered and odd-ordered rows of the input and 

feeding them in parallel to the next level.  

Both architectures have a memory requirement of 2LN. The folded architecture has 

a computation time of approximately 2N2/3 clock cycles, where the pipe-lined 

architecture has a computation time of approximately N2/2 clock cycles. The 

strength of the pipe-lined approach is that it requires more simpler control and 

routing circuitry compared to the folded architectures. 
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Figure 2.22 Folded architecture with quadri-filters 
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Figure 2.23 Pipe-lined architecture with quadri-filters 

 

It is reported that in many practical cases, pipe-lined architectures are simpler than 

the conventional MRPA-based devices [45]. Hardware cost of pipe-lined 

architecture for the cases examined in [45] except {J>8, L=8, N=512} and {J>6, 

L=12, N=512} is smaller than the parallel filter architectures of [37].  It should be 

noted that even though J can be any integer not exceeding log2(N), in many practical 

applications values of J greater than 4 or 5 (with N=512) and 3 or 4 (with 

N=256,128) produce little to no added benefits.  

2.3 Summary and Comparisons on Mallat Tree Architectures 

In this section the 2-D discrete wavelet transform architectures which have been 

discussed in previous sections will be summarized and compared from an FPGA 

implementation perspective. Specifically, the feasibility of realizing such 

architectures in FPGAs and suitability of these architectures for specific applications 

such as JPEG 2000 image compression standard [19] or tile-based processing of 

large image data, will be discussed.  
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Table 2.1 Comparisons of 2-D DWT Architectures (I) 

Architecture Storage Size 
(B bits) 

Storage Size 
Bound 

Suitability to 
RAM appl. 

Computation 
Time (ccs) 

I. Direct Approach [32] N2 O(N2) yes 4N2 

II. SIMD Architecture [33] 2N2 O(N2) no 4JL 

III. Parallel Filter 1 [37] ≈ 3/2 N +2LN O(LN) yes ≈ N2 

IV. Parallel Filter 2 [37] ≈  N +2LN O(LN) yes ≈ N2 

V. Masud [39] ≈ 2NL O(LN) yes 3/2 N2 

VI. Non-Seperable [33] 2NL O(LN) yes N2 

VII. Systolic-parallel [32] 2NL O(LN) no N2+N 

VIII. Row-parallel [40] (L+1)NJ O(LNJ) no ≈N2+N 

IX. Lattice Architecture [41] 2L(N+J) O(LN) no N2/2 

X. Level-by-level [42] N2/4+LN+L O(N2) yes N2/2 � 0.67N2 

XII. Semi-recursive [44] ≈N2 O(N2) yes 4N2/3 

XIII. Quadri-filter folded [45] 2NL O(LN) no 2/3 N2 

XIV. Quadri-Filter pipe-lined [45] 2NL O(LN) no N2/2 
 

 

FPGA designs are classified as ASIC designs; most of the design considerations for 

ASIC implementations are common for FPGAs and custom ICs. There are, 

however, several design differences depending on the specific application.  

Memory is one of the prime issues for an FPGA application. The limited storage 

resources of FPGAs compared to which custom ICs offer, may make an FPGA 

implementation infeasible despite its suitability for a custom IC. Typical resources 

including both registers and on-chip block RAMs are given in [47]. The limited 

number of resources forces designer to concentrate on reduced memory 

implementations of the wavelet transform. 

Table 2.1 shows the storage requirement and computation times of various 

implementations. The architectures can be roughly divided into two groups one of 

which has a storage requirement bounded with O(LN) or O(LJN) while the other 

group has a storage requirement bounded with O(N2). It is clearly preferable to 

design an architecture which is O(LN) bounded in storage for reduced memory 

applications rather than an architecture which is O(N2) or O(JN) bounded. For fast 
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applications, architectures having computation times independent of N may be 

preferred. 

For transforming large images on FPGA, architectures of type I,II,X and XII are not 

feasible, since they require large sizes of storage. Even if an architecture with a 

smaller memory requirement is chosen, the required storage still may not be 

accommodated in the distributed registers available in FPGA devices  [47-48], and 

the use of RAM blocks provided in such devices may be necessary. This also 

provides a considerable reduction in circuit complexity and routing. However not 

every type of architecture is suitable for RAM employment. The suitability of an 

architecture to use RAM blocks is given in Table 2.1.   

Table 2.2 Comparisons of 2-D DWT Architectures (II) 

Architecture Routing 
Control/ 

Scheduling 
Complexity 

I. Direct Approach [32] simple simple 

II. SIMD Architecture [33] complex complex 

III. Parallel Filter 1 [37] moderate moderate 

IV. Parallel Filter 2 [37] moderate moderate 

V. Masud [39] moderate moderate 

VI. Non-Seperable [33] complex complex 

VII. Systolic-parallel [32] complex complex 

VIII. Row-parallel [40] complex complex 

IX. Lattice Architecture [41] complex complex 

X. Level-by-level [42] moderate simple 

XII. Semi-recursive [44] simple moderate 

XIII. Quadri-filter folded [45] complex complex 

XIV. Quadri-Filter pipe-lined [45  ] moderate simple  
 

Routing and control complexity is another problem for FPGA devices. Large 

multiplexors bring complex routing and consumption of precious logic function 

generators [47]. Table 2.2 tabulates routing and control complexity of different 

architectures. Systolic, SIMD array and lattice architectures like II, VII, VIII, IX 
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have excessively large routing due to control and multiplexing/directing logic 

among the processing cells. Therefore although implementing those architectures on 

custom IC have many benefits, they are not suitable for FPGAs.  

Folded architectures aim to minimize the number of filter modules by feeding 

multiple levels� outputs to a single filter module. This increases the utilization of the 

filters however brings extra multiplexing of intermediate outputs and the need for a 

scheduling circuitry to the system. Folded architectures like III-IX XIII require 

complex circuitry to schedule the output computation. For most applications N is 

much greater than L. This means that the area requirements for storage are the 

dominant design consideration and not the number of MAC units. Moreover for J 

values up to a certain number, folded architectures consume more area. [45].   

Bus routing is another important issue. Internal RAM blocks may be spread over the 

entire FPGA device and it may require complex routing if a number of distant 

blocks are to be connected to the same data bus. Most of the RPA-like architectures 

have central control blocks which handle the data access by applying a harder 

strategy unlike architectures such as XIV, which handle data access of each level 

independently.  
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Table 2.3 Comparisons of 2-D DWT Architectures (III) 

Architecture Scalability Programmable Non-sep. 
Filtering 

Frame 
Sequence 

Processing 
I. Direct Approach [32] Difficult No No No 

II. SIMD Architecture [33] Easy Yes No No 

III. Parallel Filter 1 [37] Difficult No No Yes 

IV. Parallel Filter 2 [37] Difficult No No Yes 

V. Masud [39] Moderate No No Yes 

VI. Non-Seperable [33] Difficult No Yes Yes 

VII. Systolic-parallel [32] Difficult No No Yes 

VIII. Row-parallel [40] Easy Yes Yes Yes 

IX. Lattice Architecture [41] Difficult No No Yes 

X. Level-by-level [42] Moderate No No No 

XII. Semi-recursive [44] Moderate No No No 

XIII. Quadri-filter folded [45] Complex No Yes Yes 

XIV. Quadri-Filter pipe-lined [45] Moderate No Yes Yes  
 

 

Scalability and coefficient programmability is another issue in DWT architectures. 

Some architectures are aimed to be generic architectures which are designed 

independent of the filter size and coefficients and can be adapted to different filters. 

However, some architectures are tuned for a single filter like in [36]. SIMD 

architectures like II and VIII are scalable and can easiliy be adopted  to different 

filters. Systolic parallel architecture (VII) can also be expanded by some 

modifications on hardware. MRPA architectures and non-seperable filter 

architectures, on the other hand, are not easily expandable. In certain applications 

the architecture may be preferred to be programmable, i.e. user may program filters 

of different size and with different coefficients, or different image sizes. SIMD 

architectures like II and VIII are easy to expand and suitable for filter-

programmable designs, however programming image size may be a problem for 

these architectures, while architectures having computation units independent of 

image size are much easier for image size programming.  
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Another point of concern is the dynamic range expansion. In DWT computations, 

the required precision increases with each level of sub-band decomposition. Since 

the folded architectures use a single computation module for all levels up, these 

architectures must accommodate the precision of the highest level J. Pipe-lined 

architectures, on the other hand, can be designed with different precision for each 

slice. 

Some 2-D DWT filters are non-separable. Separable filtering approaches cannot be 

used for 2-DWT with non-separable filters. Among the architectures discussed 

above, only VI, VIII, XIII, XIV are capable of utilizing non-separable filtering. 

Only a few of the studies in the literature address processing of the boundaries and  

usually zero padding is assumed. If the processes frame is a partition of a whole 

frame, zero padding may result degradation of the recovered image. Moreover, if 

perfect recovery is desired, symmetric extension must be applied at the boundaries. 

RPA based architectures are not efficiently modified to achieve boundary 

processing. This is because handling these boundaries requires extra control logic 

and modifications on scheduling procedures. However the row-parallel architecture 

(VIII), which has a SIMD array to process rows in parallel, has the inherent 

capability of applying symmetric extension. Architecture proposed by Masud et al 

(V) is reported to be easily modified concerning these boundaries if desired. It is 

reported to have reduced complexity in controllers used to process boundaries and 

thus to have a considerably higher efficiency in boundary processing compared to 

RPA-based architectures [39]. 

These architectures also differ in the reception of input data. In most applications 

input is received in raster scan. When an architecture receiving input in the same 

scan is used (as in I, III, IV, V, VI, VIII, X  ) additional data adapting circuitry is not 

needed.  However  architectures like VII, IX, XIII, XIV, some of which are capable 

of computing N2 samples in cycles fewer than N2, should be fed two rows at a time. 

This requires the additional row splitting circuitry.  
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Another concept is the ability to process consecutive frames. If the hardware is used 

repetitively to process a sequence of frames, the arrival of the frames may be 

another concern. The frames may be the partitions (tiles) of a bigger size image and 

there might be no gap between the reception of two consecutive frames. In this case 

some architectures may not have finished with a frame when the next one arrives. 

So these architectures may need extra input buffers to get rid of the early arrival of 

input data. I, II,X and XII are not suitable for processing frame sequences and 

require extra queue buffers. 
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CHAPTER 3 

 

A REAL-TIME, LOW-LATENCY FPGA IMPLEMENTATION OF THE 2-D 

WAVELET TRANSFORM  

 

 

This chapter presents the proposed architecture for a 2-D DWT processor in a multi-

spectral imaging application environment. Figure 3.1 shows the block diagram of 

the 2-D DWT processor. The processor receives image data from M sources. In 

order to handle large sized images a pre-buffering and tiling method is proposed. 

Pixels are buffered into off-chip memory either after or before component transform 

(reversible color transform),  and read back in re-ordered fashion (see Figure 3.1). 

The processor is capable of processing P image blocks in parallel.   
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Figure 3.1 Block diagram of the DWT processor. 
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3.1 Input Data Stream Format and Notation  

The data to the DWT processor is assumed to be received through M serial links 

each carrying image information from a camera of a specific spectrum. Each camera 

m  (m=0..M-1) sends an image ( yxIm , )

)

 of  n1 x (n2 + 2β)  unsigned B-bit pixels in 

row-major order. For the reminder of the discussion every two dimensional signal 

 is called a frame and x denotes the vertical index and y denotes the 

horizontal index. The reception of data may be in quadrants since the image may 

have been partitioned into quadrants either internally by the CCD or by the camera 

electronics as shown in Figure 3.2. Both cases (with or without quadrants) are 

discussed whenever necessary.  

( yxA ,
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Figure 3.2 Image data acquisition with quadrants. On both sides of the image there 

are β pixels wide stripes which contain no information other than black pixels. 

Quadrant 0 

 

On both sides of the image (shaded areas in the Figure 3.2) there are β pixels wide 

stripes which contain no information other than black pixels (zeros).  Therefore, 

data from these stripes should be ignored during acquisition.  
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The input interface block is designed in order to handle the physical layer 

considerations such as LVDS links etc. between the cameras and the DWT 

processor. It receives the serial bit stream, discards the black pixels and sends the 

images   of size n( yxIm , ) 1 x n2  to rest of the hardware. 

3.2 DC-Level Shift 

Pixels from each camera are initially B bit unsigned where B is called �the bit 

depth� of the pixels As the JPEG 2000 standard suggests (see Figure 1.9) an offset 

of 2B-1 should  be subtracted from the pixel values. After DC level shift, 

representation of the values become B-bits signed 2�s complement. (i.e. -2B-1 ≤ I < 

2B-1).  

The motivation for the DC-level shift is that all sub-band samples produced by the 

DWT other than LL sub-bands involve high-pass filtering and hence have a 

symmetric distribution about 0. With the level offset samples can be assumed as 

signed with a bit depth of B+1, however this would increase the bit depths of 

computation. [10] 

DC-level shift can be done just as the pixels are received from the input interface. 

Subtracting 2B-1 from a B-bit value in 2�s complement arithmetic is equivalent to 

inverting the MSB of the value.  

3.3 Color Transform 

According to the JPEG 2000 standard, component transform is optional. However it 

is a known fact that the transformed components lead to better compression 

performance and shorter coding time than the RGB components [49].  

The transform converts the RGB data into an �opponent� color representation, with 

a luminance channel, and two color difference channels. This has the effect of 

exploiting some of the redundancy between the original color components. In 

particular, color difference components commonly account for less than 20% of the 

bits used to compress a color image [10].  
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For this reason reversible color transformation is essential in our implementation. 

Reversible color transform employs a matrix operation on some components of the 

image (see (3.1)). The transform requires at least 3 components. The remaining 

components are left unchanged. For the cases P<3 this transform should be 

performed before the tiling step because after tiling only P number of components 

are available at the same time (see Figure 3.1). The component transformed data can 

be explained as follows:  

 
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where I0 , I1 and I2  are assumed to be red, green and blue components respectively. 

For an architecture having P less than 3, computation of the transform components 

and writing them to off-chip memory presents a problem, which is the expansion of 

dynamic range in some components. It is apparent in (3.1) that the original 

components I0, I1, I2 and I3 are of B bits depth, but the new components X0 , X1 and 

X2  are of B, B+1 and B+1 bits depth respectively (Xm is the same as Im for 4 ≤ m < 

M ).  Storing  B+1 bit values is usually not feasible for a low memory hardware 

since the excess bits may require extra words or higher bandwidth to transmit them 

or large buffers in order to be rearranged in multiples of B bit words. In such cases 

the expanded components should be either; 

  i. quantized: least significant bit should be omitted as follows: 

 ( ) ( )
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 for k=1,2 
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 or, 

ii. clamped: clamping the values to B-bit signed range ( [-2B-1 , 2B-1-1 as 

follows: 
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Computation of X1 and X2 involves subtraction of original components. Although 

the dynamic range is increased one bit after subtraction theoretically, it actually 

reduces the dynamic range on correlated data such as natural images. Experiments 

show that clamping gives better results for satellite images.  

3.4 Lifting Implementation  

Consider the lifting structure in Figure 1.8 consisting of a series of filter-and-add 

steps. A possible way of row-based  implementation of  such a structure is to 

perform one step at a time, that is, each row is first processed in step one and the 

intermediate result is stored and then this result is fed to the second step and so on. 

However, this method requires a local memory which is equal to the row length. 

Furthermore, if the filtering is along columns in which the memory required for a 

single tap is equal to the row length, the whole frame should be stored. This method 

is not feasible for a low memory hardware implementation.   

Another way is to process each step in cascaded fashion. In this case the 

intermediate results are immediately fed to the next step. The prediction and update 

filters and U  in Figure 1.8 may not be �which is usually the case- causal. 

For a non-causal system access to the entire signal is required. However the signal 

samples may be received one by one or a low memory application may not 

accommodate such a large number of samples. Therefore, causal versions of predict 

and update filters may have to be used. In [50] and [51] an efficient memory usage 

)(zPk

)
)(zk

)
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for row-based lifting implementations is presented. A brief summary of the results 

in [50] is presented below.  

Both and  of Figure 1.8 may be thought as  the summation of a causal 

and a purely anti-causal filter, such that:  
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)

  (3.4a) ( ) ( ) ( )zPzPzP c
k

a
kk +=
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  (3.4b) ( ) ( ) ( )zUzUzU c
k

a
kk +=

)

where superscript a and c are used to denote the anti-causal and causal parts 

respectively. At this point the reader should be informed that the analysis in [50] 

assumes that the transfer function applied to the odd branch before the down-

sampling is not z but z-1, and therefore differs from the structure of Figure 1.8.  

Nevertheless, it does not affect our calculations.  

It should be also noted that the notation used to discriminate between the forward 

and reverse filters in Section 1.2.2 is absent here. For consistency with  the 

discussion in Section 1.2.2, the anti-causal and causal parts of  the filters should 

actually be denoted by ,  and ,  respectively. Since our 

analysis here focuses only on forward path, a simpler notation is preferred for the 

present discussion.  
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The filters can be given as : 
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For prediction and update steps in the above equations we assume that: 
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  (3.6a) 12,1,0 −= pNk K

  (3.6b) 12,1,0 −= uNk K

respectively, and   

  (3.7a) 12,1,0for0 −≠== pkk Nkgl K

  (3.7b) 12,1,0for0 −≠== ukk Nkfm K

In order to realize a non-causal system which has computations based on future 

samples, we have to buffer a proper amount of the signal until no future sample is 

required to compute the earliest output sample. Mathematically speaking, we use the 

causal versions of the filters instead of the original ones. 

 Let  and U  be the causal versions of and  of Figure 1.8, 

which can be obtained by multiplying the transfer functions by the least possible 

delays and respectively: 
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Figure 3.3 shows the realization of the structure with causal filters. It is apparent 

that the amount of delay applied to make the filter causal should also be applied to 

the unfiltered side. 
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Figure 3.3 Lifting realization with causal filters. 

 

Note that in Figure 3.3 the delay lines are repeated at the filtered channel side in 

order to synchronize the outputs of the stage. The taps for the anti-causal part of the 

filters can be provided from these delay lines and thus no extra memory is needed 

for calculation of   and  outputs. To compute the outputs of the 

causal parts of the filters,  and , we need more g

( )zPz a
k

lk−

z−

( )zUz a
k

mk−

( )z z−Pc
k

lk ( )zU c
k

mk
k and fk delay 

elements.  The required delay line can be provided by applying and to the 

branches placed at the outputs of prediction and update steps respectively as shown 

in Figure 3.4.. In figures 3.3 through 3.6, square boxes represent delay elements. 

kgz− kfz−

The delays and can be combined with the delays of the next lifting step 

(the larger ones absorb the smaller ones) which results in the structure in Figure 3.5.  

kgz− kfz−
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Figure 3.4 Delay lines of lifting implementation 

 

 

We define γk and φk as : 

  (3.9a) { kkk mg ,max=φ }

}

)

   (3.9b) { 1,max −= kkk flγ

Then, the total memory required to implement filtering is found to be: 

  (3.10) ( ) (∑∑
==

+++=
N

k
kk

N

k
kk lm

00
γφµ

where, 

 { }pu NNN ,max=  (3.11) 
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Figure 3.5 Modified delay line structure 

 

Clarification of some of the more obscure points in these calculations may be in 

order: 

Let a delay of z-1 be inserted into both the even and odd branches just after the 

down-samplers (the leftmost side in Figure 3.3). The introduced delay at the even 

branch can be reflected to the input side of the down-sampler as z-2 . The one at the 

odd side can be merged with , and all the delays along the path can be 

rearranged so that each delay block donates to or accepts from the adjacent block a 

delay of z

0lz −

-1. Cancelling the delays at the input side we end up with a system  similar 

to Figure 3.3. . Although we have the same predict and update filters, lk�s and mk�s 

have been modified as follows: 

 

 1  (3.12a) +=′ kk ll

 1 (3.12b) −=′ kk gg

 1 (3.12c) −=′ kk mm

 1 (3.12d) +=′ kk ff
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  (3.12e) { kkk mg ′′=′ ,maxφ }

}

)

  (3.12f) { 1,max −′′=′ kkk flγ

  (3.12g) ( ) (∑∑
==

′+′+′+′=′
N

k
kk

N

k
kk lm

00
γφµ

 

 

As far as the values of the output samples are concerned, disregarding the delay 

introduced,  we can say that  �causality degree�s of the filters change depending on 

the type of input. For the one in Figure 3.3, predict filters are �more causal� and the 

update steps are �less causal�, while, for the modified structure, update steps are 

�more causal� and the predict steps are �less causal�.  As an example the  5/3 filter 

of [15] which is used in our hardware can be given. 

The predict and update steps of 5/3 filter are as follows: 

 ( ) ( 11
4
1,11

2
1

00 == UP )

0

2γ

 (3.13) 

and 

 1  (3.14) ,1 == up NN

For the input mode depicted in Figure 3.3, i.e. where odd samples lag even samples; 

l, m, γ, φ values are as follows: 

  (3.15a) ,0,1,0,1,1,0 1000000 ======= γγφfgml

  (3.15b) 10000 =++++= γφµ ml

and for the modified input mode i.e where odd samples lead even samples; l, m, γ, φ 

values are as follows: 
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  (3.16a) 1

3

,1,0,1,0,0,1 1000000 =′=′=′=′=′=′=′ γγφfgml

  (3.16b) 10000 =′+′+′+′+′=′ γγφµ ml

Note that in (3.12) the delay required to split the signal into even and odd parts is 

not included. Furthermore, one more delay may be needed if the odd and even 

signals are to be combined at the end of the filtering.   

Both structures for the 5/3 filter are shown in Figure 3.6a and Figure 3.6b.  
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(b) 

Figure 3.6 Lifting structure of 5/3 filtering. (a) Odd samples lag even samples, (b) 

Even samples lag odd samples. 

 

From the above discussion it is apparent that the even-lagging system needs less 

storage than the odd-lagging system; therefore it is preferred. However the low-pass 

(even) outputs and high-pass (odd) outputs do not begin and end at the same time; 

odd outputs begin one sample later than the even outputs. For the purpose of parallel 

processing  at the next stages of filtering, filters can be arranged so that one sample 

earlier version of the high-pass outputs which are already in registers can be 

taken as outputs.    

1−uNf
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3.5 Symmetric Extension in Lifting Steps 

The main purpose of  using symmetric extension is to maintain the symmetry of the 

samples around the boundaries even after filtering. This is needed for perfect 

reconstruction. Symmetry of filtered coefficients is possible in the case where 

symmetric filter kernels are used [52]. In this thesis we consider only the odd-length 

filter kernels applied to even length signals. Other combinations of filter kernels and 

signal lengths are beyond the scope of this work. 

For an even-length signal which is to be filtered with odd-length filters whole point 

extension should be applied at the boundaries (see Figure 3.7). One way of applying 

symmetric extension is to copy the required amount of beginning samples ahead of 

the signal and ending samples after the signal before feeding it to the filters. 

However, copying existing samples may constitute a problem  in terms of memory, 

especially when filtering along the vertical direction. Since each delay buffer has the 

same length as a row, a number of rows equal to half the filter length should be 

stored. 

x7 x6 x5 x4 x3 x2 x1 x0 x1 x2 x3 x4 x5 x6 x7

 

(a) 

x7 x6 x5 x4 x3 x2 x1 x0 x1 x2 x3 x4 x5 x6 x7x0

 

(b) 

Figure 3.7 Symmetric extensions: (a) Whole point (b) Half point 
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A better way of  applying symmetric extension is to use the memory already 

available in the filters. The required extension of the signal, which is half the length 

of the filter, can be copied symmetrically as the signal is received in. At the 

beginning of the signal, while the incoming samples are shifted in from one end of 

the filter, they are also copied symmetrically to the other end. Filter buffers are 

filled up as the first output is to come out and thus it is computed with the valid 

values in the filter. At the end of the signal the samples inside the filter are fed back 

to the filter in order to compute the last output samples [50].  

This method applies to not only convolution filters, but also to the lifting steps 

implementations as well [50]. Each lifting step can handle its own symmetric 

extension individually according to the beginning and ending of the signal it 

receives from the previous step. Figure 3.8 shows which types of symmetric 

extension should be applied to the odd and even parts of the even-length signal in 

order to achieve the equivalent whole-point extension which should be used in the   

convolution filter. Even samples are required to be whole-point extended at the 

beginning of the signal and half-point extended at the end of the signal, while odd 

samples are required to be half-point extended at the beginning and whole-point 

extended at the end. 

x1

x0
x1

x2 xN-2x2
xN-1

xN-2
xN-3

...
xN-3...

whole point

whole point

half point

half point

...

......
...

 

Figure 3.8 Application of symmetric extension to even-length signals. 
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With this method, the need of extra memory for storing copy samples is eliminated. 

However, a main drawback of such a system may be the added time required to 

complete the filtering due to copy samples:  

Note that the filter buffers are not fully utilized at the beginning and ending periods 

of the signal in such a system. i.e. a useful output is not always produced for every 

shift of samples. This is not a problem for the processing of a single row/frame 

where the signal begins and end once. However, if a sequence of row/frames are to 

be processed with a fully utilized input transmission, this structure will lack the time 

to process the boundary data. The required gap in terms of row time between the 

input tiles can be calculated with a similar method as in  (2.5).  

In order to provide the full utilization of the filter, a modified structure is proposed, 

where instead of duplicating or feeding back the genuine samples at the boundaries, 

multiplexing the proper samples into the MAC operator is used. The idea is to 

emulate the symmetric extension at the input of the MAC operators. This 

corresponds to a particular application of time/location varying filters instead of 

fixed filters. Time varying filters for finite signals are explained in detail in [53] 

With this scheme, the filter buffers are only used to apply straight shifting on the 

received samples. This also provides a regular buffering pattern and simplifies the 

read back operation of the tiling module. 

It is possible to construct a lifting circuit with the method explained above, which is 

equivalent to any convolution filtering with symmetric extension where even-length 

signals and symmetric odd-length filter kernels are used. 
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Figure 3.9 Symmetric extension applied to consecutive signals. 

 

It was mentioned earlier that the required type of symmetric extension is whole-

point for odd-length filters and even-length signals. Since lifting of odd-length 

symmetric filters lead to even-length symmetric lifting filters and even-length filters 

lead to odd-length symmetric filters [13], we always deal with lifting filters which 

are even-length. Let the filter length of such a filter be 2n and the length of the 

signal be l. As it is apparent from Figure 3.9, in order to compute the first odd 

output sample, n+1 genuine samples are needed while n genuine samples are needed 

to compute the last sample of the previous signal. Assuming that the copy samples 

can be obtained by multiplexing,  at time t (where the last output of prior signal is 

released) the filter should be storing n+1 genuine samples from the prior signal, and 

at time t+1, (where the first output of the latter signal is released), it should be 

storing n genuine samples from the latter signal. This guarantees that the filter 

should at most �excluding the most recently received sample- store (n+1)+n-1=2n 

samples at a given time. Figure 3.10 shows the buffer content at the joint of two 

consecutive signals where l=16 and 2n=8. Main entries denote the index of the 

contained sample  where superscript denotes the multiplexed data to the 

computation units. Shaded numbers belong to the prior signal.  
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Figure 3.10 The buffer content at the joint of two consecutive signals where l=16 

and 2n=8. 

 

With the added boundary handling properties, filter architectures become more 

complex; they involve state machines which interpret the row/tile beginning and 

ending signals and multiplexing circuitry, and hence diverge from being a 

combination of dummy tap delay lines and MAC operators. Multiplexing schemes, 

signal beginning/ending and memory access controls can be combined in a 

processing block called control unit and the module handling weighted sum 

computations can be referred to as computation kernel. The elements of a filter is 

shown in Figure 3.11.  
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Figure 3.11 The elements of a filter architecture for lifting. 

 

3.6 Tiling  

In Section 2.3 it was explained that the memory size of most 2-D DWT 

architectures is dominated by the vertical filter requirement and is O(LN) bounded. 

Since the processing of n1 × n2 size images would require an excessively large 

vertical filter, the original image is tiled into smaller  (n1/k1) × (n2/k2) size tiles 

( ) as described in [54][10].  Z∈21, kk

Although reducing the size of the vertical filter storage dramatically, tiling 

introduces the need to store a portion of the image locally before processing can 

begin. For an image of size n1 × n2 and tile sizes of  (n1/k1) × (n2/k2), a (1/k1) portion 

of the image should be accumulated before one tile can be formed. Tiles are 

therefore formed in groups of k2 for each n1 × n2 size image.  Since the processing of 

any given group of tiles overlaps with the accumulation of the next group, a (2/k1) 

portion of each image must be stored locally at any given time. This also introduces 

a latency equal to the time elapsed to accumulate a (1/k1) portion of the image. Note 

that the maximum possible number of tiles to be fetched from storage 
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simultaneously is equal to the number of tiles in a group. Therefore more than 

P=Mk2 number of parallel processing units are redundant. 

The amount of data buffered before beginning computation (and hence the delay 

introduced due to buffering) in terms of pixels is: 

 
1

21

k
nMnS =  (3.17) 

As explained above, the local storage size to perform tiling is 2S. The latency and 

local storage requirement can be reduced by half by receiving the images divided 

into four quadrants as shown in Figure 3.12. This, however, requires some minor 

modifications to the CCD camera read-out circuitry.   

Each frame  is divided into tiles forming a tile matrix as shown in Figure 3.12. 

The tile , which is on the rth row and sth column of the qth quadrant (if 

quadrants are used) of the tile matrix, is assigned a global-tile index g and is equal 

to a portion π of  a �global-tile�, T

iX
(

srq ,,
iX

(

g

π

g (π=0..P-1). Since the hardware performs 

decoupled and parallel operations on T �s, instead of mentioning T �s  

individually, for simplicity we can assume the concatenation T

g

π

g

π

g as a vectorized 

form of T , which  consists of P×B bits , such as : 

  (3.18) 

























=

−

∆

g

P

g

g

g

T

T

T

1

1

0

LL

LL

LL

M
T

A notation similar to that of Tg is used for all intermediate and output frames in the 

remainder of this discussion. 
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Figure 3.12 Application of tiling to the image components. Each frame  is 

divided into tiles forming a tile matrix. The tile , which is on the rth row and 

sth column of the qth quadrant (if quadrants are used) of the tile matrix, is assigne

iX
(

srq
iX ,,(

d 

a global-tile index g and is equal to a portion π of  a �global-tile�, Tg (π=0..P-1). 

 

For a frame size of n1 × n2 and tile size of (n1/k1) × (n2/k2), with M spectral 

components and P parallel processing units, there are two cases: 

i. without quadrants: 

 )1..1,0 and 1..1,0( 12
2 −=−=



 ++

= kskr
P

iMsMrkg  (3.19a) 

  (3.19b) )(modfor        ),(),( 2
, PiMsMrkyxTyxX g
sr

i π
π

≡++=
(

ii. with quadrants (note that k1 and k2 should be even) : 
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=

(
 (3.19c) 

Tiles are processed in the global-tile order : T0,�, Tg, Tg+1,� TZ-1, where Z is the 

number of global-tiles, and it is equal to : 

 



=

P
MkkZ 21  (3.20) 

After S pixels have been received the reading of tiled image data can begin reading 

and writing is continued simultaneously until the entire image has been received. 

The direction of reading is either from top to bottom first and from left to right 

(column-major order) or from left to right first and from top to bottom (row-major 

order). Which direction of read back results in a smaller memory requirement 

depends on the tile dimensions. Reading back along the smaller side results in a 

smaller internal memory requirement and therefore will be preferred. From this 

point on it is assumed that 
2

2

1

1

k
n

k
n

≤ , and reading back is performed along the 

vertical direction. After writing is completed, the last S pixels are read from the 

memory.  

Since Reversible Color Transform (RCT) [19] requires R, G, and B components, it 

should be applied before the image data is buffered for P<3.  However for P≥3, 

RCT can be also applied after tiling.  

Since for each write operation a read-back is performed, this scheme requires a 

storage-processor link with a bandwidth which is twice the bandwidth of the image 

input stream.  
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Symmetric extension may be applied at the boundaries of the tiles, since it 

eliminates the high frequency content inherent in boundary treatments such as zero 

padding, or circular convolutions and makes perfect reconstruction possible for 

symmetric filters. In addition to the architectural complexities introduced to the 

system (which are discussed in Section 3.5), performing 2-D DWT on tiles also 

introduces blocking artifacts, which are present as similar in traditional JPEG 

images [55] at the boundaries whenever a lossless filtering or recovering procedure 

is not preferred. Especially when sub-bands are discarded and further quantization is 

applied, these artifacts may result in considerable perceptual quality degradations 

[54] [55]. This is due to the fact that the boundary coefficients are computed with 

false values obtained by symmetric extension. However, if instead of reflection 

pixels the genuine boundary pixels are used such degradation will never occur. 

Moreover, the smaller tile sizes can be chosen in order to reduce the internal 

memory. To avoid such degradation, the overlap reading method can be applied.  

Without the application of  symmetric extension the values at the boundaries can be 

obtained by reading extra  area (extension area) around each tile which is already 

available in off-chip storage. This method also reduces the logic in the filters that is 

due to symmetric extension (see Section 3.5).  

Let a and b be the extension needed at the beginning and ending boundaries of a 

row respectively., i.e. at least one of  and   depends on  and at least one 

of 

( )jg0
( )jh0

( )1−
−

j
ah

( )j
rg 12−  or ( )j

rh 12− depends on  for a row length of r. Figure 3.13 shows the one 

dimensional case of a filtering operation. For the sake of illustration let us assume 

r=16, a=2 and b=1, which is the case for a lifting implementation of the 5/3 filter 

[15].  For the odd-length symmetric filters a+b=l-2 where l is the length of the 

longer filter. 

( 1
1

−
−+

j
brh )
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Figure 3.13 Overlap reading for one-dimensional transform  for r=16, a=2 and b=1 

 

The overall number of extra reads performed due to overlap reading for a 1-D J 

level transformation is :  

  (3.21) ( ) ∑
=

−⋅−=+=
J

j

jleee
1

1
21 22

Figure 3.14 shows the overlap reading for 2-D wavelet transform.  

 

Reading extra pixels from storage results in a bandwidth expansion between the 

storage and the processing unit. Note that the required bandwidth depends on the 

location of the tile which is being processed since overlap reading is not applied for 

the boundaries coinciding with those of the entire frame. However the maximum 

expansion factor in number of reads performed  can be calculated as: 

 







+⋅








+=

2

2

1

1
ext 11

n
ek

n
ekR  (3.22) 

and the overall bandwidth expansion factor is  

78 



 
2

1 extR+  (3.23) 

 

For example, if we would like to apply 3 levels of 5/3 transform to tiles of size 

256×256, the expansion factor is only 1.09. If we would like to apply 5 levels of 

transform, this time the expansion factor becomes 1.43, which may be intolerable 

for our application. Furthermore, if we would like to apply 9/7 transform of 5 levels 

to tiles of size 64×64 (we may be concerned about the internal storage size), the 

expansion factor turns out to be 10.14, which results in a gigantic read/write 

requirement.  

With the proposed method blocking artifacts are eliminated. However, for smaller 

tile sizes, larger levels of decomposition, or longer filter kernels, the bandwidth 

increases rapidly and the method loses its practicality.  
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Figure 3.14 Overlap reading for two dimensional transform 
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3.7 Cascade Filter Structure 

Various implementations have been summarized in Chapter 2. An FPGA 

implementation of the 2-D wavelet transform processing large image frames may 

exhibit a large routing network due to access to distributed RAM blocks which are 

usually distributed over the entire FPGA IC. A centralized approach to RAM access, 

by means of a single control unit that manages all levels sub-band generation, or 

that has complex scheduling algorithms or intermediate sub-band multiplexing may 

also introduce excessive logic to the system. Moreover, lifting structures which 

ensures considerable memory reductions and signal boundary handling which is 

inevitable for most applications may pose a problem in terms of circuit complexity 

in such architectures [39][57]. A more straightforward  approach to the problem, 

which uses cascaded 2-D filtering blocks each controlling its own memory space in 

parallel is a more appropriate choice for resolution levels up to a certain number. A 

similar approach is discussed in [45] as a pipelined approach. However the 

discussed architecture does not use RAM blocks but shift registers. In our 

application, though, memory usage and independent memory space for each level is 

essential. 

Figure 3.15 shows the proposed cascaded DWT structure. jth resolution level is 

computed by the 2-D DWT module at the jth stage. Except for their directions of 

filtering, both the horizontal and the vertical filtering perform the same type of 

computation. In hardware implementations, however, the vertical filter requires 

several whole rows to be stored in memory during processing. Vertical filtering 

thus, consume much more area than the horizontal filtering. Besides, filters of 

vertical and horizontal directions have some structural differences in that the 

vertical filter utilizes internal RAM storage whereas the horizontal filter uses only 

shift registers.  
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Figure 3.15 Proposed cascaded filter architecture. jth resolution level is computed 

by the 2-D DWT module at the jth stage. Row beginning/endings are asserted by 

the signal horj. Tile beginning/endings are asserted by signal verj.  
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Figure 3.16 Horizontal filtering and decomposition of LL subband 

 

3.7.1 Horizontal Filter 

This block is the part which handles the filtering along the horizontal direction. The 

term �horizontal direction� implies that filtering is along the �rows�. Since what the 

filter receives as �rows� may be along any direction, from the perspective of the 
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whole image, this module may actually be processing �vertical� filtering. (see 

Section 3.6) 

The horizontal filter operates on the pixels in one row of the input sub-band. As 

shown in Figure 3.16, horizontal filter at level j divides the input sub-band (LL)j-1
i 

which is of size (N/2j-1) × (N/2j-1) into (LL)j-1Li and (LL)j-1Hi frames of size (N/2j) 

× (N/2j-1), where 

 
1

1

k
nN =  (3.24) 

For the sake of simplicity, it is assumed that the image and tile sizes are chosen such 

that (n1/k1) < (n2/k2).  

To comply with the JPEG 2000 standard [19] symmetric extension may be applied 

at the row boundaries.  

Row-based acquisition of input frames does not pose a problem in horizontal 

filtering of the incoming rows, since they can be filtered as they are received. Each 

row can be filtered independently of adjacent rows with boundary manipulation. 

This requires a small time gap between two consecutive rows, however for 

resolution levels other than the first level this gap is inherent. For the 0th level �i.e. 

for the input time variant boundary filtering can be used (see Section 3.5).   

The row length is programmable. Input row length to a horizontal filter at any level 

can be of any even number greater than or equal to 4 (This requires that the first 

level input length should be multiple of 2J greater than or equal to 2J+1). As it was 

mentioned earlier, row length determines the memory requirement for the system. 

Therefore it is upper bounded with the memory available. Since the row length is 

not a fixed value, horizontal filter needs to be aware of the row beginning/endings. 

This is done by the signal horj. When this signal is high the row transmission 

occurs. This method provides a design simplification since  the horizontal filter in 

each level is identical, and has no counters.   
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3.7.2 Vertical Filter 

This block receives the low-pass and high-pass data sequences and filters them 

vertically. Like the horizontal filter, this module also uses lifting steps to filter the 

data.       

The vertical filter operates on the rows of the input block. Horizontal filter at level j 

divides the input blocks (LL)j-1Li and (LL)j-1Hi which are of size (N/2j) x (N/2j-1) 

into sub-bands (LL)j
i , (LH)j

i , (HL)j
i and (HH)j

i  which are of size (N/2j) x (N/2j) as 

shown in Figure 3.17.  

In vertical processing, row-based acquisition requires whole rows to be treated as a 

single pixel. This imposes a memory requirement which is proportional to the row 

length and this memory requirement is therefore much larger than that of horizontal 

filtering.  

 

 

Vertical
Filtering

(LL)j
i

(N/2j-1) x (N/2j-1)
(N/2j) x (N/2j)

(LL)j-1Li (LL)j-1Hi

(LH)j
i (HH)j

i

(HL)j
i

(N/2j-1) x (N/2j-1)

 

Figure 3.17 Vertical filtering and decomposition of (LL)H and (LL)L subbands. 
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(b) 

Figure 3.18 Output timing diagrams of three cascaded 2-D filters. (a) for g=0, (b) for 

0<g<Z 

 

  

In Figure 3.18, output timing diagrams of 3 cascaded 2-D filters are illustrated for 

the case when the horizontal and vertical filters have the architecture as explained in 

Section 3.4. Figure 3.18a illustrates the tile g=0 and 5.18b illustrates 0<g<Z. 

For the sake of illustration, the integer 5/3 filter, which provides a better 

demonstration of the case, is shown. Each box represents a row of data from sub-

bands belonging to the corresponding resolution level. A row from resolution level j 

contains N/2j pixels and each level contains N/2j rows.  

84 



Figure 3.18a shows the case for the first tile. Each level receives its input from the 

previous level  -say input level- and releases its data after a delay of d=2 rows (see 

Section 3.4).  

In Figure 3.18b the joint of two consecutive tiles is illustrated. It is apparent that the 

DWT stages do not finish with a tile at the same time. As long as the input rows 

keep arriving at a stage, the DWT module at that stage maintains its outputting 

scheme regardless of the tile beginning/endings. Symmetric extensions are 

performed by location variant filters which use the multiplexing among the buffers 

explained in Section 3.5. Hence the buffers are fully utilized and there is no need for 

gaps between the adjacent tiles. The shading of each box in Figure 3.18b denotes to 

which tile the rows belong. 

Like the row length, the column length is also programmable. Input column length 

to a level of decomposition may be any number greater than or equal to 4. Since the 

columns are not constrained, unlike the rows, they can be infinitely long. Hence, the 

architecture is suitable for space imaging applications employing linear sensors 

which scan the earth�s surface generating an unbounded data in vertical axis. 

Vertical filter needs to be aware of the tile beginning/endings in order to handle 

symmetric extension. This is done by the signal verj . When this signal is high, 

row transmission occurs. Low to high transition indicates a tile beginning whereas 

high to low transition indicates a tile ending.    

3.7.3 Memory Requirements 

The system discussed in detail in sections 3.4-6, 3.7.1-2 uses row-based processing 

in which a minimum amount of data to compute the output is stored in buffers. 

Figure 3.19 shows the part of the image which is inside the 2-D DWT processor. 
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Figure 3.19 Part of the image allocated in filter memories. 

 

Since the memory required to compute a frame is the same for every π , (0≤ π 

<P-1), one can deduce that the memory required to compute a single frame is : 

π

F

 }Mem{1}Mem{ F
P

F =
π

 (3.25) 

where F is the concatenated frame and P is the number of parallel processing units. 

Therefore only computation of concatenation frames are taken into consideration.   

The memory required by the horizontal filters to compute (LL)j-1Lg and (LL)j-1Hg in 

terms of pixels is independent of the level and is: 

  (3.26) ( ) Pm h
j ⋅+= 1)( µ

and the memory required by the vertical filters to compute (LL)j
g,  (LH)j

g,  (HL)j
g  

and (HH)j
g  in terms of pixels is: 
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where  is the total memory required to implement the lifting steps defined in 

(3.12), and 

µ

1

1

k
n  is the smaller side dimension of the tiles.  The term (µ+1) is due to 

the fact that one more delay element is used in order to split the signals.  

The total memory requirement can be found by summation of all and for 

all the levels 1 through J : 
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3.7.4 Output Bandwidth Considerations 

The link between the 2-D DWT processor and the forthcoming units such as 

memory blocks for coefficient storage or CPUs handling entropy coding may not be 

able to accommodate the high-bandwidth output generated by the DWT processor. 

The scheme in Figure 3.18 results in a �burst-full� output generation, i.e., all stages 

are in silent mode and in transmitting mode during the same time intervals. 

Therefore, although the amount of data received and produced is the same (dynamic 

range expansion is not taken in to account), the output bandwidth turns out to be 

larger than that of input and may exceed the output link capabilities. For some cases, 

the high output bandwidth may require large buffers in order to compensate for the 

stall periods of the output link. 

The maximum bandwidth requirement within a row transmission, i.e. at the instance 

where stages are transmitting, for the scheme discussed in previous section can be 

given as :  
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which converges to 3Bin for large J. We can solve this problem and eliminate the 

triple bandwidth requirement with some modifications to the cascade filter structure. 

Due to the sub-sampling by two present in sub-band decomposition, each resolution 

level can be interspersed between the data of the parent resolution level. The sub-

bands can be scheduled so as to exploit this property. With a modification in 

processors of each stage accept the last one a burst-free transmission can be 

achieved. 
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Figure 3.20 �Burst-free� output timing diagram for the modified structure 

 

Note that in the natural output scheme illustrated in Figure 3.18 sub-band rows 

(HH)j
g{x0,y} and (LH)j

g{x0,y} are computed at the same time with (LL)j-

1
g{2x0+d+2,y}  and (HL)j

g{x0,y} is computed at the same time with (LL)j-

1
g{2x0+d,y}  . If (HH)j

g , (LH)j
g  and (HL)j

g (excluding the ones in the last level) are 

scheduled so that these sub-bands are released as (LL)j-1
g{2x0+d+1,y} is computed, 

we end up with an output transmission which is burst free as shown in Figure 3.20. 

For the lifting structures which have Np=Nu (see Section 3.4) (HH)j
g and (LH)j

g can 

be supplied earlier than their natural scheduling time from the memory, however 

(HL)j
g requires an additional memory of a unit row size. The modified structure will 

have the memory requirement of : 
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and, 
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The new maximum bandwidth over a row is : 

 inout 2
3 BB ⋅=′  (3.32) 

3.8 Precision and Channel Constraints 

As it is explained in Section 3.2 input data to the transformer is B- bit signed having 

zero offset. Unfolded structure makes it possible to assign different precision for the 

computation of each sub-band.  Each sub-band { })()()()()( ,,, jjjjj HHHLLHLL∈β , is 

computed in bit precision, where )( jB
β

Γ+

  (3.33) )()()( jjj G
βββ

+Χ=Γ

 

)( jβ
Χ accounts for the resultant nominal gain of the filtering operations involved in 

computation of β(j) . For the 5/3 filter the value of  is : )( jβ
Χ

  (3.34) jjjjj ∀=Χ=Χ=Χ=Χ ,2 and,1,0 )()()()( HHHLLHLL

)( jG
β

 is the number of extra guard bits in order to prevent any computation to fall 

beyond the nominal range bounds. A typical value for G is 1, or more 

conservatively G=2 [10]. 
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Since for achieving high rates of compression quantization is already applied to 

coefficients, some bits can be omitted prior to the coding process (resulting a 

uniform quantization in coefficients) for the following reasons:  

i. The channel bandwidth between DWT processor and entropy coder or the 

coefficient storage may not be high enough for the throughput requirements,  

ii. Large coefficient storage may not be feasible for the system 

configuration,  

iii. Rearrangement of coefficients in order to store B+Γ bit data compactly in 

multiple-of-B bit storage unit may require excessive amount of logic or 

buffers in reconfigurable logic.  

Applying uniform quantization by discarding qβ LSB�s of the coefficients is 

equivalent to setting the of the entropy coder [19] to : max
βK

  (3.35) 1max −−Γ+= βββ qBK

Note that in the above discussion it is assumed that the input data is not color 

transformed. For the case of color transformation, input precision for particular 

components should be taken as B+1 as explained in Section 3.3. 

High frequency sub-bands HH, LH and HH usually consist of  very  small 

coefficients centered around zero. Therefore these sub-bands can be transmitted in a 

number of bits smaller than B+Γ by clamping rather than quantizing, or both can be 

applied. With this method risking some large coefficients to fall beyond the range, 

we can get rid off the necessary quantization. The clamped and quantized 

coefficients of sub-band β  is expressed by : 
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where θβ is the new precision for transmission.   
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CHAPTER 4 

 

IMPLEMENTATION AND EXPERIMENTAL RESULTS 

 

 

This chapter is organized as follows: Section 4.1 presents the implementation of the 

architecture that is explained in detail in Section 3. In Section 4.2 comparisons of 

the architecture with the present architectures in literature and the comparisons of 

the JPEG 2000 compression achievements are given. Section 4.3 presents the 

simulation results obtained. 

4.1 FPGA Implementation 

The hardware is part of a JPEG 2000 compression system, designed as a payload for 

a Low Earth Orbit (LEO) micro-satellite, which will be launched in September 

2003.  Figure 4.1 is a photograph of GEZGİN [23], the payload for JPEG 2000 

image compression. The design is implemented on a XILINX XCV300EPQ240-6 

IC (The large black package populated on the top left portion of the circuit board in 

Figure 4.1) [47]. 
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Figure 4.1 Photograph of GEZGİN, the image compression system which is 

designed as a payload for a LEO micro-satellite, BILSAT-1. (The photograph is 

provided with the courtesy of TÜBİTAK-BİLTEN). 

 

4.1.1 Specifications  

The hardware receives multi-spectral image data from four cameras (M=4) 

simultaneously. The number of parallel DWT processors (see Figure 3.1) is 2 (P=2). 

Since P<3, RCT is applied prior to the tiling step. For this application two different 

tile sizes of 256 and 128 (n1/k1 = n2/k2 = 128, 256) are used. Although the tile size 

can be run-time programmable, since commanding FPGA would result in a more 

complex circuit board topology, it is preferred to be fixed for this application The 

image streams are received in quadrants as explained in Section 3.6. The hardware 

employs 3 levels of sub-band decomposition (J = 3) in which 5/3 integer filtering 

[19] is used. In order to prevent burst output generation and the congestion at the 

output link, a burst-free scheme is preferred. The local storage size required for the 

tiling operation is S=2 MB.  

The throughput requirement of the hardware is 80Mbps (Four cameras streaming 

out at  20 Mbps each). The two DWT processors are operated at 20 MHz, however 

interface modules are operated at 80 MHz in order to increase the RAM excess 
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bandwidth and to sample the input data properly. The filter is capable of handling 

tiles up to 512×512 in size, but this is not preferred due to the increased requirement 

for local storage and transform latency. The DWT processor block can be operated 

at frequencies up to 40MHz. This results in a throughput capability of 160Mbps. 

When the hardware operates at 80Mbit/s using 256×256 size tiles, the latency 

introduced is 0.105 sec (compared to a total transmission time of 

2048×2048×8/(20Mbit/s) = 1.678 sec).  

  

4.1.2 FPGA Operation Environment 

Figure 4.2  shows the block diagram of the image compression system. Transformed 

data is transmitted through HPI link and stored in coefficient storage. Coefficients 

are entropy coded by DSP which implements MQ coder of [19]. Operation mode of 

entropy coder is �run-mode� with code-block size of 32 for tile size 256 and 16 for 

tile size 128.  
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Figure 4.2 Block diagram of the image compression system.  
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The XILINX FPGA communicates with LVDS interface chips from which it 

receives the multi-spectral image data, SRAM buffers which are used to partition 

the input image, DSP which implements the entropy coding and data formatting, 

configuration memory from which the FPGA downloads its configuration data.     

4.1.3 Design 

This section introduces the design environment and synthesized chip.  

4.1.3.1.Design Environment 

The Design is implemented on a XILINX XCV300EPQ240-6 IC [47]. Before the 

GEZGİN implementation, the hardware was implemented and verified on 

CELOXICA RC1000a prototyping card [58], which populates a XCV2000E FPGA, 

8MB SRAM and a PCI host interface. For the synthesis and front-end design 

SYNOPSYS FPGA Express 2000 v.3.5 is used. Design entry is in Verilog HDL, a 

hardware description language. Place & route is done on Xilinx Flow Engine 

v3.3.08i. Simulations and tests are done in MATLAB and GEZGİN Test and 

Decoder Suite v1.0 [67] provided with the courtesy of TÜBİTAK-BİLTEN. 

4.1.3.2.Synthesized Chip  

The top level design has 9 structural modules. These are : trig and reset module, 

lvds interface, sequencer (buffering and tiling module), frequency adaptor, 

reversible color transformer (RCT module), 2-D DWT module, HPI module, HPI 

multiplexor, SRAM interface. All these modules are briefly explained in Appendix 

A.  

Figure 4.3 shows the schematic of the synthesized computation kernel explained in 

Section 3.4 and 3.8, which implements four 10-bit adders and one 2�s 

complementor.    
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Figure 4.3 The schematic of the synthesized computation kernel, which implements 

four 10-bit adders and one 2�s complementor.  
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4.1.4 Overall Architecture 

Figure 4.4 shows the floorplan of the design. The figure is provided to give an idea 

about the logic placement of figures. Area consuming modules are contoured and 

numbered. The hierarchy is not flattened during synthesis1.  

 

1
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8
8

8

9
9
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1- Sequencer
2- Level1 Vertical
3- Level1 Horizontal
4- Level2 Vertical
5- Level2 Horizontal

6- Level3 Vertical
7- Level3 Horizontal
8- SRAM interface
9- Color Transform
10- HPI module  

Figure 4.4 The floorplan of the design. Area consuming modules are contoured and 

numbered 

 

Table 4.1 shows the resources used in the DWT module and resources available in 

the XCV300EPQ240 chip. Equivalent gate count for the design is 292,447.Table 4.2  

shows the detailed resource usage of the hierarchical modules. Throughout the 

                                                           
1 The motivation for the non-flattened hierarchy has actually been a non-systematic failure of the 
flattened hardware encountered during GEZGİN tests, which may possibly be due to the skew at 
internal clock boundaries. Although the flattened hierarchy results in a slight reduction in resource 
usage and a slight increase in minimum clock periods, it could not be verified, and therefore is not 
reported in this work.   
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design maximum fanout constrained by 20. Table 4.3 shows the BRAM modules 

required in each level for various implementations for n1/n2=n2/k2=N and P=2. 

Shaded column corresponds to GEZGİN�s case.  In Appendix B cells of the device 

is explained.  

 

 

Table 4.1 Resources used in DWT module and resources available in 

XCV300EPQ240 chip 

Resource Number Used Out of 
Slices 2,778 3,072 
Bonded IO Buffers 79 158 
GCLKIOBs 2 4 
GCLKs 4 4 
DLLs 2 8 
Slice FFs  
 DWT 
 Rest 

1,784 
679 

1,105 

6,144 
 
 

LUTs (FGs) 
 DWT 
 Rest 

4,473 
2,963 
1,510 

6,144 
 
 

Block RAMs 
 DWT 
 Rest 

14 
14 
- 

32 
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Table 4.2 Detailed resource usage of the hierarchical modules 

Hierarchy FG CY DFF BRAM 
sequencer 37 46 183 - 
freq_adapt 16 - 28 - 
lvds_inf 57 20 118 - 
reset_module 13 - 8 - 
ram_inf 42 - 104 - 
rct 53 34 33 - 
hpi_mux 99 - 75 - 
hpi_mdl 1191 - 555 - 
DWT - - - - 
 Lev3 - - - - 
 Hor 100 - 109 - 

kernel1 44 49 - - 
kernel2 44 49 - - 

 

total 188 98 109 - 
 Vertical 569 7 114 - 

kernel1 40 47 - - 
kernel2 40 47 - - 
kernel3 40 47 - - 
kernel4 40 47 - - 
ram_module - - - 4 

 

total 729 195 114 4 
 total 917 293 223 4 
 Lev2 - - - - 
 Hor 100 - 109 - 

kernel1 44 49 - - 
kernel2 44 49 - - 

 

total 188 98 109 - 
 Vertical 612 - 72 - 

kernel1 40 47 - - 
kernel2 40 47 - - 
kernel3 40 47 - - 
kernel4 40 47 - - 
ram_module - - - 5 

 

total 772 188 72 5 
 total 960 286 181 5 
 Lev1 - - - - 
 Hor 217 - 203 - 

kernel1 44 49 - - 
kernel2 44 49 - - 

 

total 305 98 203 - 
 Vertical 621 - 72 - 

kernel1 40 47 - - 
kernel2 40 47 - - 
kernel3 40 47 - - 
kernel4 40 47 - - 
ram_module - - - 5 

 

total 781 188 72 5 
 total 1086 286 275 5 
 total 2963 865 679 14 
total 4472 1064 1784 14  
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Table 4.3 BRAM modules required in each level for various implementations for 

n1/n2=n2/k2=N and P=2 

J = 2 J = 3 Module 
N=128 N=256 N=512 N=128 N=256 N=512 

Level 1 5 5 10 5 5 10 
Level 1 4 4 4 5 5 5 
Level 1 - - - 4 4 4 
Total 9 9 14 14 14 19  

 

4.1.5 Power, Timing and Test Subjecting 

The hardware uses three clock signals with periods of 12.50 ns (CLK80), 25.00 ns 

(CLK40), and 50.00 ns (CLK20) each having 50% duty cycles. These clocks are 

generated form the internal DLL circuitry provided on the IC. Table 4.4 shows the 

clock groups and which hierarchical modules contain these groups. Note that the 

Trig-and-Reset Module does not contain any of these clock groups since it is 

clocked by the external system clock of 20 MHz. Maximum delays from one clock 

group to itself and to the others, and the number of logic levels (routing and FG) 

contained by the critical paths are tabulated in Table 4.5.    

 

 

Table 4.4 Clock groups 

Clock Group Modules 

CLK20 HPI module (Partly), DWT 
module, Freq. Adaptor (Partly) 

CLK40 HPI module (Partly) 

CLK80 
LVDS interface (Partly), RCT, 
Sequencer, SRAM interface,  

Freq. Adaptor (Partly)  
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Table 4.5 Maximum path delays for clock groups 

Path Constrained Value 
(ns) Actual (ns) # Logic 

Levels 
CLK20 to CLK20 50.000  44.073 21 
CLK20 to CLK40 25.000 14.701 3 
CLK20 to CLK80 10.000 7.376 4 
CLK40 to CLK20 - - - 
CLK40 to CLK40 25.000 22.623 6 
CLK40 to CLK80 - - - 
CLK80 to CLK20 18.000 11.173 5 
CLK80 to CLK40 25.000 8.368 6 
CLK80 to CLK80 10.000 10.075 7  

 

Power consumption of the device is estimated by using Power Estimator provided at 

[59]. The parameters to the estimator is supplied larger than original values in order 

to allow for a safety margin. Table 4.6 shows the estimated internal power 

consumption in CLB logic, Block RAMs and DLLs, output power consumption in 

output pins and the device quiescent power during processing time (i.e, while the 

camera data reception occurs). The design and physical layout of the GEZGİN 

module does not provide a means for measuring the power consumption of 

individual ICs. The module is operated at 28 V and has a supply current of ~230 mA 

and a power consumption of ~6.44 W during full processing. The power 

consumption of the DWT hardware is estimated to be about 400 mW which is only 

6% of the total system power. This estimation is also supported with the observed 

current characteristics of the module during FPGA run-time.   
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Table 4.6 Estimated power consumption 

Device Quiescent Power 36 mW 
CLB Logic Power  
 CLK20 Logic 55 mW 
 CLK40 Logic 38 mW 
 CLK80 Logic 184 mW 
 Total CLB Logic Power 278 mW 
Block SelectRAM Power 14 mW 
Clock DLL Power  
 DLL 1 @20MHz 6 mW 
 DLL 2 @40MHz 10 mW 
 Total Clock DLL Power 16 mW 
Total Estimated Internal Power @1.8V 344 mW 
Input/Output Power 56 mW 
 SRAM Interface  40 mW 
 LVDS Interface  0 mW 
 HPI  16 mW 
 Total Input/Output Power 56 mW 
Total Estimated External Power @3.3V 56 mW 
Total Estimated Power 400 mW  

 

The GEZGİN module was subjected to exhaustive tests such as -20C to 50C 

temperature cycling, vibration  and continuous operation. It passed all tests.  

4.2 Comparisons 

4.2.1 Resource Used 

Table 4.7 shows the resource used by 2-D DWT processor implemented for 

GEZGİN [23] and various 2-D DWT architectures. For this comparison each 

architecture is assumed to realize the 2-D DWT with 3 levels of sub-band 

decomposition and to use 5/3 filters. Tile size is assumed to be  256 × 256. 

Asymptotic internal storage requirement is given for large J. For J=3 the internal 

storage requirement is 1344 pixels (for �burst-full� case) and 1536 pixels (for 

�burst-free� case). 
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Table 4.7 Resource used by 2-D DWT processor implemented for GEZGİN and 

various 2-D DWT architectures.  

Architecture 
Storage Size 

(pixels)  
(for large J) 

Adders 
(for J=3) 

Multipliers 
(for J=3) 

Computation 
Time (ccs) 

Direct[32] 65536 5 3 4N2 
SIMD[33] 131072 256-512 256-512 4JL 

Parallel 1[37] ≈ 2944 20 12 ≈ N2 
Parallel 2[37] ≈ 2816 24 18 ≈ N2 

Masud[39] ≈ 2560 16 11 3/2 N2 
Non-Separable[33] 2560 32 18 N2 

Systolic-Parallel[32] 2560 18 12 N2+N 
Row-parallel [40] 1536J 1024(FA) - ≈ N2+N 

Lattice [41] 2590 16 12 N2/2 
Level-by-Level[42] 18944 16 12 N2/2-0.67 N2 
Semi-recursive[44] ≈65536 12 12 4N2/3 

Quadri-Filter Folded [45] 2560 13 13 2/3 N2 
Quadri-Filter Piple-lined[45] 2560 39 39 N2/2 

Our Design 1536-1792 36 9 N2/2  
 

4.2.2 JPEG 2000 Achievement 

For this discussion the Peak Signal-to-Noise Ration (PSNR) is computed by the 

formula: 

 
MSE

12log20PSNR 10
−

⋅=
B

 (4.1) 

where B is the bit-depth of the samples, which is equal to 8 in our application, and 

MSE (mean square error) is calculated by: 
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for RGB images. 
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where  and is the original and the recovered image respectively. ( jix , ) )

                                                          

( jix ,�

Figure 4.5-7 show the output obtained by conventional JPEG algorithm[60] and 

GEZGİN output. Images on the right hand side are provided from the GEZGİN 

engineering model1 with the courtesy of TÜBİTAK-BİLTEN. For comparison 

purposes output file sizes are kept nearly equal. Tile sizes of 256 × 256 are used. It 

is apparent that for high compression rates JPEG 2000 gives superior results 

compared to conventional JPEG algorithm. The blocking effects of JPEG seen in 

high compression rates are not present in JPEG 2000. For high compression ratios 

conventional JPEG exhibits color degradation. (see Figure 4.5-7 ) 

 
1 The output of the engineering model is obtained from the testbench.  
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(a) Original 24 bpp 

 
(b) 0.0882 bpp / 22.7705 dB 

 
(c) 0.1499 bpp / 20.013 dB 

 
(d) 0.1292 bpp / 24.1498 dB 

 
(e) 0.5318 bpp /28.3373 dB 

 
(f) 0.5395 bpp / 26.891 dB 

 

Figure 4.5 The outputs of conventional JPEG and the outputs of GEZGİN for the 

original image of ERCIYES 2048×2048 24 bpp RGB. Images on the right hand side 

are provided from the GEZGİN test bench with the courtesy of TÜBİTAK-

BİLTEN. 
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(a) |Original 8bpp 

 
(b) 0.0706 bpp / 26.2663 dB 

 
(c) 0.1516 bpp / 26.5415 dB 

 
(d) 0.1496 bpp / 28.7723 dB 

 
(e) 0.4889 bpp / 34.6126 dB 

 
(f) 0.4928 bpp / 33.0988 dB 

 

Figure 4.6 The outputs of conventional JPEG and the outputs of GEZGİN for the 

original image of MERSIN 2048×2048 24 bpp RGB. Images on the right hand side 

are provided from the GEZGİN test bench with the courtesy of TÜBİTAK-

BİLTEN. 

106 



 
(a) Original 8 bpp 

 
(b) 0.0556 bpp / 27.1002 dB 

 
(c) 0.1657 bpp /  29.7121 dB   

 
(d) 0.1612 bpp / 31.8248 dB 

 
(e) 0.4273 bpp / 35.1126 dB 

 
(f) 0.4247 bpp / 33.8123 dB 

 

Figure 4.7 The outputs of conventional JPEG and the outputs of GEZGİN for the 

original image of GOLCUK 2048×2048 24 bpp RGB. Images on the right hand side 

are provided from the GEZGİN test bench with the courtesy of TÜBİTAK-

BİLTEN. 
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Table 4.8 shows the lossless compression performance of JPEG 2000 and TIFF for 

various images. JPEG 2000 operation mode for the example is 3 levels of 

decomposition with color transform, tile-based processing with tile sizes of  

256×256, and run-mode entropy coding with fixed code block sizes of 32×32, which 

is the same as that of GEZGİN.    

Table 4.8 Lossless compression performance of PNG, LS and JPEG 2000. 

JPEG2000 results are obtained using GEZGİN Simulator. 

Compression  (bpp) Image 
PNG[61] LS[62] JPEG 2000[19] 

Erciyes 
 2048,24b,RGB 15.5725 15.5679 15.1292 

Mersin 
2048,24b,RGB 12.2316 11.3179 11.0489 

Gölcük 
2048,24b,RGB 11.3176 10.2187 9.8127 

BİLTEN Staff 
2048,24b,RGB 10.1375 8.6200 7.2175 

Denver 
512,24b,RGB 17.9659 18.1640 11.0174 

Lena 
512,24b,RGB 14.5320 13.6047 13.7630 

 
 

 

4.3 Results 

4.3.1 Levels of Sub-band decomposition  

Lossy compression is achieved by discarding specific sub-bands and applying 

quantization to the filter coefficients. For different levels of sub-band 

decomposition, bit discarding and sub-band omission is applied and PSNR values 

are reported. In all figures Si, 0≤ i ≤ J denotes that all HH, LH and LH  outputs 

except the ones in the i greatest levels are omitted. For example S2 indicates that 

LL3, LH3, HL3, HH2, LH2, HL2, HH2 are included but LH1, HL1, HH1 are omitted 

for 3 levels of sub-band decomposition. In Figure 4.8, compression ratios achieved 

108 



for various number of decomposition levels and reconstruction resolutions are seen. 

Compression results are obtained from GEZGİN Test and Decoder Suite v1.0 [67].  
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Figure 4.8 Compression ratios achieved for various number of decomposition levels 

and reconstruction resolutions.  
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4.3.2 Tile Size  

For different tiles sizes 3 levels of sub-band decomposition is applied. Figure 4.9 

shows the PSNR variation and compression achievements with tile size. 

Compression results are obtained from GEZGİN Test and Decoder Suite v1.0 [67]. 

It is apparent that smaller tile sizes lead to quality reduction, however this effect is 
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minor compared to sub-band exclusion. The quality gained by increasing the tile 

size from 256 to 512 is very small despite the huge memory requirement it brings, 

hence it is not preferred.   
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Figure 4.9 PSNR variation with tile size for 3 levels of sub-band decomposition and 

the corresponding compression achievements. 
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Figure 4.9 (Continued) PSNR variation with tile size for 3 levels of sub-band 

decomposition and the corresponding compression achievements. 
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4.3.3 Coefficient Truncation  

Figure 4.10 shows the PSNR versus the number of bits discarded for various cases 

of sub-band decomposition. Up to a certain number of discarded bits, quality 

reduction of the recovered image is insignificant for S0, S1 and S2 cases, however 

the PSNR value rapidly decreases with beyond certain number of discarded bits. 

Note that further truncation of sub-band coefficients leads to vanishing benefit of 

sub-band inclusion. This is because the extra quantization of HL HH and LH sub-
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bands introduces errors to these low energy sub-bands, and hence to the 

reconstructed image. As quantization increases,  these extra noise becomes 

significant compared to -or may even become larger than-  the noise eliminated by 

the inclusion of the sub-bands.   
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Figure 4.10 PSNR versus the number of bits discarded for various cases of sub-band 

decomposition. 
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In GEZGİN wavelet coefficients are computed with a precision of B+Γ=10 bits. 

Input bandwidth is 4×20 Mbps = 80 Mbps. From (3.32), taking into account the 

precision expansion, the required output bandwidth is calculated to be 150 Mbps.   
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Due to the limited output bandwidth available through the 16-bit HPI link, [63], the 

bit depth expansion constitutes a problem of transmission especially if these excess 

two bits are accommodated in 8-bits words. In this case, for each 16 bits a redundant 

transmission of 6 bits occurs resulting in a bandwidth expansion by a factor of two. 

Moreover it doubles the coefficient storage.  

On the other hand rearrangement of coefficients in order to store B+Γ bit data 

compactly in multiple-of-B bit storage unit may require excessive amount of logic 

or buffers in reconfigurable logic.  

For these reasons it is preferred to apply  bit discarding of q=2 to the wavelet 

coefficients prior to transmission. Figure 4.10 also shows the quality reduction in 

terms of PSNR due quantization of 2 bits. Note that high frequency sub-bands 

usually consist of  very  small coefficients centered around zero, i.e., these sub-

bands contain less energy. Moreover, color transformed components which 

represent the difference of two input components, have smaller dynamic ranges. 

Therefore, specific sub-bands can be transmitted in 8 bits by clamping rather than 

quantizing, or both can be applied i.e. discarding only one bit and clamping 

coefficients in the range  [�128, 128) .  

4.3.4 Compression Time Experiments  

Compression time is an important issue since each frame should be captured, 

compressed and transmitted before the next one arrives. Since the entropy coding 

and transmission time is proportional to the output size (capture time is constant and 

transform time depends only on the tile size) there is a trade-off between process 

time and image distortion. One of the missions of GEZGİN is to compress and 

transmit consecutive images which have overlapping areas. The time between two 

shots is a function of the satellite speed and the desired size of overlap area, and it is 

about 6.5 seconds for BILSAT-1. Therefore, it is important to identify modes of 

operation which fit the allotted time, while providing the highest quality.    
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Table 4. 9 Time required to process image and achieved distortion, bit-rate for various 
options available in GEZGİN 

Tile Size 
# 

Discarded 
Bits 

Subbands 
Included 

Fetch + 
Coding + 
Transmit 
Time (sec) 

Capture + 
Transform 

Time  
(sec) 

Overall 
Time 
(sec) 

Quality 
(dB) 

Compression 
(bpp) 

With RCT 
256 4 LL LH HL 1,78 3,76 5,54 23.87 0.229 
256 3 LL LH HL 1,78 4,79 6,57 25.53 0.335 
256 3 LL 1,78 2,10 3,88 23.78 0.120 
256 3 LL LH HH 1,78 4,96 6,74 24.89 0.351 
256 3 LL HH 1,78 3,59 5,37 24.01 0.244 
256 2 LL 1,78 2,44 4,22 23.96 0.167 
256 2 LL LH 1,78 4,16 5,94 24.82 0.317 
256 2 LL HH 1,78 4,33 6,11 24.25 0.337 
256 2 LL LH HL 1,78 5,87 7,65 25.93 0.468 
256 4 LL LH HL HH 1,78 4,84 6,62 24.08 0.314 
256 5 LL LH HL HH 1,78 3,65 5,43 19.91 0.230 
128 4 LL LH HL 1,73 3,52 5,25 23.78 0.247 
128 3 LL LH HL 1,73 4,55 6,28 25.44 0.354 
128 3 LL 1,73 2,04 3,77 23.67 0.128 
128 3 LL LH HH 1,73 4,72 6,45 24.79 0.242 
128 3 LL HH 1,73 3,47 5,20 23.88 0.258 
128 2 LL 1,73 2,38 4,11 23.84 0.175 
128 2 LL LH 1,73 4,04 5,77 24.72 0.331 
128 2 LL HH 1,73 4,21 5,94 24.13 0.351 
128 2 LL LH HL 1,73 5,69 7,42 25.85 0.488 
128 4 LL LH HL HH 1,73 4,61 6,34 24.00 0.339 
128 5 LL LH HL HH 1,73 3,41 5,14 19.82 0.253 

Without RCT 
256 4 LL LH HL 1,78 4,45 6,23 24.51 0.351 
256 3 LL LH HL 1,78 5,59 7,37 25.70 0.351  

 

High compression ratios are obtained by bit discarding (quantizing) wavelet 

coefficients and sub-band exclusion. Applying a Reversible Color Transform (RCT) 

[19] prior to the DWT reduces the dynamic range of the wavelet coefficients, and 

hence higher compression rates are achieved [66]. RCT also speeds up the 

compression job, but added noise due to quantization is amplified (also due to the 

reduction in dynamic range). Table 4.9 shows the time required to capture, 

compress and transmit and the achieved distortion, bit-rate for various options 

available on GEZGİN. The test is performed on the image, Erciyes (2048×2048) 

24b RGB. Figure 4.11 shows the PSNR reduction introduced due to RCT and the 

corresponding bit rate achievement for different cases. Compression results are 
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obtained from GEZGİN Test and Decoder Suite v1.0 [67]. Tile size is chosen as 

256.   
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Figure 4.11 PSNR reduction introduced due to RCT and the corresponding bit rate 

achievement for different cases. Tile size is chosen as 256. 
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Figure 4.11 (Continued) PSNR reduction introduced due to RCT and the 

corresponding bit rate achievement for different cases. Tile size is chosen as 256. 
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4.3.5 Dynamic Range Expansion at the RCT output 

In Section 3.3 the dynamic range expansion of color transformed pixels is discussed. 

Several experiments are done by clamping and/or quantizing color transformed 

pixels the images are supplied from [64]. Table 4.10 shows the results obtained. 

Images with asterisk are the aerial images from satellites. It is apparent that, for 

aerial images, applying clamping to the pixels give better results than bit discarding. 
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In GEZGİN applications it is preferred to apply clamping to these color components 

after RCT. 

 

Table 4.10 Quality achievement of quantizing and clamping  of  color transformed 

samples 

S3 S2 S1 S0 Image 
Q (dB) C (dB) Q (dB) C (dB) Q (dB) C (dB) Q (dB) C (dB) 

1 53.66 73.03 32.50 32.51 27.84 27.85 24.69 24.70 
2 53.46 39.92 31.19 30.73 26.65 26.53 22.81 22.78 
3 53.49 50.28 26.46 26.45 22.54 22.53 19.54 19.54 
4 53.58 29.70 32.21 27.83 26.18 24.65 21.79 21.20 
5 53.49 62.04 31.34 31.34 26.23 26.23 22.91 22.92 
6 53.48 33.85 23.31 22.96 20.62 20.44 19.40 19.27 
7 53.49 48.35 28.62 28.58 24.50 24.49 21.27 21.27 
8 53.58 33.60 31.38 29.43 27.77 26.84 24.28 23.87 

9* 53.21 Inf 23.93 23.93 20.39 20.39 18.51 18.51 
10 53.51 42.53 28.34 28.25 23.75 23.73 21.33 21.33 
11 53.49 27.24 32.71 26.26 29.19 25.24 25.61 23.47 
12* 53.48 61.47 25.92 25.92 23.32 23.32 21.81 21.81 
13 53.41 56.14 25.76 25.76 23.07 23.07 21.30 21.30 
14 53.48 99.31 33.81 33.83 28.00 28.00 23.94 23.95 
15* 53.51 Inf 30.31 30.33 26.22 26.23 23.49 23.49 
16* 53.48 Inf 40.23 40.33 34.52 34.55 29.89 29.92 
17* 53.48 Inf 27.14 27.15 23.77 23.77 21.64 21.64 
18* 53.56 57.85 31.68 31.69 27.95 27.96 25.89 25.89 
19* 53.48 90.96 30.25 30.26 25.28 25.28 22.02 22.02 
20* 53.48 Inf 29.26 29.27 26.75 26.76 25.21 25.22 
21* 53.48 Inf 31.43 31.45 28.80 28.81 27.35 27.36 
22* 53.48 Inf 38.90 39.0  8 34.40 34.42 31.75 31.77  

 

4.3.6 Blocking Artifacts 

Effect of tiling to quality degradation is examined for several cases. Figure 4.12 

shows recovered images. For visual purposes tile size is kept small in order to 

recognize blocking effects and degradations. Tile sizes are chosen as 64×64. As the 

number of discarded HH, HL and LH sub-bands increases the blocking effect 

grows, however bit discarding does not have much impact on amount of blocking 

artifacts. 
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Figure 4.12 also shows the comparison of symmetric extension and zero padding. 

Images on the right side are subjected to zero padding, left side images are filtered 

using symmetric extension. It is apparent that zero padding does not allow for 

perfect reconstruction and that the symmetric extension is very beneficial since it 

results in considerably reduced blocking artifacts compared to zero padding. 

Although symmetric extension brings extra logic to the architecture, its application 

is vital.  

 
(a) J=4 S4 q=0  

 
(b) J=4 S4 q=0 

 
(c) J=4 S3 q=0 

 
(d) J=4 S3 q=0 

 

Figure 4.12 Effect of tiling to quality degradation. Images on the right side are 

subjected to zero padding, left side images are filtered using symmetric extension. 
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(e) J=4 S2 q=0 

 
(f) J=4 S2 q=0 

 
(g) J=4 S1 q=0 

 
(h) J=4 S1 q=0 

 

Figure 4.12 (Continued) Figure 4.12 Effect of tiling to quality degradation. Images 

on the right side are subjected to zero padding, left side images are filtered using 

symmetric extension. 

 

Figure 4.13 shows the effect of quantization and Figure 4.12 shows the effect of 

sub-band exclusion. It is apparent that the effect of quantization is very minor and 

the tile information is contained in HL LH and HH sub-bands.  
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(a) J=4 q=2 

 
(b) J=4 q=2 

 
(c) J=4 q=4 

 
(c) J=4 q=4 

 
(c) J=4 q=6 

 
(c) J=4 q=6 

 

Figure 4.13 The effect of quantization of LL sub-band. 

120 



 

Although the 5/3 filter provides for reversibility, due its non-linear property [65][12] 

further quantizations result in poor results (see Figure 4.14). This can be reduced by 

applying dead-zone quantizing to the filter coefficients, rather than bit discarding. In 

GEZGİN only bit discarding is present, however it is observed that, in recovery, 

applying DC adjustment (i.e. setting a zero DC by subtraction) to truncated 

coefficients, provides improvements. In Figure 4.14,  images (a), (c), and (e) are 

obtained by only truncation in coding and multiplication by 2q  in decoding, while 

images (b), (d) and (f) are obtained by applying DC adjustment to the truncated 

coefficients before multiplication by 2q. 
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(a) J=4 q=3  

 
(b) J=4 q=3 

 
(c) J=4 q=5 

 
(d) J=4 q=5 

Figure 4.14 Quantization of the sub-bands.  Images on the left are obtained by only 

truncation in coding and multiplication by 2q  in decoding, while images on the right 

obtained by applying DC adjustment to the truncated coefficients before 

multiplication by 2q. 
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(e) J=4 q=7 

 
(f) J=4 q=5 

Figure 4.14 (Continued) Quantization of the sub-bands.  Images on the left are 

obtained by only truncation in coding and multiplication by 2q  in decoding, while 

images on the right obtained by applying DC adjustment to the truncated coefficients 

before multiplication by 2q. 
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CHAPTER 5 

 

CONCLUSION 

 

 

In this thesis, an architecture and an FPGA implementation of the two dimensional 

discrete wavelet transformation (DWT) is presented, for applications where row-

based raw image data is streamed in at high bandwidths and local buffering of the 

entire image is not feasible. The architecture is especially suited for multi-spectral 

imager systems, such as on board an imaging satellite, however can be used in any 

application where time to next image constraints require real-time processing of 

multiple images.  

The proposed hardware has been implemented on an FPGA and is part of a JPEG 

2000 compression system designed as a payload for a low earth orbit (LEO) micro-

satellite, which will be launched in September 2003. The fundamental mission of 

the system is to process (compress) the output of digital imaging sensors in real-

time, as the image data is output from the sensors, while storing only a small portion 

of the incoming image stream at any given time. The task of the processor presented 

in this work is to accomplish required transforms (RCT and DWT) and transmit data 

efficiently with a latency as small as possible. 

In applications requiring high bandwidth processing of images, internal storage 

utilization is inevitable. Large sized multi-spectral images are partitioned into tiles, 

which dramatically reduces the internal storage requirement at the expense of off-

chip (local) storage, where a minimum required portion of the incoming image 

stream is stored. The latency that is introduced as the images stream through the 
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DWT processor and the amount of locally stored image data is a function of the 

image and tile size. For an n1 × n2 size image processed using (n1/k1) ×  (n2/k2) sized 

tiles the latency is equal to the time elapsed to accumulate a (1/k1) portion of one 

image. In addition, a (2/k1) portion of each image is buffered locally.  

The memory requirement depends on the tile size and the tile size in turn affects the 

quality of the compressed image and the processing delay of the wavelet transform. 

With the help of simulation data on several images including aerial and satellite 

pictures we arrived at a wavelet decomposition level of three, applied on tile sizes of 

256×256, which, as reported, gives optimum results in terms of distortion and 

compression. 

A literature survey on architectures implementing 2-D DWT and a comparison in 

from an FPGA implementation perspective are given. Although the proposed 

architecture is memory optimized, the internal memory required to transform tiles of  

such a large size imposes the utilization of SRAM blocks provided in FPGA 

devices. We propose an unfolded architecture in which each stage utilizes its own 

RAM block resulting in simpler logic and less routing. The stages handling each 

level use no scheduling logic, but simple counters which generate the address for  

RAM access. For three levels of wavelet decomposition with 5/3 filter, the proposed 

architecture compares favorably to existing architectures in terms of memory 

requirement, resources used, and computation time. To accommodate high 

bandwidth data, parallel processing of P DWT modules is proposed. 

The symmetric extension at the tile boundaries is inevitable for perfect 

reconstruction. It is reported that symmetric extension is also vital for lossy 

compression. Therefore, although it brings extra logic and routing to the hardware, 

an architecture capable of handling boundaries is preferred. A method which 

employs time variant filtering is proposed in order to eliminate the need for time gap 

between consecutive tiles. This scheme provides for a regular gap-free tile 

acquisition.   
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In terms of compression efficiency, it is beneficial to apply, to the image 

components, a color transform which de-correlates the data. It is reported that the 

application of RCT results in a shorter encoding and transmission period, which 

provides for a better compression and quality performance within the time 

restrictions of overlap image capturing. The bandwidth expansion due to the color 

transformation of data is examined and several simulation results are presented. 

Since the bandwidth expansion results in an increase in local storage requirement, 

for some applications avoiding the extra storage may be desired. It is reported that, 

for aerial images, truncation of one bit from the resultant 9 bit representation via 

clamping rather than quantizing gives better results.  

The proposed architecture inherently results in a bandwidth requirement at the 

output stage. As was the case in GEZGİN, the output link may not accommodate 

such high-bandwidths, and therefore, a simple modification to the architecture is 

proposed, by which the burst-full operation of the original structure is eliminated 

and a bandwidth of only 3/2 times that of the input is achieved. Experimental results 

for quantization and clamping of the coefficients and the restoration quality that is 

sacrificed due to truncation of bits are also given.   

The proposed hardware has been implemented on a XILINX XCV300EPQ240-6 IC 

to cooperate with a 32-bit floating-point Digital Signal Processor (DSP) which 

implements the entropy coding. The application requires a throughput of 80Mbits/s. 

The implementation can achieve a throughput of up to 160Mbit/s when the DWT 

processors are operated at 40MHz. The latency introduced is 0.105 sec (6.25% of 

total transmission time) for tile sizes of 256×256. The local storage size required for 

the tiling operation is 2 MB. The internal storage requirement is 1536 pixels. 

Equivalent gate count for the design is 292,447. The hardware has two parallel 

DWT processors (P=2). While storing color transformed coefficients in local 

storage for tiling operation clamping is used. Due to the limited output bandwidth 

available through the 16-bit HPI link between FPGA and DSP, it is preferred to 

apply  bit discarding of q=2 to the wavelet coefficients prior to transmission.  
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In our study, we have focused on the design and the implementation of a 2-D DWT 

processor for a multi-spectral imaging application. The work presents optimizations 

for a configurable logic implementation and a possible imaging application 

environment. As a future work, the implementation of  memory efficient line-based 

entropy coder can be studied. Alternatively, integration of entire JPEG 2000 

algorithm on a single IC and the design of system-on-a-chip (SOC) of the entire 

image compression system, GEZGİN, arise as possible future studies of the thesis.  

 

 

127 



 

REFERENCES 

 

 

[1] G. M. Davis and A. Nosratinia, �Wavelet-based image coding: an overview,� 

Applied and Computational Control, Signals, and Circuits, vol. 1, no. 1, Spring 

1998.  

[2]  W. Woods and S. D. O'Neil, �Subband coding of Images,� IEEE Transactions 

on  Acoustic, Speech and Signal Processing, vol. ASSP-34,  pp. 1278-1288, October 

1986. 

[3] O. Rioul and M. Vetterli, �Wavelets and signal processing,� IEEE Signal 

Processing Magazine, vol. 8, pp. 14-38, October 1991. 

[4] I. Daubechies, �Orthonormal bases of compactly supported wavelets,� 

Communications on Pure and Applied Mathematics, vol. XLI, pp. 909-996, 1988. 

[5] C. Chui, Wavelets: A Tutorial in Theory and Applications. Academic Press, 

New York, 1992. 

[6] M. Vetterli and J. Kovačević, Wavelets and Subband Coding. Prentice Hall, 

Englewood Cliffs, New Jersey, 1995. 

[7] J. Shapiro, �Embedded image coding using zero-trees of wavelet coefficients,� 

IEEE Transactions on Signal Processing, vol. 41, pp. 3345-3462, December 1993. 

[8] A. Said and W. A. Pearlman, �A new, fast and efficient image codec based on 

set partitioning in hierarchical trees,� IEEE Transactions on Circuits and Systems 

for Video Technology, vol. 6, pp. 243-250, June 1996. 

128 



[9] M. W. Marchellin and T. Fischer, �Trellis coded quantization of memoryless 

and Gauss-Markov sources,� IEEE Transactions Communications, vol. 38, no. 1, 

pp. 82-93, January 1990. 

[10] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression 

Fundamentals, Standards and Practice. Kluwer Academic Publishers, Norwell, 

Massachusetts, 2002.   

[11] M. L. Hilton, B. D. Jawerth, and A. Segupta, �Compressing still and moving 

images with wavelets,� Multimedia Systems, vol. 2, no. 5, pp. 218-227, December 

1994. 

[12] S. G. Mallat, �A theory for multiresolution signal decomposition: The wavelet 

representation,� IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol. 11, no. 7, pp. 674-693, July 1989. 

[13] I. Daubechies and W. Sweldens, �Factoring wavelet transforms into lifting 

steps,� Journal of Fourier Analysis and Applications, 4(3), pp.245-267, 1998. 

[14] W. Sweldens, �The lifting scheme: A custom-design construction of 

biorthogonal wavelets,� Applied and Computational Harmonic Analysis, 3(2): 186-

200, 1996. 

[15] A. R. Calderbank, I. Daubechies, W. Sweldens, and B. Yeo, �Wavelet 

transforms that map integers to integers,� Applied and Computational Harmonic 

Analysis, 5(3):332-369, 1998. 

[16] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek,  �An overview 

of JPEG 2000,� Proceedings of IEEE Data Compression Conference, pp. 523-541, 

2000. 

[17] D. Santa-Cruz, and T. Ebrahimi, �A study of JPEG 2000 still image coding 

versus other standards,� X European Signal Processing Conference, vol. 2, pp. 673-

676,  September 2000. 

129 



[18] A. Kaarna and J. Parkkinen, �Comparison of compression methods for 

multispectral images,� Proceedings of the Nordic Signal Processing Symposium, 

NORSIG 2000,  pp. 251-254, June 2000. 

[19] ISO/IEC JTC 1/SC 29/WG 1 N1646R, �JPEG2000 Image Coding System�. 

[20] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, �Image coding using 

wavelet transform,� IEEE Transactions on Image Processing., vol. 1, no. 2, pp. 205-

220, April 1992. 

[21] �Information technology � coded representation of picture and audio 

information � lossy/lossless coding of bi-level images�, 14492 Final Committee 

Draft, ISO/IEC JTC1/SC 29/WG1 N1359, July 1999. 

[22] A. Bradford, L. Gomes, G. Yüksel, and C. Özkaptan, �BİLSAT-1: A Low-

cost, Agile, Earth Observation Micro-satellite for Turkey,� IAF2002, October 2002. 

[23] N. İsmailoğlu, O.Benderli, I. Korkmaz, M. Durna, T. Kolçak, and Y. Ç. 

Tekmen, �A Real Time Image Processing Subsystem: GEZGİN�, Sixteenth Annual 

Conference on Small Satellites, August 12-15, 2002, Utah, US.   

[24] Aware Wavelet Transform Processor (WTP) Preliminary. Aware Inc., 

Cambridge, MA, 1991 

[25] F. Fridman and E. S. Manolakos, �Distributed memory and control VLSI 

architectures for the 1-D discrete wavelet transform,� Proceedings, IEEE VLSI 

Signal Processing VII, 1994. 

[26] R. Lang, E. Plesner, H Schröder, and A. Spray, �An efficient systolic 

architecture for the one-dimensional wavelet transform,� Proceedings SPIE 

Conference on Wavelet Applications, pp. 925-935, April 1994. 

[27] A. Grzeszczak, M. K. Mandal, S. Panchanathan, and T. Yeap, �VLSI 

implementations of discrete wavelet transform,� IEEE Transactions on VLSI 

Systems, vol. 4, pp. 421-433, December 1996. 

130 



[28] S.Masud and J. V. McCanny, �Rapid design of biorthogonal wavelet 

transforms,� Proceedings, IEEE Circuits Devices and Systems, vol. 147, pp. 293-

296, October 2000. 

[29] J. T. Kim, Y. H. Lee, T. Isshiki, and H. Kunieda,  �Scalable VLSI 

architectures for lattice structure-based discrete wavelet transform,� IEEE 

Transactions on Circuits and Systems - II, vol. 45, no. 8, pp. 1031-1043, 1998. 

[30] M. Vishwanath, �The Recursive Pyramid Algorithm for the discrete wavelet 

transform,� IEEE Transactions on Signal Processing, vol. 42, no. 3, pp. 673-676, 

March 1994. 

[31] G. Knowles, �VLSI architecture for the discrete wavelet transform,� 

Electronics Letters, vol. 26, no. 15, pp. 1184-1185, July 1990. 

[32] M. Vishwanath, R. M. Owens, and M. J. Irwin, �VLSI architectures for the 

discrete wavelet transform,� IEEE Transactions on Circuits and Systems - II, vol. 

42, no. 3, pp. 305-316, May 1995. 

[33] C. Chakrabarti and M. Vishwanath, �Efficient realization of the discrete and 

continuous wavelet transforms: From single chip implementations to mapping on 

SIMD array computers,� IEEE Transactions on Signal Processing, vol. 43, pp. 759-

771, March 1995. 

[34] I. Urriza, J. I. Artigas, J. I. Garcia, L. A. Barragan, and D. Navarro, �VLSI 

architecture for lossless compression medical images using the discrete wavelet 

transform,� Proceedings, Design, Automation and Test in Europe, pp. 196-201, 

February 1998. 

[35] Y. Kim, K. Jun, and K. Rhee, �FPGA implementation of subband image 

encoder using discrete wavelet transform,� Proceedings, IEEE Region 10 

Conference TENCON 99, vol. 2, pp. 1335-1338, September 1999. 

131 



[36] A.S. Lewis and G. Knowles, �VLSI architecture for 2-D Daubechies wavelet 

transform without multipliers,� Electronics Letters, vol. 27, no. 2, pp. 171-173, 

January 1991. 

[37] C. Chakrabarti and C. Mumford, �Efficient realizations of analysis and 

synthesis filters based on the 2-D discrete wavelet transform,� Proceedings, IEEE 

ICASSP, pp. 3256-3259, May 1996. 

[38] C. Chakrabarti and M. Vishwanath, �Architectures for wavelet transforms: A 

survey,� Journal of VLSI Signal Processing, vol.14, pp. 171-192, 1996. 

[39] P. McCanny, S. Masud, and J. McCanny, �An efficient architecture for the 2-

D biorthogonal discrete wavelet transform,� Proceedings, 2001 International 

Conference on Image Processing, vol. 3, pp. 314-317, October 2001. 

[40] C. Chen, Z. Yang, T. Wang, and L. Chen, �A programmable VLSI 

architecture for 2-D discrete wavelet transform,� Proceedings, International 

Symposium on Circuits and Systems, pp. 619-622, May 2000. 

[41] T. Park and S. Jung, �A high performance lattice architecture of 2D discrete 

wavelet transform for hierarchical image compression,� International Conference 

on Consumer Electronics, pp. 352-353, June 2002. 

[42] P. Wu and L. Chen, �An efficient architecture for two-dimensional discrete 

wavelet transform,� IEEE Transactions on Circuits and Systems for Video 

Technology, vol. 11, no. 4,  pp. 536-545, April 2001. 

[43] T. Denk and K. Pahri, �Calculation of minimum number of registers in 2-D 

discrete wavelet transforms using lapped block processing,� Proceedings, 

International Symposium on Circuits and Systems, vol. 26, pp. 1184-1185, July 

1995. 

[44] S. Paek, H. Jeon, and L. Kim, �Semi-recursive VLSI architecture for two 

dimensional discrete wavelet transform,� Proceedings, International Symposium on 

Circuits and Systems, vol. 5, pp. 469-472, May 1998. 

132 



[45] F. Marino, �Two fast architectures for the direct 2-D discrete wavelet 

transform,� IEEE Transactions on Signal Processing, vol. 49, no. 6, pp. 1248-1259, 

June 2001. 

[46] P. E. Danielsson, �Serial/parallel convolvers,� IEEE Transactions on 

Computers, vol. 33, pp. 1079-1086, 1988. 

[47] The Programmable Logic Data Book 2000, Xilinx Inc., 2000, online available 

at http://www.xilinx.com. 

[48] Data Book 1998, Altera Co., 1998, online available at http://www.altera.com 

[49] M. J. Gormish, E. L. Schwartz, A. Keith, M. Boliek, and A. Zandi, �Lossless 

and nearly lossless compression for high quality images,� Proceedings of the 

SPIE/IS&T Conference on Very High Resolution and Imaging II, vol. 3025, pp. 62-

70, February 1997. 

[50] C. Chrysafis, Wavelet Image Compression Rate Distortion Optimizations and 

Complexity Reductions, PhD Thesis, Department of Electrical Engineering, 

University of Southern California, March 2000. 

[51]  J. Reichel, M. Nadenau, and M. Kunt, �Row-based wavelet decomposition 

using the lifting scheme,� Proceedings of the Workshop on Wavelet Transforms and 

Filter Banks (WTFB 99), March 1999. 

[52] C. M. Brislawn, �Preservation of subband symmetry in multirate signal 

coding,� IEEE Transactions on Signal Processing, 43(12), pp. 1248-1259, 

December 1995. 

[53] C. Herley, �Boundary filters for finite length signals and time varying filter 

banks,� IEEE Transactions on Circuits and Systems II, vol. 42, no. 2, pp. 102-114, 

February 1995. 

133 

http://www.xilinx.com/


[54] J. Ritter and P. Molitor, �A partitioned wavelet-based approach for image 

compression using FPGA�s,� IEEE 2000, Custom Integrated Circuits Conference, 

November 1999. 

[55] G. K. Wallace, �The JPEG still picture compression standard,� Comm. ACM, 

vol. 34, pp. 30-44, 1991. 

[56] W. Jiang and A, Ortega, �Lifting factorization-based discrete wavelet 

transform architecture design,� IEEE Transactions on Circuits and Systems for 

Video Technology, vol. 11, no. 5, May 2001. 

[57] M. Ravasi, L. Tenze, and M. Mattavelli, �A scalable and programmable 

architecture for 2-D DWT decoding,� IEEE Transactions on Circuits and Systems 

for Video Technology, vol. 12, no. 8, August 2002. 

[58] RC1000  Hardware Reference Manual, Celoxica Ltd, 2001. 

(http://www.celoxica.com) 

[59] XAPP152 �Power Estimator Tools v2.0�   (http://www.xilinx.com/xapp/xapp-

152.pdf), (http://www.xilinx.com/ise/power_tools/virtex_power_estimator_v16.xls) 

[60] ISO/IEC 10918-1 and ITU-T Recommendation T.81. Information technology 

� digital compression and coding of continuous-tone still images: Requirements and 

guidelines, 1994. 

[61] W3C, PNG (Portable Network Graphics) Specification, 1996 

[62] ISO/IEC IS 14495, �Lossless and near-lossless compression of continuous-

tone still images.� 

[63] TMS320C6000 Peripherals � Reference Guide, Texas Instruments Inc., 2001.  

[64] University of Southern California � SIPI Image Database [Online]. 

http://sipi.usc.edu/services/database/Database.html 

134 

http://www.celoxica.com/
http://www.xilinx.com/xapp/xapp-152.pdf
http://www.xilinx.com/xapp/xapp-152.pdf
http://sipi.usc.edu/services/database/Database.html


[65] M. D. Adams, Reversible Wavelet Transforms and Their Application to 

Embedded Image Compression, MSc Thesis, Department of Electrical and 

Computer Engineering, University of Waterloo, 1993. 

[66] M. Domański and K. Rakowski, �Lossless and near-lossless image 

compression with color transformations,� Proceedings, International Conference on 

Image Processing, pp. 454-457,  October 2001. 

[67] Taner Kolçak, GEZGİN Test and Decoder Suite v1.0 - Documentation and 

Manual, Technical Report, TÜBİTAK-BİLTEN, 2002. 

[68] M. Aşkar and O. Tekinalp, �Turkish small satellite program: goals and 

policies,� 2nd International Symposium of the International Academy of 

Astronautics, pp. 369-372,  April 2001. 

 

 

 

 

 

135 



APPENDIX A 

 

DESIGN HIEARCHY 

 

Figure A.1 The hierarchical structure of the design. 
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Figure A.1 shows the hierarchical structure of the design. 

The description of the modules is as follows: 

lvds_inf : This module receives the camera data form 4 serial links, 

discards the black stripes,  translates it to 80MHz and sends to the next 

module (rct).   

hpi_mux: This module multiplexes the level outputs of multi_lev 

module and translates the operation clock from 20MHz to 40MHz, and 

sends data to hpi_mdl_16_buff. 

trig_reset: This module controls the reset signals distributed to the 

device and triggers the hardware when a TRIG signal from the cameras is 

received. TRIG  signal indicates a new image has been shot and ready to be 

transmitted by the cameras. 

wr_sequencer: This module handles the buffering (writing to local 

storage), tiling, reading back and sending data to the forthcoming modules. 

It receives data from rct and sends it to ram_inf for buffering, and sends 

the data that is read back from ram_inf to freq_adaptor . 

freq_adaptor: this module receives data in 80MHz and sends it in 

20MHz. It receives data from wr_sequencer and sends it to multi_lev. 

rct: This module handles the DC-level shift operation and color transform. 

It receives data from lvds_inf and sends it to wr_sequencer. 

multi_lev: This is the top module of the 2-D DWT, architecture. Data is 

received from frq_adaptor and send to hpi_mux lvds_inf.  

two_dim: module handling 2-D DWT of 1 level. There are three 

instantiations of this module each belonging to a stage.  
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Hor: horizontal filtering and decomposition 

Vertical: vertical filtering and decomposition 

lifter_core: This module implements the arithmetic operations required 

for the lifting scheme of 5/3 filtering. 

RAM80x256: This module contains five RAMB4_S16_16 ram block 

primitives, and used to store the samples required by stage 1 and 2.   

RAM64x256: This module contains four RAMB4_S16_16 ram block 

primitives, and used to store the samples required by stage 3.   

hpi_mdl_16buff1: this module is the HPI driver. It send the computed 

coefficients to the DSP through HPI link. It also contains buffer which 

compensate the temporary link stalls. It receives data from hpi_mux and 

outputs it from HPI pins. 

ram_inf: this module is the SRAM driver for local storage. It receives 

data from wr_sequencer and outputs it from SRAM pins. 

 

  

                                                           
1 This module is coded by Soner Yeşil. 
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APPENDIX B 

 

VIRTEX-E RESOURCES 

 

 

 

B.1 Architecture Overview 

 

 

Figure B.1 Virtex-E Aarchitecture Overview. 
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Figure B.1 shows the Virtex-E Aarchitecture Overview. The FPGA comprises two 

major configurable elements: configurable logic blocks (CLBs) and I/O blocks 

(IOBs). 

CLBs provide the functional elements for constructing logic, and IOBs provide the 

interface between the package pins and the CLBs. CLBs interconnect to a general 

routing matrix, which consists of an array of routing switches located at the 

intersections of horizontal and vertical routing channels.   

The Virtex-E architecture also includes the following circuits that connect to the 

general routing matrix: 

• Dedicated block memories of 4096 bits each.  

• Clock Dlls for clock-distribution delay compensation and clock domain 

control 

• Tri-state buffers associated with each CLB that drive dedicated segmentable 

horizontal routing resources.  

Values stored in static memory cells control the configurable logic elements and the 

interconnect resources. These values load into the memory cells on power-up, and 

can reload if necessary to change the function of the device. 

B.2 Configurable Logic Blocks (CLBs) and Slices  

The basic building block of the Virtex-E CLB is the logic cell. a logic cell includes 

a 4-input function generator, carry logic, and a storage element. The output from the 

function generator in each logic cell drives both the CLB output and the D input of 

the flip-flop. Each Virtex-E CLB contains four logic cells as shown in Figure B.2.  

Each CLB is divided into two slices.  
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Figure B.2 Virtex-E CLB. Each Virtex-E CLB contains four logic cells and CLB is 

divided into two slices. 
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B.3 Look-up Tables (FGs) 

 

Figure B.3 The detailed schematic of a slice. A slice contains two LUTs, two DFFs, 

and one CY. 

 

Virtex-E function generators are implemented as 4-input look-up tables (LUTs). In 

addition to operating as a function generator, each LUT can provide a 16 × 1-bit 

RAM, and a 16-bit shift register. Figure B.3 shows the detailed schematic of a slice 

having two LUTs. 

B.4 Storage Elements (DFFs) 

Figure B.3 shows the two storage elements provided in a slice. These elements can 

be either configured as edge-triggered D-type flip-flops or as level sensitive latches. 

The D inputs can be driven either by the function generators within the slice or 

directly from slice inputs, bypassing the function generators.  
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B.5 Arithmetic Logic (CYs) 

Dedicated carry logic provides fast arithmetic carry capability for high-speed 

arithmetic functions. A CLB supports two separate carry chains, one per slice. They 

are indicated as �CY� in the Figure B.2.  

The arithmetic logic also includes an XOR gate that allows a 2-bit full adder to be 

implemented within a slice.  

B.6 Block SelectRAM (BRAM) 

In Virtex-E FPGA provides with large Block SelectRAM memories. Block 

SelectRAM memory blocks are organized in columns (see Figure B.1) and inserted 

every 12 CLB columns. Each memory block is four CLBs high, and each memory 

column extends the full height of the chip. Each Block SelectRAM cell, as 

illustrated in Figure B.3 is a dual-ported 4096-bit RAM with independent control 

signals for each port. The data widths of the two ports can be configured 

independently.  

 

 

Figure B.4 Block SelectRAM cell.  
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Table B.1 shows the depth and width aspect ratios available for the RAM blocks. 

Table B.1 Depth and width aspect ratios available for the RAM blocks. 

Width Depth ADDR Bus Data Bus 
1 4096 ADDR<11:0> DATA<0> 
2 2048 ADDR<10:0> DATA<1:0> 
4 1024 ADDR<9:0> DATA<3:0> 
8 512 ADDR<8:0> DATA<7:0> 

16 256 ADDR<7:0> DATA<15:0>  
 

B.7 Digital Delay-Locked Loop (DLL)  

 

 

Figure B.5 Locations of the eight digital delay-locked loops (DLLs) in the device. 

 

Virtex-E FPGA provides with eight delay-locked loops.  four of them is located at 

the top and the other four is located at the bottom as shown in Figure B.4. The DLLs 

can be used to eliminate skew between the clock input pad and the internal clock 

input pins throughout the device. Each DLL can drive two global networks. The 
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DLL monitors the input clock and the distributed clock,  and automatically adjusts a 

clock delay element.  

In addition to eliminating clock-distribution delay, the DLL provides control of 

multiple clock domains. The DLL provides four quadrature phases of the source 

clock., and can double the clock or divide the clock by 2, 4, 8 or 16.   

B.8 Global Clock Routing (GCLKs and GCLKIOBs) 

In order to allow for high-speed, low-skew clock distribution, global routing 

resources are used.  These are four dedicated clock nets (GCLK) and dedicated 

input pins (GCLKIOB). Each global clock net can drive all CLB, IOB, and block 

RAM clock pins. The global nets may only be driven by glocal buffers. There are 

four global buffers, one for each global net. Two global buffers are placed at the top 

center of the device and the remaining two at the bottom center as shown in Figure 

B.5. The input of the global buffer is selected either from global input pins or from 

signals in the general purpose routing.  

 

 

Figure B.6 Locations of the four global clock buffers (GCLKs) in the device.  
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