

A REAL-TIME, LOW-LATENCY, FPGA IMPLEMENTATION OF THE TWO

DIMENSIONAL DISCRETE WAVELET TRANSFORM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

OĞUZ BENDERLİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2003

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Prof. Dr. Mübeccel Demirekler
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate in scope and quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Yusuf Çağatay Tekmen
 Supervisor

Examining Committee Members

Prof. Dr. Murat Aşkar (Chairman) ____________________

Assoc. Prof. Dr. Tayfun Akõn ____________________

Assoc. Prof. Dr. Aydõn Alatan ____________________

Assist. Prof. Dr. Yusuf Çağatay Tekmen ____________________

A. Neslin İsmailoğlu M.S. in EE ____________________

ABSTRACT

A REAL-TIME, LOW-LATENCY, FPGA IMPLEMENTATION OF THE TWO

DIMENSIONAL DISCRETE WAVELET TRANSFORM

Benderli, Oğuz

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Yusuf Çağatay Tekmen

August 2003, 146 pages

This thesis presents an architecture and an FPGA implementation of the two

dimensional discrete wavelet transformation (DWT) for applications where row-

based raw image data is streamed in at high bandwidths and local buffering of the

entire image is not feasible. The architecture is especially suited for multi-spectral

imager systems, such as on board an imaging satellite, however can be used in any

application where time to next image constraints require real-time processing of

multiple images. The latency that is introduced as the images stream through the

iii

DWT module and the amount of locally stored image data, is a function of the

image and tile size. For an n1 × n2 size image processed using (n1/k1) × (n2/k2) sized

tiles the latency is equal to the time elapsed to accumulate a (1/k1) portion of one

image. In addition, a (2/k1) portion of each image is buffered locally. The proposed

hardware has been implemented on an FPGA and is part of a JPEG 2000

compression system designed as a payload for a low earth orbit (LEO) micro-

satellite to be launched in September 2003. The architecture can achieve a

throughput of up to 160Mbit/s. The latency introduced is 0.105 sec (6.25% of total

transmission time) for tile sizes of 256×256. The local storage size required for the

tiling operation is 2 MB. The internal storage requirement is 1536 pixels. Equivalent

gate count for the design is 292,447.

Keywords: JPEG 2000, Wavelet Transform, FPGA, Multispectral Imaging, Image

Processing

iv

ÖZ

İKİ BOYUTLU AYRIK DALGACIK DÖNÜŞÜMÜNÜN, GERÇEK ZAMANLI

VE DÜŞÜK GECİKMELİ OLARAK, FPGA UZERINDE

GERÇEKLEŞTİRİLMESİ

Benderli, Oğuz

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Yusuf Çağatay Tekmen

Ağustos 2003, 146 sayfa

Bu tezde, satõr tabanlõ ham görüntü verisinin yüksek bant genişliğinde duraksõz

iletildiği ve tüm veriyi yerel bellekte saklamanõn mümkün olmadõğõ uygulamalara

yönelik, iki boyutlu ayrõk dalgacõk dönüşümü (ADD) mimarisi ve FPGA

gerçekleştirimi sunulmaktadõr. Mimari, özellikle görüntüleme uydusu üzerinde

bulunan çok bantlõ görüntüleme sistemleri için uygun olup, birden fazla görüntünün

gerçek zamanlõ işlenmesini gerektiren ve görüntüler arasõ zamanlama kõsõtõnõn

v

olduğu uygulamalar için de kullanõlabilir. Görüntüler ADD modülünden geçerken

oluşan gecikme ve yerel olarak saklanmasõ gereken görüntü verisi miktarõ, görüntü

ve parsel büyüklüğünün bir fonksiyonudur. (n1/k1) × (n2/k2) büyüklüğündeki

parsellerle işlenen n1 × n2 büyüklüğündeki bir görüntü için, gecikme zamanõ, tüm

resmin (1/k1) kadarlõk bölümünün biriktirilmesi için geçen zaman kadardõr. Ayrõca,

tüm resmin (2/k1) kadarlõk bölümü yerel olarak saklanmaktadõr. Önerilen donanõm,

bir FPGA üzerinde gerçekleştirilmiştir ve Eylül 2003 tarihinde fõrlatõlõcak olan alçak

yörüngeli bir mikro uydu için faydalõ yük olarak tasarlanmõş bir JPEG 2000 resim

sõkõştõrma sisteminin parçasõdõr. Mimari 160 Mbits/s�e kadar veri işleyişi

sağlayabilmektedir. 256×256�lõk parsel boyutu için eklenen gecikme zamanõ 0.105

saniyedir (Tüm iletim zamanõnõn %6.25�i). Parselleme işlemi için gereken yerel

bellek miktarõ 2 MB�dir. İç bellek ihtiyacõ ise 1536 pikseldir. Tasarõmõn eşdeğer

geçit sayõsõ 292,447�dir.

Anahtar Kelimeler: JPEG 2000, Dalgacõk Dönüşümü, FPGA, Çok Bantlõ

Görüntüleme, Görüntü İşleme

vi

ACKNOWLEDGMENTS

This thesis would never have been written without the generous help and support

that I received from numerous people along the way. I would now like to take this

opportunity to express my sincerest thanks to these individuals.

First, I would like to express my appreciation to my supervisor Assist. Prof. Dr.

Çağatay TEKMEN for his guidance and helpful comments in the development of

this thesis. He has always been patient and supportive. Most of all, however, I

would like to thank him for always having confidence in me and my abilities, even

when I did not.

I would also like to express my acknowledgements and gratitude to Prof. Dr. Murat

Aşkar, especially for his initiative role in the micro satellite and micro satellite

payload projects of TÜBİTAK � BİLTEN. If it were not for him, this thesis would

never have been started.

I would be remiss if I also did not thank my colleagues in TÜBİTAK � BİLTEN;

first of all to my coordinator Neslin İsmailoğlu for her support and understanding

throughout my thesis; to Soner Yeşil, Taner Kolçak, Ilgaz Korkmaz, Hacer Sunay

and Refik Sever, who shared their bests in the GEZGIN project. I also wish to thank

to TÜBİTAK-BİLTEN for facilities provided for the completion of this thesis.

I would also like to express my deep gratitude to my sincere friends, and my family

for their continuous support, patience and encouragement.

vii

to the memory of M. Emin Özkan

viii

TABLE OF CONTENTS

ABSTRACT... iii

ÖZ...v

ACKNOWLEDGMENTS ... vii

TABLE OF CONTENTS...ix

LIST OF TABLES .. xiii

LIST OF FIGURES ..xv

LIST OF ABBREVIATIONS..xxi

CHAPTER

1. INTRODUCTION ...1

1.1 Image Compression..3

1.2 Wavelet Basics ...6

1.2.1 Application of Wavelet Transform in Image Compression8

1.2.2 Factoring Wavelet Transforms into Lifting Steps......................15

1.3 A New Image Compression Standard : JPEG 2000...............................17

1.3.1 JPEG 2000 Coding Algorithm ...19

1.4 GEZGİN: A JPEG 2000 Compression Sub-system On-board

 BILSAT-1...21

2. HARDWARE IMPLEMENTATIONS OF 2-D DISCRETE WAVELET

TRANSFORMS, A LITERATURE REVIEW ...23

2.1 1-D DWT Architectures ...23

ix

2.1.1 Recursive Pyramid Algorithm Implementations........................24

2.1.2 One Dimensional RPA Architectures ..25

2.1.2.1. Systolic/Semi-systolic Architectures............................26

2.1.2.2. Memory-Based Implementations28

2.1.2.3. Parallel Filtering...28

2.2 2-D Mallat Tree Decomposition Architectures......................................29

2.2.1 Whole Image Storing Structures ..30

2.2.1.1. Direct Approach ...30

2.2.1.2. Single Instruction Multiple Data (SIMD)

 Architectures ..31

2.2.2 Memory Optimized Architectures..33

2.2.2.1. Parallel Filter Algorithms...33

2.2.2.2. Non-Separable Filtering Architectures.........................37

2.2.2.3. Systolic-Parallel Architectures.....................................38

2.2.2.4. Row-parallel RPA Architectures..................................39

2.2.2.5. Lattice Architecture..41

2.2.2.6. Level-by-level transforming...42

2.2.2.7. Quadri-filter..44

2.3 Summary and Comparisons on Mallat Tree Architectures48

3. A REAL-TIME, LOW-LATENCY FPGA IMPLEMENTATION OF

THE 2-D WAVELET TRANSFORM ...55

3.1 Input Data Stream Format and Notation ..56

3.2 DC-Level Shift ...57

3.3 Color Transform...57

3.4 Lifting Implementation ..59

3.5 Symmetric Extension in Lifting Steps ...68

3.6 Tiling ..73

3.7 Cascade Filter Structure ...80

3.7.1 Horizontal Filter ...81

3.7.2 Vertical Filter ...83

3.7.3 Memory Requirements...85

x

3.7.4 Output Bandwidth Considerations ...87

3.8 Precision and Channel Constraints...89

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS92

4.1 FPGA Implementation ...92

4.1.1 Specifications ...93

4.1.2 FPGA Operation Environment...94

4.1.3 Design...95

4.1.3.1. Design Environment...95

4.1.3.2. Synthesized Chip..95

4.1.4 Overall Architecture...97

4.1.5 Power, Timing and Test Subjecting ...100

4.2 Comparisons...102

4.2.1 Resource Used..102

4.2.2 JPEG 2000 Achievement ...103

4.3 Results ..108

4.3.1 Levels of Sub-band decomposition ..108

4.3.2 Tile Size..109

4.3.3 Coefficient Truncation ...111

4.3.4 Compression Time Experiments ..113

4.3.5 Dynamic Range Expansion at the RCT output116

4.3.6 Blocking Artifacts ..117

5. CONCLUSION ..124

REFERENCES..128

APPENDIX

A. DESIGN HIEARCHY ...136

B. VIRTEX-E RESOURCES...139

B.1 Architecture Overview ...139

B.2 Configurable Logic Blocks (CLBs) and Slices140

B.3 Look-up Tables (FGs) ..142

B.4 Storage Elements (DFFs) ...142

xi

B.5 Arithmetic Logic (CYs) ...143

B.6 Block SelectRAM (BRAM)...143

B.7 Digital Delay-Locked Loop (DLL) ..144

B.8 Global Clock Routing (GCLKs and GCLKIOBs)145

xii

LIST OF TABLES

TABLE

2.1 Comparisons of 2-D DWT Architectures (I) ..49

2.2 Comparisons of 2-D DWT Architectures (II)...50

2.3 Comparisons of 2-D DWT Architectures (III) ...52

4.1 Resources used in DWT module and resources available in

XCV300EPQ240 chip ..98

4.2 Detailed resource usage of the hierarchical modules99

4.3 BRAM modules required in each level for various implementations for

n1/n2=n2/k2=N and P=2. ..100

4.4 Clock groups...100

4.5 Maximum path delays for clock groups ...101

4.6 Estimated power consumption..102

4.7 Resource used by 2-D DWT processor implemented for GEZGİN and

various 2-D DWT architectures..103

xiii

4.8 Lossless compression performance of PNG, LS and JPEG 2000.

JPEG2000 results are obtained using GEZGİN Test and Decoder Suite

v1.0 [67]..108

4.9 Time required to process image and achieved distortion, bit-rate for

various options available in GEZGİN ..114

4.10 Quality achievement of quantizing and clamping of color transformed

samples ..117

B.1 Depth and width aspect ratios available for the RAM blocks144

xiv

LIST OF FIGURES

FIGURE

1.1. One dimensional forward and inverse wavelet transform. Each QMF pair

consists of a low-pass filter, H, and a high-pass filter, G which split the

input signal�s bandwidth in half. ..10

1.2. Two dimensional separable forward wavelet transform.................................11

1.3. Dyadic (Mallat Tree) Wavelet Transform. In wavelet compression, the

average signal is usually recursively transformed to higher levels.11

1.4. Pass-band structure of Sub-bands for three level wavelet transform12

1.5. 2-D Wavelet Transform outputs: (a) A natural image, (b) A checkerboard

test pattern. The vertical edges and temporal changes along horizontal

direction are emphasized in HL sub-band, whereas horizontal edges and

temporal changes along vertical direction are emphasized in LH sub-

band. The LL sub-band, the average signal, contains the coarse

information of the image. ...13

1.6. Two dimensional inverse wavelet transform..14

1.7. Polyphase representation of wavelet transform. The input signal s is first

split into even and odd parts, then the polyphase matrix is applied to the

signals. ..16

xv

1.8. Lifting steps implementation of wavelet transform..17

1.9. Block diagram of JPEG 2000 coding algorithm...19

2.1. Pseudo code for RPA..25

2.2. One dimensional RPA Architecture proposed by Knowles26

2.3. Systolic Architecture of Vishvanath...27

2.4. RAM based implementation of systolic architecture28

2.5. Parallel filter architecture ...29

2.6. Direct Approach..31

2.7. Interconnections of the �active� processors for three stages where N=832

2.8. Intermediate outputs of the processors ...33

2.9. Two dimensional parallel filter architecture I of Chakrabarti et al34

2.10. Two dimensional parallel filter architecture II of Chakrabarti et al35

2.11. Semi-recursive pyramid algorithm architecture of Masud et al36

2.12. Scheduling of semi-recursive architecture..37

2.13. Non-separable filter architecture ..38

2.14. Systolic-parallel architecture ..39

2.15. Row-parallel processing for three levels and image size of 840

2.16. Row-parallel architecture..41

2.17. (a) Lattice architecture. (b) Processing element. ..42

2.18. Level-by-level transforming architecture ...43

xvi

2.19. Splitted signal implementation ...44

2.20. 2-D convolver having L×M taps ...45

2.21. Quadri-filter structure ...46

2.22. Folded architecture with quadri-filters ...47

2.23. Pipe-lined architecture with quadri-filters ..48

3.1. Block diagram of the DWT processor ..55

3.2. Image data acquisition with quadrants. On both sides of the image there

are β pixels wide stripes which contain no information other than black

pixels...56

3.3. Lifting realization with causal filters..62

3.4. Delay lines of lifting implementation ...63

3.5. Modified delay line structure..64

3.6. Lifting structure of 5/3 filtering. (a) Odd samples lag even samples, (b)

Even samples lag odd samples ...67

3.7. Symmetric extensions: (a) Whole point (b) Half point68

3.8. Application of symmetric extension to even-length signals...........................69

3.9. Symmetric extension applied to consecutive signals......................................71

3.10 The buffer content at the joint of two consecutive signals where l=16 and

2n=8. ...72

3.11. The elements of a filter architecture for lifting...73

3.12. Application of tiling to the image components. Each frame is divided

into tiles forming a tile matrix. The tile , which is on the rth row

iX
(

srq
iX ,,(

xvii

and sth column of the qth quadrant (if quadrants are used) of the tile

matrix, is assigned a global-tile index g and is equal to a portion π of a

�global-tile�, Tg (π=0..P-1)...75

3.13. Overlap reading for one-dimensional transform for r=16, a=2 and b=1.......78

3.14. Overlap reading for two dimensional transform...79

3.15. Proposed cascaded filter architecture ...81

3.16. Horizontal filtering and decomposition of LL subband81

3.17. Vertical filtering and decomposition of (LL)H and (LL)L subbands.............83

3.18. Output timing diagrams of three cascaded 2-D filters. (a) for g=0, (b)

 for 0<g<Z ...84

3.19. Part of the image allocated in filter memories..86

3.20. �Burst-free� output timing diagram for the modified structure......................88

4.1. Photograph of GEZGİN, the image compression system which is

designed as a payload for a LEO micro-satellite, BILSAT-1. (The

photograph is provided by the courtesy of TÜBİTAK-BİLTEN)93

4.2. Block diagram of the image compression system ..94

4.3. The schematic of the synthesized computation kernel, which implements

four 10-bit adders and one 2�s complementor ..96

4.4. The floorplan of the design. Area consuming modules are contoured and

numbered ..97

4.5. The outputs of conventional JPEG and the outputs of GEZGİN for the

original image of ERCIYES 2048×2048 24 bpp RGB. Images on the

xviii

right hand side are provided from the GEZGİN test bench with the

courtesy of TÜBİTAK-BİLTEN ..105

4.6. The outputs of conventional JPEG and the outputs of GEZGİN for the

original image of MERSIN 2048×2048 24 bpp RGB. Images on the right

hand side are provided from the GEZGİN test bench with the courtesy of

TÜBİTAK-BİLTEN ...106

4.7. The outputs of conventional JPEG and the outputs of GEZGİN for the

original image of GOLCUK 2048×2048 24 bpp RGB. Images on the

right hand side are provided from the GEZGİN test bench with the

courtesy of TÜBİTAK-BİLTEN ..107

4.8. Compression ratios achieved for various number of decomposition levels

and reconstruction resolutions ..109

4.9. PSNR variation with tile size for 3 levels of sub-band decomposition and

the corresponding compression achievements..110

4.10. PSNR versus the number of bits discarded for various cases of sub-band

decomposition...112

4.11. PSNR reduction introduced due to RCT and the corresponding bit rate

achievement for different cases. Tile size is chosen as 256115

4.12. Effect of tiling to quality degradation. Images on the right side are

subjected to zero padding, left side images are filtered using symmetric

extension ...118

4.13. The effect of quantization of LL sub-band ...120

4.14. Quantization of the sub-bands. Images on the left are obtained by only

truncation in coding and multiplication by 2q in decoding, while images

on the right obtained by applying DC adjustment to the truncated

coefficients before multiplication by 2q..123

xix

A.1. The hierarchical structure of the design..136

B.1. Virtex-E Aarchitecture Overview...139

B.2. Virtex-E CLB. Each Virtex-E CLB contains four logic cells and CLB is

divided into two slices ..141

B.3. The detailed schematic of a slice. A slice contains two LUTs, two DFFs,

and one CY. ..142

B.4. Block SelectRAM cell ..143

B.5. Locations of the eight digital delay-locked loops (DLLs) in the device144

B.6. Locations of the four global clock buffers (GCLKs) in the device145

xx

LIST OF ABBREVIATIONS

 1-D One Dimensional

 2-D Two Dimesnional

 ASIC Application Specific Integrated Circuit

 BİLTEN Bilgi Teknolojileri ve Elektronik Araştõrma Enstitüsü

 bpp Bits per pixel

 BRAM Block Select Random Access Memory

 CCD Charge Coupled Device

 ccs Clock Cycles

 CLB Configurable Logic Block

 CPU Central Processing Unit

 CY Carry Symbol

 DC Direct Current (Convention for representing constant signals)

 DCT Discrete Cosine Transform

 DFF D Flip-flop

 DLL Delay Locked Loop

 DSP Digital Signal Processor

xxi

 DWT Discrete Wavelet Transform

 EBCOT Embedding Block Coding with Optimized Truncation

 FF Flip-Flop

 FG Function Generator

 FPGA Field Programmable Gate Array

 GCLK Global Clock Buffer

 GEZGİN Gerçek Zamanlõ Görüntü İşleyen

 HPI Host Port Interface

 Inf Infinity

 IC Integrated Circuit

 IO Input/Output

 IR Infra-red

 JPEG Joint Photograph Experts Group

 KLT Karhunen Loeve Transform

 LEO Low Earth Orbit

 LSB Least Significant Bit

 LUT Look-up Table

 MAC Multiply-and-Accumulate

 MRPA Modified Recursive Pyramid Algorithm

 MSB Most Significan Bit

 MSE Mean Square Error

 PE Processing Element

xxii

 PSNR Peak Signal-to-Noise Ratio

 QMF Quadrature Mirror Filter

 RAM Random Access Memory

 RCT Reversible Color Transform

 RGB Red-Green-Blue

 RPA Recursive Pyramid Algorithm

 SIMD Single Instruction Multiple Data

 SPIHT Set Partitioning Hierarchical Trees

 SSDR Solid State Data Recorder

 SSTL Surrey Space Technologies Limited

 TCQ Trellis Coded Quantization

 TÜBİTAK Türkiye Bilimsel ve Teknik Araştõrma Kurumu

 VLSI Very Large Scale Integrated Circuit

 VQ Vectorial Quantization

xxiii

CHAPTER 1

INTRODUCTION

Digital imaging, whether it be professional or recreational, is a common reality

today, allowing the capture of images using solid-state devices and image sensor

devices instead of traditional film. The basic functioning of a digital camera is by

means of recording the incident light through analog-to-digital conversion, thereby

creating a digital representation of the image. Digital images have numerous

advantages over traditional film images, such as ease of storage, access,

transportation and manipulation.

For a digital image to be comparable in quality to an analog image generated

through traditional film photography, a considerable amount of digital data should

be stored. At 1200 dpi (dots per inch), a 5� by 4� image would translate into a 6000

pixel by 4800 pixel digital image, or 28.8 million pixels total. If each pixel is

represented by 24 bits (8 bits for each spectral channel: Red, Green and Blue) this

means storing roughly 9.1 Mbytes of digital data. Due to this large storage

requirement, in digital imaging equipment, some compression algorithm is generally

applied prior to storage.

Image compression algorithms comprise a sequence of treatment to image data such

as transform, quantization, coding etc. Two dimensional discrete wavelet transform,

2-D DWT, is a powerful one of such transforms used in image compression. This

work presents an architecture and an FPGA implementation of the two dimensional

1

discrete wavelet transform for applications where row-based image data is streamed

in at high-bandwidths, and local buffering and random accessing the entire image is

not feasible. The architecture is especially suited for , but not limited to, multi-

spectral imager systems, such as on board an imaging satellite.

The proposed hardware has been implemented on an FPGA and is part of a JPEG

2000 compression system designed as a payload for a low earth orbit (LEO) micro-

satellite, which will be launched in September 2003. The fundamental mission of

the system is to process (compress) the output of digital imaging sensors in real-

time, as the high bandwidth image data is output from the sensors, while storing

only a small portion of the incoming image stream at any given time. This work

includes the presentation and the report of the optimization of an ASIC co-processor

which performs the required tasks before entropy coding in such a system.

This chapter is dedicated to providing introductions to several issues dealt with in

this work and is organized as follows: In Section 1.1 a brief introduction to the

concept of image compression is given followed by basics in wavelet transform in

Section 1.2 and its application in image compression in Section 1.3. In Section 1.4 a

method -which constitutes an important reference in this work- used to implement

the wavelet transform using a lifting scheme is introduced. Section 1.5 is dedicated

to the introduction of the new still image compression standard, JPEG 2000. In

Section 1.6 introduces the application of the JPEG 2000 algorithm on-board the

imaging satellite BILSAT-1.

In Chapter 2 hardware implementations of the 2-D DWT reported in related

literature is presented. Chapter 3 presents in detail the proposed architecture for a 2-

D DWT processor in a multi-spectral imaging application environment. Chapter 4 is

dedicated to the implementation and simulation results. Chapter 5 summarizes the

work done and results obtained, and possibilities of future work is mentioned.

2

1.1 Image Compression

An image is represented by a positive scalar function or �as a generalization- a

multidimensional vector function of a plane. The value of this function at each point

specifies the luminance or brightness of the color components of the picture at that

point. Digital images are sampled versions of such functions, where the value of the

function is specified only at discrete locations on the image plane, known as pixels.

Luminance of each pixel is represented in a predefined precision of B bits. A typical

value for B is eight which sufficiently accommodates the dynamic range of the

human eye and is suitable for the commonly used computer memory structure since

eight bit precision is suitable for existing computer memory structure (1 byte=8

bits).

The prevalent custom is that the samples (pixels) reside on a rectangular lattice of

size N1 × N2. The brightness at each pixel can be any number between 0 and 2B-1 �1.

The raw representation which is the simplest representation of an image is a list of

matrix entries which give the brightness value of the corresponding pixel. The

storage required for such a list is MN1N2B bits, where M is the number of color

components.

In many imaging applications, exact reproduction of the image is not necessary. In

this case, one can perturb the image slightly to obtain a shorter representation. If this

perturbation is much smaller than the blurring and noise introduced in the formation

of the image in the first place, there is no point in using the more accurate

representation. Such a coding procedure, where perturbations reduce storage

requirements, is known as lossy coding. The goal of lossy coding is to reproduce a

given image with minimum distortion, given some constraint on the total number of

bits in the coded representation.

The underlying reason that digital images can be compressed is the contained

redundancy in representation of the images. The example of Nosratinia [1] can be

given to illustrate this phenomenon: Suppose that we seek to efficiently store

photographs of all natural scenes. In principle, we can enumerate all such pictures

3

and represent each image by its associated index. Assume we position hypothetical

cameras at the vantage point of every atom in the universe (there are roughly 1080 of

them), and with each of them take pictures in one trillion directions, with one trillion

magnifications, exposure settings, and depths of field, and repeat this process one

trillion times during each year in the past 10,000 years (once every 0.003 seconds).

This will result in a total of 10144 images. But 10144≈2479, which means that any

image in this enormous ensemble can be represented with only 479 bits, or less than

60 bytes. This collection includes any image that a modern human eye has ever

seen, including artwork, medical images, and so on, because we include pictures of

everything in the universe from essentially every vantage point. And yet the

collection can be conceptually represented with a small number of bits. If we

assume that images are 512 × 512 and 8-bit, the remaining vast majority of the

2512×512 ×8 ≈ 10600,000 possible images in the canonical representation are not of

general interest because they contain little or no structure, and are noise-like.

The example illustrates the two main properties that image compression algorithms

exploit: First, a very small fraction of the possible images that the representation

provides are likely to be meaningful. If short code words for likely images and

longer codewords for less likely images are used, a much shorter representation of

the images can be achieved. This is the fundamental principle of operation of an

Entropy Coder. Second, in our initial image gathering procedure we assign different

representations for images which are visually indistinguishable from the other.

Additional reductions in stored image size can be achieved by discretizing our

database of images more coarsely. By mapping visually indistinguishable images to

the same representation, we reduce the number of code words needed to encode

images, at the price of a small amount of distortion.

Discretizing the database of images can be made by means of quantizing. Each pixel

can be quantized separately, which is known as scalar quantization, or a group of

pixels can be quantized together, which is called vector quantization, VQ. Since

each pixel is quantized independent of the others, direct scalar quantization cannot

capture the interdependency of the samples, and suffers of distortion at high

4

compression ratios. In principle, maximum compression that is theoretically

possible can be achieved by VQ [1], however VQ reaches optimality only

asymptotically as its dimensions increase. Furthermore, computational complexity

and delay grow exponentially with the dimension of the VQ. limiting the

practicality of VQ. Due to these and other difficulties, most practical image

compression algorithms have turned to transform coding.

Transform coding consists of scalar quantization applied after a linear transform.

This method captures much of the VQ gain, with only a fraction of the effort.

Compression is performed in the transform domain. The main purpose of

performing a transformation is to make the task of compression easier in the

transform domain. Some of the well known transforms applied in transform coding

are the Karhunen-Loéve transform (KLT), the discrete cosine transform (DCT), and

sub-band transforms.

The success of the transform coding depends on how well the basis functions of the

transform represent the features of the signal. A good candidate transformation

should be able to offer flexible image representation with decorrelation (to facilitate

efficient entropy coding) and good energy compaction in the transform domain (so

that fewer quantized coefficients are needed to be encoded and rest can be discarded

with minimum distortion). At present, one of the most successful representations is

the wavelet transform, application of which is a special case of sub-band transform

[2]. In Section 1.2 and 1.3 a brief background of the wavelets and applications will

be provided. For more background on wavelet theory and wavelet transform one can

refer to [3-6].

State-of-the-art wavelet coders such as EZW [7], SPIHT [8], Trellis Coded

quantization (TCQ) [9], EBCOT [10] are all derived from the transform coder

paradigm. There are three basic components that underlie current wavelet coders: a

decorrelating transform, a quantization procedure, and an entropy coding procedure.

The next section provides a brief background to wavelets and explain why wavelets

are useful for image compression.

5

1.2 Wavelet Basics

One of the most commonly used approaches for analyzing a signal is to

represent it as weighted sum of simple building blocks, called basis functions [11] :

)(xf

 (1.1) ∑=
i

ii xcxf)()(Ψ

where are basis functions and the c)(xiΨ i are coefficients, or weights. are

predefined fixed values, and therefore the signal information is contained by the

coefficients. If we assume that are the translates of impulse function, this

yields a representation in which coefficients only contain information about the time

domain behavior of the signal. As an example for the other extreme, choosing

sinusoids as the basis functions yields a Fourier representation that reveals

information only about the signal�s frequency domain behavior.

)(xiΨ

)(xiΨ

For the purpose of signal compression, neither of the representation is ideal. What

we would like to have is a representation which contains information about both the

time and frequency behavior of the signal. More specifically, a useful

transformation should give the frequency content of the signal at a particular instant

in time. However, resolution in time (∆x) and resolution in frequency (∆ω) cannot

both be made arbitrarily small at the same time because their product is lower

bounded by the Heisenberg inequality [6].

2
1

≥∆∆ ωx (1.2)

This inequality indicates that a trade off should be done between resolution in time

an resolution in frequency. For example it is possible to obtain a good resolution in

time if we are satisfied with the low resolution in frequency, and a good resolution

in frequency if we are satisfied with the low resolution in time.

For efficient image compression, the aim is to use a transform in which transformed

coefficients efficiently contain useful time-frequency information about a signal. By

their very nature, low frequency events are spread out (or non-local) in time and

6

high frequency events are concentrated (or localized) in time. This means that if we

split the signal�s bandwidth in half, and repeat the halving operation on the low-pass

portion of the bandwidth, we would have high-pass information analyzed by time-

localized (but spread frequency) basis functions, and low-pass information would be

analyzed by frequency-localized (but non-local in time) basis functions. Thus, an

efficient representation of the signal would be possible.

Suppose that we have the impulse function as the basis function. The impulse

function cannot provide information about the frequency behavior of a signal

because its support �the interval over which it is non-zero� is infinitesimal. At the

opposite extreme are the sinusoids, which cannot provide information about the time

behavior of a signal because they have infinite support. Therefore, a compromise

should be done between these two extremes: what should be chosen as basis

functions, , are those having finite support of different widths. The different

support widths allow us to trade off time and frequency resolution in different ways;

for example, we can analyze large regions of the signal and resolve low frequency

details accurately by using wide basis functions, while we can use a short basis

function to analyze a small region of the signal to resolve time details accurately.

{ iΨ }

Basis functions can be chosen as the scaled and translated version of the same

prototype function Ψ, known as the mother wavelet. The scaling is an operation in

which x is multiplied by a scale factor. If we choose the scale factor to be a power of

2, yielding where ν is some integer, we obtain a set of octave band-pass

filters. Since Ψ has finite support, it will need to be translated along the time axis in

order to cover an entire signal. This translation is accomplished by shifting Ψ in

steps of size 2

)2(xνΨ

-νk , yielding;

 (1.3) ΖΨ ∈− kkx),2(ν

With the new basis function, , the wavelet decomposition of the signal is

represented as :

)(xkνΨ

7

 , (1.4) ∑∑=
ν

νν
k

kk xcxf)()(Ψ

where

)2(2)(2 kxxk −= ν
ν

ν ΨΨ (1.5)

In order to have an orthonormal set of basis, functions must be multiplied by 2ν/2.

The wavelet coefficients cνk are computed by the wavelet transform, which is just

the inner product of the signal f(x) with the basis functions :)(xkνΨ

)(),(xxfc kk νν Ψ= (1.6)

1.2.1 Application of Wavelet Transform in Image Compression

Wavelet-based image coding can be viewed as a form of a sub-band coding. The

forward and inverse wavelet transforms can be implemented by a pair of quadrature

mirror filters (QMFs). Each QMF pair consists of a low-pass filter, H, and a high-

pass filter, G which split the input signal�s bandwidth in half. The impulse responses

of H and G are mirror images, and are related by :

 (1.7) n
n

n hg −
−−= 1

1)1(

The impulse response of the forward and inverse transform QMF�s are related by :

 (1.8a) nn gg −=)

 (1.8b) nn hh −=
)

Let and h be the impulse responses of the forward transform and let and

be the impulse responses of the inverse transform. Note that is also the

mother wavelet function of the orthogonal wavelet transform system.

ng~ n
~

ng

nh nh

8

Output of a filtering operation can be computed by convolving the filter coefficients

with the signal values: kh~

 (1.9) ∑
−

=
−=

1

0

�
L

k
knkn shs

)

where L is the number of coefficients, or in other words the taps of the filter. The

one-dimensional forward wavelet transform of a signal sn is performed by

convolving sn with both and and then down-sampling by 2: nh~ ng~

 (1.10a) ∑
−

=
−=

1

0
2

)(
L

k
knk

l
n shs

)

 (1.10b) ∑
−

=
−=

1

0
2

)(
L

k
knk

h
n sgs)

Figure 1.1 shows the one dimensional forward and inverse wavelet transform. The

low-pass output of the first stage is filtered for further levels1. Figure 1.2 illustrates

the two dimensional separable forward wavelet transform for two dimensional

signals. Note that throughout this discussion for a 2-D signal f(x,y), x denotes the

vertical axis and y denotes the horizontal axis.

1 In literature recursive steps of wavelet transforming is referred to as either octaves or levels. In this
work it is preferred to use the term level as in [19].

9

)(zh
)

)(zg)

downsample
by 2

downsample
by 2

upsample by
2

upsample by
2

)(zh

)(zg

+)(zs)(� zs

)()(zs l

)()(zs h

High-pass
signal

Low-pass
signal

Figure 1.1 One dimensional forward and inverse wavelet transform. Each QMF pair

consists of a low-pass filter, H, and a high-pass filter, G which split the input

signal�s bandwidth in half.

Owed to the separability of the filters, the transform can be performed in two steps

each involving one dimensional filtering along different directions. The image I(x,y)

is first filtered along the y direction, resulting in a low-pass image and a high-pass

image. Since the bandwidth of I along the y direction is split into two, we can safely

down�sample each of the filtered images in the y direction by 2 without loss of

information and obtain two images L(x,y), and H(x,y). The down-sampling or

decimation is accomplished by dropping one sample in every two samples. Both

L(x,y) and H(x,y) are then filtered along the x direcion, and once again we can

down-sample the subimages by 2, this time along the x direction resulting four

subimages (sub-bands) LL(x,y), LH(x,y), HL(x,y), and HH(x,y). As illustrated in

Figure 1.2 the 2-D filtering decomposes an image into an average signal (LL) and

three detail signals which are directionally sensitive: LH emphasizes the horizontal

image features such as vertical edges and temporal changes along horizontal

direction, HL emphasizes the vertical image features, and HH the diagonal features.

The sensitivity of the detail signals is a result of the frequency ranges they contain.

10

LP

HP 2↓

LP 2↓

HP 2↓

LP 2↓

HP 2↓

I(x,y)

L(x,y)

H(x,y)

LL(x,y)

LH(x,y)

HL(x,y)

HH(x,y)

along horizontal direction

2↓

along vertical direction

N1 x N2

N1 x N2/2

N1/2 x N2/2

Figure 1.2 Two dimensional separable forward wavelet transform

In wavelet compression, the average signal is usually recursively transformed to

higher levels as shown in Figure 1.3, the scheme was proposed by Mallat [12]. The

wavelet decomposition is also called as dyadic wavelet transform or Mallat tree

decomposition. The pass-band structure of the output signals is illustrated on Figure

1.4 for three levels of wavelet .

LP

LH1(x,y)

HL1(x,y)

HH1(x,y)

2↓

LP 2↓

HP 2↓

LP 2↓

LP 2↓

HP 2↓

HP 2↓

LP 2↓

HP 2↓

HP 2↓

LP 2↓

HP 2↓

LL1(x,y)

LL0(x,y)

LL2(x,y)

LH2(x,y)

HL2(x,y)

HH2(x,y)

to level 3

Figure 1.3 Dyadic (Mallat Tree) Wavelet Transform. In wavelet compression, the

average signal is usually recursively transformed to higher levels.

11

1ωπ

2ω

π

HL1

LH1 HH1

HL2

HH2LH2

HL3

HH3LH3

LL3

2π

2π

Figure 1.4 Pass-band structure of Sub-bands for three level wavelet transform

The number of transformations performed depends on several factors, including the

amount of compression desired, the size of the original image, and the length of the

QMF filters.

After the forward wavelet transform is completed, we have a matrix of coefficients

which is equal in size to the original image containing the average signal and the

detail signals of each scale. Up to this point we have accomplished no compression,

moreover, each iteration of the forward wavelet transform causes the magnitude of

the coefficients to grow, so the storage size for the image has actually been

increased. Compression is achieved by quantizing and encoding the wavelet

coefficients.

Figure 1.5 shows the wavelet transform of test images. 2.5a is a natural image and

2.5b is a checker board test image. Since the high-pass sub-bands contain samples

centered around zero, absolute values of the samples with an offset is used for

illustration purposes. Note that the vertical edges and temporal changes along

horizontal direction are emphasized in HL sub-band whereas horizontal edges and

temporal changes along vertical direction are emphasized in LH sub-band. The LL

sub-band contains the coarse information of the image.

12

13

(a)

(b)

Figure 1.5 2-D Wavelet Transform outputs: (a) A natural image, (b) A checkerboard

test pattern. The vertical edges and temporal changes along horizontal direction are

emphasized in HL sub-band, whereas horizontal edges and temporal changes along

vertical direction are emphasized in LH sub-band. The LL sub-band, the average

signal, contains the coarse information of the image.

Reconstruction of the original image is by the 2-D inverse wavelet transform which

is illustrated in Figure 1.6. The sub-bands are first up-sampled by 2 along the

vertical axis (along x) and filtered along vertical axis with the corresponding inverse

filters. LL and LH sub-bands are summed up to obtain sub-image L while HL and

HH sub-bands are summed up to obtain sub-image H. Then the two sub-images are

up-sampled along the horizontal axis (along y) and filtered with the corresponding

inverse filters. Finally the outputs are summed up to obtain the reconstructed image,

or the LL sub-band for the next iteration.

LP

HP

LP

HP

LP

HP

I(x,y)

L(x,y)

H(x,y)

LL(x,y)

LH(x,y)

HL(x,y)

HH(x,y)

along horizontal directionalong vertical direction

N1 x N2

N1 x N2/2

N1/2 x N2/2

+

+

+

2↑

2↑

2↑

2↑

2↑

2↑

Figure 1.6 Two dimensional inverse wavelet transform

14

1.2.2 Factoring Wavelet Transforms into Lifting Steps

In this section a brief explanation of the lifting concept and how a QMF filter bank

implementation of wavelet transform is factorized into lifting steps is given. More

rigorous mathematical analysis of the subject can be found in [13-15].

Lifting factorization of a filter bank involves the polyphase representation of filter

kernels. The polyphase representation of analysis filters and is given by : h
)

g)

 (1.11a))()()(212 zhzzhzh oe

)))
−+=

) (1.11b) ()()(212 zgzzgzg oe
))) −+=

where and contain the even coefficients, and and contain the odd

coefficients. The wavelet transform of Figure 1.1 can be represented in polyphase

form as illustrated in Figure 1.7. The input signal s is first split into even and odd

parts, then the polyphase matrix is applied to the signals. In the inverse path, first

polyphase matrix is applied and then the even and odd signals are joined properly.

Polyphase matrix is given as:

eh
)

eg) oh
)

og)

 (1.12) 







=

)()(
)()(

)(
zgzh
zgzh

z
oo

ee
))
))

)
Ω

and the outputs of the transform are expressed as :

 (1.13) [] [])()()()()()()(zzszszszs oe
hl Ω

)
⋅=

15

)(zs

)()(zs l

)()(zs h

z 2↓

2↓

)(zΩ
)

)(zso

)(zse

Figure 1.7 Polyphase representation of wavelet transform. The input signal s is first

split into even and odd parts, then the polyphase matrix is applied to the signals.

The polyphase matrix can be factorized into several triangular matrices by Euclidian

algorithm as follows:

 (1.14) 







⋅


















⋅







 −
= ∏

−

= 2

1
1

0 0
0

1)(
01

10
)(1

)(
K

K
zU

zP
z

N

k k

k)

)
)
Ω

where and are called prediction and update filters of the lifting steps

implementation of wavelet transform, which is illustrated in Figure 1.8. First the

low-pass samples (even terms) are filtered by prediction filters, , and are

subtracted from the high-pass samples (odd terms) to obtain a �detail� signal. Then,

the detail samples are filtered by the update filters, U and the low-pass samples

are �updated� by adding the update filter outputs. This constitutes a single �lifting

step� of the scheme. This lifting procedure is repeated as many times as the number

of lifting steps N.

)(zPk

)
)(zUk

)

)(zPk

)

)(zk

)

16

....

....

....

-

+ +

-

)(0 zP
)

)(0 zU
)

)(1 zPN −

)
)(1 zUN −

)

2↓

2↓

z

)(zs

)()(zs l

)()(zs h)(zso

)(zse K1

K2

Figure 1.8 Lifting steps implementation of wavelet transform

The advantageous of lifting can be listed as follows:

1. It is easier to build non-linear wavelet transforms by using lifting. A typical

example for non-linear transforms are the transforms that map integers to

integers [15]. Such transforms are important for hardware implementations

and for lossless image coding.

2. Every transform built with lifting is immediately invertible where the inverse

transform has exactly the same computational complexity as the forward

transform.

3. Lifting exposes the parallelism inherent in a wavelet transform. All

operations within one lifting step can be done entirely parallel while the only

sequential part is the order of the lifting operations.

4. Lifting involves poly-phase filtering which provides two channel input

feeding, thus the clock cycle required to implement wavelet transform can be

reduced.

1.3 A New Image Compression Standard : JPEG 2000

JPEG 2000 is an upcoming image compression standard published by the committee

of JPEG, Joint Photographic Experts Group to serve the needs of current and future

applications that uses still image coding. The committee�s first published standard

17

JPEG is a simple and efficient discrete cosine transform (DCT) based lossy

compression algorithm that uses Huffman Coding and is restricted to 8 bits/pixel.

Though various extensions has appeared to JPEG to provide broader applicability

and lossless compression, these extensions introduced only limited capability and

faced with the intellectual copyright properties. Since 1996, various image

compression algorithms were proposed and evaluated for the new image

compression standard, and the one that was published at the end of 2000 by ISO

(ISO I5444 | ITU-T Recommendation T.800) has been adopted as the new

comprehensive still image compression standard, JPEG2000.

JPEG 2000 has many features, some of which are [16]

• Superior, Low bit-rate compression performance

• Progressive transmission by quality, resolution, component, or spatial

locality

• Multiple resolution representation of still images

• Lossy and lossless compression

• Multispectral Image Support

• Random access to bit stream

• Pan and zoom (with decompression of only a subset of the compressed data)

• Compressed domain processing (eg. rotation and cropping)

• Region of interest coding

• More flexible file format

• Limited memory implementations

• Error Resilience

18

1.3.1 JPEG 2000 Coding Algorithm

In this section the JPEG 2000 algorithm is described. Figure 1.9 shows the block

diagram of the JPEG 2000 coding algorithm. Comparative results are provided in

[17-18].

Forward DC
level shift

Forward Component
Transform

Forward Wavelet
Transform

Quantizer Entropy Coding

Inverse DC
level shift

Inverse Component
Transform

Inverse Wavelet
Transform

Dequantizer Decoding

Compressor

Decompressor

Figure 1.9 Block diagram of JPEG 2000 coding algorithm

The input image is first DC-level shifted, and then component transform is applied.

For images having multiple color components, a point-wise decorrelating transform

may be applied across the components. However this transform is optional. The

standard Part I [19] defines 2 component transforms. These are : 1) the YCrCb

transform commonly used in image compression systems and color format

exchangers, and 2) the Reversible Component Transform (RCT) which provides

similar decorrelation, but allows for lossless reconstruction of color components.

Both color transforms are applied to first three components of the image data and

the remaining components, if exist, are left unchanged. After the component

transform, the image components are treated independently.

19

A color component can be processed in arbitrary sized non-overlapping rectangular

blocks called tiles or the entire color component can be processed at a time (i.e. no

tiles).

Given a tile, a J-level dyadic 2-D wavelet transform is applied. JPEG-2000 Part I

offers two filtering methods which differ in filter kernels: Wavelet transform can be

performed using either (9,7) filter, floating point wavelet [20], or (5,3) filter, integer

wavelet [15]. For lossless compression (5,3) filter must be used. For a J-level

transformation; from the lowest frequency sub-band (which is denoted in this work

by S0), up to the Jth resolution (which is denoted by S(J)), there are J+1 possible

resolutions to reconstruct an image.

After wavelet transformation, uniform scalar quantization is applied to all sub-band

coefficients. Uniform quantization involves a fixed dead-zone around zero. This

corresponds to magnitude division and magnitude flooring. Further quantization

can be applied during coding process by truncation of coefficients, thus rate control

is achieved. For integer transform quantization step size is essentially �but not

necessarily- 1, which means there is no pre-coding quantization, however rate

control is achieved by truncation of coefficients as in floating-point transform.

After quantization each sub-band is subjected to packet partition, where each sub-

band is divided into regular non-overlapping rectangles. After this step, code-blocks

are obtained by dividing each packet partition location into regular non-overlapping

rectangles. The code-blocks are the fundamental entities for the purpose of entropy

coding.

Entropy coding is performed on each code-block independently. A context

dependent, binary arithmetic coding is applied to bit planes of code-blocks.

Algorithm employs the MQ-Coder which is defined in JBIG-2 standard [21] with

some minor modifications.

20

1.4 GEZGİN: A JPEG 2000 Compression Sub-system On-board BILSAT-1

BİLSAT-1 [22] [68] is a 100kg class, low earth orbit (LEO), micro-satellite being

constructed in accordance with a technology transfer agreement between

TÜBİTAK-BİLTEN (Turkey) and SSTL (UK) and planned to be placed into a 650

km sun-synchronous orbit in Fall 2003. One of the missions of BİLSAT-1 is

constructing a Digital Elevation Model of Turkey using both multi-spectral and

panchromatic imagers. Due to limited down-link bandwidth and on-board storage

capacity, employment of a real-time image compression scheme is highly

advantageous for the mission.

Prof. Dr. Murat Aşkar has initiated resource and development projects which lead to

the development of payloads for small satellites [68], one of which was planned to

be an image processing subsystem while the other is a multi-spectral camera,

ÇOBAN. GEZGİN [23] is a real-time image processing subsystem, developed for

BILSAT-1. GEZGİN is one of the two R&D payloads hosted on BILSAT-1 in

addition to the two primary imager payloads (a 4 band multi-spectral 26m GSD

imager and a 12m GSD panchromatic imager). GEZGİN processes 4 images in

parallel, each representing a spectral band (Red, Green, Blue and near Infra-Red)

and captured by 2048 × 2048 CCD array type image sensors. Each image pixel is

represented by 8-bits. The imaging mission of BILSAT-1 imposes a 5.5 seconds

interval for real-time image processing between two consecutive multi-spectral

images with 20% overlap in a 57 × 57km2 swat. The image processing consists of

streaming in the image data, compressing it with the JPEG2000 algorithm and

forwarding the compressed multi-spectral image frames as a single stream to the

Solid State Data Recorders (SSDR) of BILSAT-1 for storage and down-link

transmission. Compression of image data in real-time is critical in micro-satellites in

general, where the down-link and on-board storage capacity are limited. GEZGİN

achieves concurrent compression of large multi-spectral images by employing a

high degree of parallelism among image processing units.

The JPEG2000 compression on GEZGİN is distributed to dedicated Wavelet

Transformation and Entropy Coding units. An SRAM based Field Programmable

21

Gate Array (FPGA) performs the computationally intensive tasks of image stream

acquisition and wavelet transformation. A 32-bit floating-point Digital Signal

Processor (DSP) implements the entropy coding (compression), formatting and

streaming out of the compressed image data. The system allows for adjustment of

the compression ratio to be applied to the images by means of run-time supplied

quality measures. This results in great flexibility in the implementation of the

JPEG2000 algorithm. Data flow into and out of GEZGİN is through dedicated high-

speed links employing Low Voltage Differential Signalling (LVDS) at the physical

layer. GEZGİN accommodates sufficient amount of on-board memory elements for

temporary storage of the image data during acquisition and compression. The

command/control interface of GEZGİN has an integrated Controller Area Network

(CAN) bus. The configuration of the SRAM based FPGA together with the program

code of the DSP can be uploaded in orbit through CAN bus, allowing for

reconfiguration of the system.

22

CHAPTER 2

HARDWARE IMPLEMENTATIONS OF 2-D DISCRETE WAVELET

TRANSFORMS, A LITERATURE REVIEW

The 2-D Discrete Wavelet Transform has a fundamental role in recently developed

still and moving picture compression algorithms. However, because of its

complexity in hardware implementations, a significant number of studies in the

literature have been devoted to the design of architectures that effectively utilize

available resources. Methods and algorithms have been proposed for the

implementation of the 2-D DWT for the sake of simplifying the control circuitry, or

architectures proposed for the implementations of such methods and algorithms.

The publications in the literature are dedicated to proposing solutions for specific

problems such as computation time, latency, memory requirements, routing

complexity, inverse transform facilitation, utilization, etc.

This chapter is organized as follows: To provide a background, 1-D DWT

architectures will be given in Section 2.1. Section 2.2, briefly discusses Mallat tree

decomposition architectures, followed by a summary and a comparison of these

architectures from an FPGA implementation perspective.

2.1 1-D DWT Architectures

Most 2-D DWT can be implemented with the use of one dimensional transform

modules. Therefore, at this point, a brief background of one dimensional DWT

architectures will be given. There have been a number of 1-D DWT architectures

23

studied so far [24-31], we will only discuss those relevant to hardware

implementation of 2-D architectures.

Throughout this section N represents the length of the 1-D signal, L is the filter

length, x(n) is the input, g(n) and h(n) are the low-pass and high-pass filter outputs

respectively. J denotes the maximum number of decomposition levels, and j is the

current resolution level. Timing values are given in clock cycles (ccs) and storage

sizes are given in terms of pixels.

2.1.1 Recursive Pyramid Algorithm Implementations

The recursive pyramid algorithm is a reformulation of the pyramid algorithm [12]

introduced by Vishwanath [30]. It allows computation of the DWT in real-time, and

provides an important storage size reduction. The algorithm uses storage of size

. ()1log −NL

The output scheme is the linearized form of the pyramid structure. The algorithm is

based on scheduling the outputs of any level j at the earliest instance that it can be

scheduled. Instead of computing the jth level after the completion of j-1th level, the

outputs from all levels are computed in an interleaved fashion. The outputs from the

first level are computed once in every two received input sample. Therefore the

higher levels can be interspersed between the first level. For an input of length N=8

and the decomposition level of J=3 the outputting schedule is as follows:

() () () () () () () () () () () () () () −− ,8,4,7,2,6,3,5,,4,2,3,1,2,1,1 12131211213121 hhhhhhhhhhhhhh

where is the nth output of the jth level. (-) sign indicates that there is no

scheduled output at that instance.

()nhj

The pseudo code for the RPA is as follows :

24

begin {Recursive Pyramid}

input : W[0,i]=x[i], i:[1,N] /* N is a power of 2 */
low-pass filter : h[m]m:[0,L-1]
high-pass filter : g[m]m:[0,L-1]

for (i=1 to N) /* Once for each output */
rdwt(i,1)

end {Recursive Pyramid}

rdwt(i,j)

begin {rdwt}

if (i is odd)
k=(i+1)/2 /* Compute output number k of level j
sumL=0 This is computed using the last L outputs
sumH=0 of level (j-1). */
for (m=0 to (L-1))

sumL=sumL+W[j-1,i-m]*h[m]
sumH=sumH+W[j-1,i-m]*g[m]

W[j,k]=sumL /* Low-pass output */
W[j,k]=sumH /* High-pass output */

else
rdwt(i/2,j+1) /* Recursion to determine correct level */

end {rdwt}

Figure 2.1 Pseudo code for RPA

2.1.2 One Dimensional RPA Architectures

The first architecture for computing 1-D DWT was reported by Knowles [31].

Although this work was published before Vishwanath�s RPA algorithm [30], this

design can be classified as a RPA implementing architecture. Figure 2.2 shows the

proposed DWT architecture.

25

shift register
0

shift register
1

shift register
J-1

Mux

low-pass (H)

high-pass (G)

demux
x(n)

hJ-1(n)h1(n)

...

...

...

...... ...

x(n,..n-L+1) hJ-1(n,..n-L+1)h1(n,..n-L+1)

g1..J-1(n)

Figure 2.2 One dimensional RPA Architecture proposed by Knowles

The input x(n) is loaded into an L depth shift-in parallel-out shift register. Where L

is the maximum of the lengths of the low-pass and high-pass filters; L =

max{Lg,Lh}. Each intermediate result hj(n) obtained from the low-pass filter is also

fed into a shift-in parallel-out shift register, while the high-pass filter outputs gj(n)

are sent to output without being stored.

Since the architecture uses large multiplexors for routing intermediate results, it is

not well suited for VLSI architectures. Several other architectures have been

proposed in order to reduce the large routing introduced in DWT architectures.

2.1.2.1.Systolic/Semi-systolic Architectures

Viswanath proposed systolic and semi-systolic architectures which eliminate the

wiring complexity in [32]. The architecture consists of filters handling low-pass and

26

high-pass filtering and a systolic routing network as shown in Figure 2.3. The

routing network is a mesh of cells consisting of J-1 rows and L column, where J is

the number of levels and L is the length of the filter.

...

...
...

...

......

L columns

J rows

x(n)

g1..J-1(n)

h1..J-1(n)

low-pass...

... high-pass

routing network

Figure 2.3 Systolic Architecture of Vishvanath

The architecture implements RPA as follows : The first level is computed

conventionally in linear array and all the other levels are computed

unconventionally. During the odd clock cycles each cell of the filters shifts in the

input stream x(n), while during the even cycles it takes the input from the proper

level through the routing network. Thus the interspersion of higher levels between

the first level is achieved.

In systolic structure the cells are capable of shifting data up and to the left. Several

control signals such as shift-up shift-right, clock-up, clock-right are routed through

27

the network. The design of cells may be rather complex however the systolic

network can be replaced with a semi-systolic one which provides global

connections in vertical directions, eliminating the need for clock-up signals and

extra control registers with the expense of wiring complexity.

2.1.2.2.Memory-Based Implementations

The routing network of systolic/semi-systolic architecture can be replaced with a

RAM and address generators as shown in Figure 2.4.

Linear Array
Low-pass Filter

RAM of size L(J-1)

...

address
counter of

J bits
address decoders

...

L lines

Input

Linear Array
High-pass Filter...

Output

Figure 2.4 RAM based implementation of systolic architecture

2.1.2.3.Parallel Filtering

A similar structure to that of the systolic transformer in [32] is presented in [33],

however with minor modifications. The x inputs are first fed into the storage instead

of the linear array, and then loaded in parallel to the two parallel filters. This

introduces a delay of L clock cycles.

28

The architecture is illustrated in Figure 2.5. The storage unit consists of J serial-in

parallel-out shift registers each of length L. Each parallel filter consists of L

multipliers and a tree of (L-1) adders. The parallel filter structure allows high

sampling rates by adding pipe-lining stages, hence introduces computing latency to

the filters. The latency introduced forces the use of a scheduling algorithm which

takes into consideration this latency and is known as modified RPA (MRPA).

parallel filter (low-pass) parallel filter (high-pass)

shift register of size L

...
shift register of size L

shift register of size L

g1..J-1(n)

x(n)

h1..J-1(n)

L

ts

2ts

2J-1ts

c1

cJ

c2

a1

a2

aJ

Storage Unit

Figure 2.5 Parallel filter architecture

2.2 2-D Mallat Tree Decomposition Architectures

Mallat tree decomposition is the most popular of the 2-D wavelet transforms and is

used in most image processing applications (see Figure 2.3). There are many Mallat

tree decomposition architectures in the literature [27][33-45]. Some of these

architectures will be discussed in two groups: Whole image storing and Memory-

optimized. We will not consider off-chip data storing architectures such as [27][34-

29

35] since bottleneck of such implementations in high bandwidth applications is

mainly the memory access not the architecture itself.

For the notation of Mallat tree, it is preferred to stick to the representation in [37]:

High and low pass outputs after the j+1th stage computations along the row are

denoted by (LL)jH and (LL)jL respectively. (LL)jHH and (LL)jHL denote the high-

pass and low-pass outputs after computing along the columns of (LL)jH while

(LL)jLH and (LL)jLL denote the high-pass and low-pass outputs after computing

along the columns of (LL)jL.

2.2.1 Whole Image Storing Structures

2.2.1.1.Direct Approach

Direct approach for the computation of 2-D wavelet transform is presented in [32].

The architecture implements Mallat tree decomposition with the repeated use of a

single 1-D DWT module. Figure 2.6 shows the architecture of the 2-D DWT

module. A memory of size equal to the input image, and an address generator which

will handle the transposition of the intermediate coefficients is needed. To compute

1-D DWT of a row of length N, 2N clock cycles are needed hence the number of

clock cycles needed to compute 1-D DWT of the whole image having N rows is

2N2. It is clear that 4N2 clock cycles are required in order to compute the 2-D DWT

of the image. The first output is produced 2N2 cycles after the first input has

arrived.

Despite the simplicity of the architecture, it may be an expensive task to store N2

samples for large images. Moreover the latency of 2N2 cycles introduced before the

first output is released may not be tolerable for many applications.

30

1-D DWT Module

Storage of size N2

Mux

Address
Generator

Input

LLj

Figure 2.6 Direct Approach

2.2.1.2.Single Instruction Multiple Data (SIMD) Architectures

A SIMD architecture for the 2-D DWT is presented in [33], [37], where N x N

image data is mapped onto an SIMD array of N x N processors. Each processor can

be configured as �active� or �inactive� at each stage as follows: If a processor is set

to �inactive� it behaves like a simple wire which passes data through it with a

negligible delay. If it is set to �active�, the processor does multiply-add operation

and passes its data to the neighboring processor with a delay of one cycle. The

interconnections of the �active� processors for the first three stages where N=8 is

shown in Figure 2.7. At each stage the high-pass and low-pass filter coefficients are

broadcast to each processor; the coefficients and data are multiplied by �active�

processors and the partial results are updated. Then, data is shifted upwards during

column operations and leftwards during row operations along the

31

Stage 0

Stage 1

Stage 2

Figure 2.7 Interconnections of the �active� processors for three stages where N=8

 �active� processors. Another possible way of computation is to fix the data locations

and shift the partial products. If each processor has only one multiplier at each stage

row operations will take 2L cycles and column operations will take 2L cycles. This

results a total processing time of 4JL cycles. Intermediate outputs of the processors

are shown in Figure 2.8 for row and column operations. The memory requirement of

the architecture is 2N2-3N2.

32

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LL2

LH

HL

HH

LLLH

LH

HL

HH

LL2

LH

HL

HH

LH

HL

HH

LLHL

LH

HL

HH

LLHH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LH

HL

HH

LL2

LL2

LLLH

LLHL

LLHH

LLLH

LLHL

LLHHLLLH

LLHL

LLHH

LLL

LLL

LLL

LLL

LLH

LLH

LLH

LLH

LLL

LLL

LLL

LLL

LLH

LLH

LLH

LLH

LL

LL

LL

LL

LL

LL

LL

LL

LL

LL

LL

LL

LL

LL

LL

LL

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

from row
computation

0

column computation 0 row computation 1

column computation 1 row computation 2

to column
computation 2

Figure 2.8 Intermediate outputs of the processors

2.2.2 Memory Optimized Architectures

2.2.2.1.Parallel Filter Algorithms

2-D discrete wavelet transforming using parallel filtering method explained above is

presented in [33], [37] and [38]. Figure 2.9 shows the architecture for the 2-D DWT,

where, filter 1 and 2 are the filters which operate on the rows and filter 3 and 4 are

the filters which operate along the columns. the outputs of filter 1 (L and H) and the

outputs of filter 2 ((LL)j-1L and (LL)j-1H) are stored in storage 1 and read out by

filters 3 and 4 in transposed form. Similarly, the output of filter 3, (LL)j is stored in

storage 2 and read out in transposed form by filter 2.

33

filter 1

Storage Unit 1

filter 1

Storage Unit 2
filter 3 filter 4

Input L, H

(LL)j-1L

(LL)j-1H

(LL)j

(LL)j-1HL (LL)j-1LH (LL)j-1HH

Figure 2.9 Two dimensional parallel filter architecture I of Chakrabarti et al

Input to the structure is in row-major order. Filter 1 computes L and H outputs in an

interleaved fashion. Filter 2 first computes the output (LL)j-1L and N cycles later

computes (LL)j-1H. Filter 3 computes the outputs (LL)j and (LL)j-1HL along the

columns. It first computes (LL)j and N cycles later computes (LL)j-1HL. These

outputs are stored in Storage 2. Similar to filter 3, filter 4 computes along the

columns; it first computes (LL)j-1LH and N cycles later computes (LL)j-1HH.

Li,j is scheduled at time T +Ni + 2j. (LL)j and (LL)j-1LH are scheduled to be

computed at the same time and (LL)j-1Li,j is scheduled to be computed T cycles after

(LL)j-1
i,2j where T is the latency of the parallel filters in terms of clock cycles.

The scheduling of LLa
i,j is can be arranged in two ways depending on whether a

reduced complexity and storage size or a reduced forward latency is desired.

Scheduling algorithms are explained in detail in [37].

34

A modified version of the architecture in Figure 2.9 is shown in Figure 2.10. The

modified architecture has been proposed for encoder-decoder systems where latency

is an important issue. Outputs of all sub-bands are produced at the same time

eliminating the extra buffering requirements at the decoder side.

filter 1 (low-pass)

filter 2 (high-pass)

Storage Unit 1i

Storage Unit 1ii

Mux

filter 3i (low-pass)

filter 3ii (high-pass)

filter 4i (low-pass)

filter 4ii (high-pass)

Storage Unit 2

Input

(LL)j-1L

(LL)j-1H

(LL)j

(LL)j-1LH (LL)j-1HL (LL)j-1HH

Figure 2.10 Two dimensional parallel filter architecture II of Chakrabarti et al

Storage units 1 and 2 of Figure 2.9 are of size ()()JLNN 2/1122/ −+ and

()()12/11 −− JN respectively. Sum of the size of storage units 1i and 1ii and the size

of storage unit 2 of Figure 2.10 are ()()JLN 2/112 − and ()()12/11 −− JN respectively.

Both architectures have a computation time of approximately N2 clock cycles.

A similar architecture to the ones explained above was proposed by Masud et al in

[39]. It differs from the above architectures mainly in the scheduling method it uses.

Architecture is presented as semi-recursive pyramid algorithm architecture.

35

The architecture is shown in Figure 2.11. It consists of two serial filters (filter 1 and

2) which operate on rows, a parallel filter (filter 3) which operates on columns, and

two storage units, one of which stores L and H outputs while the other stores (LL)jL

and (LL)jH outputs.

filter 1 filter 2

filter 1 filter 1

Mux

filter 3

LH,LL,HH,HL

Input

Figure 2.11 Semi-recursive pyramid algorithm architecture of Masud et al

The image is input in row-major order into the filter 1. Outputs of filter 1 are stored

in memory 1. The rows in the memory are shifted by two row places. The parallel

filter waits for a row to be complete in memory 1 and then begins to compute its

outputs. The data needed for the computation of further levels are immediately

filtered along the rows by filter 2 and then stored in memory 2. The parallel filter

computes at twice the rate of filter 1. It computes the outputs of levels other than the

first one as the filter 1 fills up the necessary rows for the first level. The scheduling

algorithm of the architecture is shown in Figure 2.12. This scheduling results a more

36

simplified scheduling circuitry than the MRPA and RPA algorithms. And also

boundary handling can be simplified.

Memory 1 is of size 2 and memory 2 is of size

. The architecture computes the 2-D DWT of an N×N

image in 3/2N

() ()(12/1 ++⋅− LNL

)
)

() ()(12/12 ++⋅− LNjL
2 clock cycles.

0 2N 4N 6N 8N 10N
N 3N 5N 7N 9N

1

2

3

4

re
so

lu
tio

n
le

ve
l

cycle
11N

12N

Figure 2.12 Scheduling of semi-recursive architecture

2.2.2.2.Non-Separable Filtering Architectures

A 2-D non-separable DWT architecture is presented in [33]. The architecture

implements the MRPA algorithm in 2-D (ie higher level computations are

interspersed between the first level computations). Figure 2.13 shows block diagram

of the non-separable parallel filter architecture.

Each parallel filter consists of L2 multipliers and a tree of (L2-1) adders to add the

products. The storage unit consists of J serial-in parallel-out shift register units,

where the jth unit consists of 2-D array of storage cells of size L x N/2j-1 . Input data

37

is shifted into the storage units in rows. When a row is filled up data is shifted up

one row. The architecture needs 2L2 multipliers, 2(L2-1) adders, and 2NL storage

cells. Computation time in terms of clock cycles for an image size of N×N is N2.

parallel filter (low-pass) parallel filter (high-pass)

...

shift register of size
NL

L2

Storage Unit

shift register of size
(N/2)L

shift register of size
(N/2J)L

LH, HL, HH

input

Figure 2.13 Non-separable filter architecture

This architecture results in a complex routing, however it is capable of applying

non-separable filtering.

2.2.2.3.Systolic-Parallel Architectures

Viswanath et al have proposed a systolic-parallel architecture which implements the

RPA in 2-D in [32]. The architecture consists of a systolic filter, a parallel filter and

a systolic storage unit. The block diagram of the architecture is given in Figure 2.14.

The systolic filter handles the filtering along the horizontal direction while the

parallel filters handle the filtering along the vertical direction.

38

S1

S1 S1 Block Cells

P1

P1

...
...

...

...
...

...

S1

...

...

inputs

outputs

Figure 2.14 Systolic-parallel architecture

Two consecutive rows of the input frame are fed into S1 and S2 . The data of the

routing network will come to S1 from parallel filter P1. The outputs of filters S1 and

S2 are fed into the holding cells which shift their contents into the block cells once

in every 2N cycles. The outputs in the block cells are stored in the same order as the

output scheme of 1-D RPA. The filters P1 and P2 compute 4 rows over 2N cycles.

These four rows constitute four outputs at that level. One of them is fed to S1 . The

parallel filters produce the outputs in the same order as the row filters and this is the

required order for the row filter and routing network operation. The architecture

computes 2-DWT of an N x N frame in N2+N cycles. The storage is of size 2NL.

2.2.2.4.Row-parallel RPA Architectures

An architecture which processes an entire row at the same time is proposed in [40].

This architecture does not use any MAC operators but bit-serial operation units

39

(PE�s). It uses a scheduling scheme which can be interpreted as the 1-D RPA, in

which the entire row is treated as a single pixel.

In Figure 2.15 the image data and wavelet coefficients are illustrated for a 3 level

DWT with a filter length of 3 and a row size of 8 pixels. 8 PE�s are required for the

computation of 8-point DWT. The dash line illustrates the boundary of the data.

Shaded coefficients are the ones required for the computation of the next level. Each

PE computes one wavelet coefficient which resides in the corresponding column.(ie.

Each column represents the computations of the corresponding PE) The data

outside the boundary are obtained by mirror-extension.

x0 x1 x2 x3 x4 x5 x6 x7 x6x1

h1,0 h1,1 h1,2 h1,3g1,0 g1,1 g1,2 g1,3 h1,2h1,1

h2,0 h2,1g2,0 g2,1 h2,1h2,1

h3,0 g3,0

level 2

level 3

level 1

Figure 2.15 Row-parallel processing for three levels and image size of 8

Figure 2.16 shows the row-parallel processing architecture. The architecture has

five main components: N number of PE�s, a routing network, memory cells, the

addressing elements and a controller. Input row to the structure is received and

stored in memory. When the entire row has been received, the routing network reads

the row and dispatches it to the N PE�s. After the row operation is completed,

column operation takes place. After the row and column operations LL band is

stored in memory for higher levels of computation and other three bands are output.

Higher bands computations are interspersed between the first bands computation as

40

in RPA algorithm. The method makes boundary handling much simpler than the

architectures described earlier. Programming filter coefficients is also simplified.

The architecture uses 4N full-adders and memory of size (L+1)NJ and no MAC

operators. The computation time for an image size of N×N is ,as reported in [40],

approximately N2+N clock cycles.

controller

.......

.......

.......

...
...

.(L+1)J
adressing
elements

(L+1)NJ memory cells

routing network

N PE's

Figure 2.16 Row-parallel architecture

2.2.2.5.Lattice Architecture

Another architecture which has lattice structure filters is proposed in [41]. It is

based on the extension of the lattice structure based 1-D DWT architecture proposed

in [29]. Figure 2.17 illustrates the architecture, which consists of 4L processing

elements (PE), two data format converters (DFC), and 4L delay control units

(DCU). The architecture implements paraunitary QMF factorization. The theory

behind this type of factorization is beyond the scope of this work, but for a more

detailed discussion one can refer to [10].

41

DFCU PE0
DCUH

PE1 PEL-1

...

... PE0
DCUV

PE1 PEL-1

...

...

PE0
DCUH

PE1 PEL-1

...

... PE0
DCUV

PE1 PEL-1

...

...DFCU

LLj(k,l)

I(2x,y)

U(2x-1,y)

L

H

L

H

LLj(k,l)

LHj(k,l)

HLj(k,l)

HHj(k,l)

Horizontal DWTU

Horizontal DWTL

Vertical DWTU

Vertical DWTL

(a)

+

+

a

-a

PEi

(b)

Figure 2.17 (a) Lattice architecture. (b) Processing element.

In summary, the architecture accepts data from two rows at a time, while output

rows of each level are scheduled row by row. Higher levels� rows are interspersed

between the first level�s rows.

The computation time for this method is N2/2 since the architecture computes two

rows at a time. The memory requirement is 2L(N+J). 8L multipliers and 8L adders

are used.

2.2.2.6.Level-by-level transforming

A level-by-level transforming architecture is proposed in [42]. The block diagram of

the architecture is shown in Figure 2.18. The architecture includes a transform

42

module which handles both horizontal and vertical filtering operations, a RAM

module of size N2/4, an address generator and a multiplexor. The computation

scheme is as follows: In the first-level decomposition, the input is fed to the

transform module, and the outputs LL, LH, HL and HH are generated. LL is stored

in RAM in order to compute the second level outputs. After the completion of the

first level, the data stored in RAM is fed to the transform module in order to

compute LL1 , LH1 , HL1 and HH1.This procedure is repeated until the Jth level

computations. This scheme provides a regular output flow.

Address
Generator

RAM of size
N2/4

M
u
x

Tranform Module

(LL)j-1HH

(LL)j-1HL

(LL)j-1LH

(LL)j

Input

Figure 2.18 Level-by-level transforming architecture

The proposed architecture employs a polyphase decomposition technique in which

the filter coefficients are decomposed into even-ordered and odd-ordered parts.

During even clock cycles the input sample is fed to the odd-part and multiplied

with the odd-ordered coefficients, during odd cycles the input sample is fed to the

even-part and multiplied with the even-ordered coefficients as shown in Figure 2.19.

The results from the two parts are summed up and output. This provides the internal

clock of the architecture to be half the sampling rate. Hence the architecture

computes 2-DWT of an N×N frame in N2/2-0.67N2 cycles depending on the J value.

The total memory requirement for the architecture is N2/4+LN+L.

43

out

in

even part

odd part

0

1

: register

: multipier

: adder

Figure 2.19 Splitted signal implementation

2.2.2.7.Quadri-filter

Two different 2-D DWT architectures employing �quadri-filter� blocks, which are

suitable for non-separable 2-D filtering as well as separable filtering are presented in

[45]. The qaudri-filter described in [45] is a modified type of 2-D convolver which

splits the 2-D computation into several 1-D computations [46]. The Figure 2.20

illustrates a 2-D convolver having (LxM) taps. Each 1-D convolver Ci has M taps

corresponding to the ith row of the 2-D filter. The row-adder computes the

simultaneous sums of each partial result.

44

1-D convolver C0

1-D convolver C1

1-D convolver C2

row delay

1-D convolver CL-1

row delay

row delay

row delay

row
 adder

input

output

...
......

Figure 2.20 2-D convolver having L×M taps

Figure 2.21 illustrates the �Quadri-filter� block. �Quadri-filter� is capable of down-

sampling and interleaved computation which are employed in DWT. The pipe of

row-delays of 4.19 are split into two distinct pipes working in parallel. In this way,

the even-ordered and odd-ordered rows can be fed simultaneously, thereby

achieving down-sampling along rows. The processors Pi replace the 1-D convolvers

of 4.19, and handle the computations of partial results ll{i},m,n, lh{i},m,n, hl{i},m,n,

hh{i},m,n m,n=0,1..N/2j in an interleaved fashion.

45

even rows
P0

P1

row delay

P2

row delay

P3

row delay

row delay
...

PL-1

...

adder
LH/HH

adder
LL/HL

row -adder

LL/HL

LH/HH

ll{0},m,n / hl{0},m,n

ll{1},m,n / hl{1},m,n

ll{2},m,n / hl{2},m,n

ll{3},m,n / hl{3},m,n

ll{L-1},m,n / hl{L-1},m,n

lh{0},m,n / hh{0},m,n

lh{1},m,n / hh{1},m,n

lh{2},m,n / hh{2},m,n

lh{3},m,n / hh{3},m,n

lh{L-1},m,n / hh{L-1},m,n

...

odd rows

Figure 2.21 Quadri-filter structure

One of the two architectures proposed in [45] is a folded architecture which

implements a MRPA-like scheduling algorithm as shown in Figure 2.22. The

quadri-filter used in the folded implementation has J distinct row-delay pipe-lines.

The data is fed to these pipe-lines through a demux and Pi�s are fed through

multiplexors which decide on the j value.

The other architecture is the pipe-lined approach which has as many processing

units as the levels of decomposition as shown in Figure 2.23. In a pipe-lined 2-D

DWT, the sub-band coefficients lhj
{i},m,n, hlj

{i},m,n and hhj
{i},m,n are generated in

slice j of the pipe-line and directly output. llj
{i},m,n sub-band generated at slice j is fed

into slice j+1. The quadri-filter blocks at each level differs from others in the size of

the input it processes; the filter at level j processes an input of size .

Note that the lh

11 2/2/ −− × jj NN
j
{i},m,n and llj

{i},m,n outputs are generated in an interleaved fashion.

Therefore, an adapter is required to handle the separation of sub-bands. The adaptor

46

also handles splitting the even-ordered and odd-ordered rows of the input and

feeding them in parallel to the next level.

Both architectures have a memory requirement of 2LN. The folded architecture has

a computation time of approximately 2N2/3 clock cycles, where the pipe-lined

architecture has a computation time of approximately N2/2 clock cycles. The

strength of the pipe-lined approach is that it requires more simpler control and

routing circuitry compared to the folded architectures.

Quadri-filter
operating on J levels

row adder
LH/HH

row adder
LL/HL

HH

LL

HL

LH

input

Figure 2.22 Folded architecture with quadri-filters

47

Quadri-filter
Level 1

Adapter

LH1/HH1 HL1

LL1/HL1

LL1
e

LL1
o

Quadri-filter
Level 2

Adapter

LH2/HH2 HLJ-1

LL2/HL2
LLJ-1

e

LLJ-1
o Quadri-filter

Level J

LHJ/HHJ

LLJ/HLJ...

Xe

Xo

LLJ-1/HLJ-1

...

Figure 2.23 Pipe-lined architecture with quadri-filters

It is reported that in many practical cases, pipe-lined architectures are simpler than

the conventional MRPA-based devices [45]. Hardware cost of pipe-lined

architecture for the cases examined in [45] except {J>8, L=8, N=512} and {J>6,

L=12, N=512} is smaller than the parallel filter architectures of [37]. It should be

noted that even though J can be any integer not exceeding log2(N), in many practical

applications values of J greater than 4 or 5 (with N=512) and 3 or 4 (with

N=256,128) produce little to no added benefits.

2.3 Summary and Comparisons on Mallat Tree Architectures

In this section the 2-D discrete wavelet transform architectures which have been

discussed in previous sections will be summarized and compared from an FPGA

implementation perspective. Specifically, the feasibility of realizing such

architectures in FPGAs and suitability of these architectures for specific applications

such as JPEG 2000 image compression standard [19] or tile-based processing of

large image data, will be discussed.

48

Table 2.1 Comparisons of 2-D DWT Architectures (I)

Architecture Storage Size
(B bits)

Storage Size
Bound

Suitability to
RAM appl.

Computation
Time (ccs)

I. Direct Approach [32] N2 O(N2) yes 4N2

II. SIMD Architecture [33] 2N2 O(N2) no 4JL

III. Parallel Filter 1 [37] ≈ 3/2 N +2LN O(LN) yes ≈ N2

IV. Parallel Filter 2 [37] ≈ N +2LN O(LN) yes ≈ N2

V. Masud [39] ≈ 2NL O(LN) yes 3/2 N2

VI. Non-Seperable [33] 2NL O(LN) yes N2

VII. Systolic-parallel [32] 2NL O(LN) no N2+N

VIII. Row-parallel [40] (L+1)NJ O(LNJ) no ≈N2+N

IX. Lattice Architecture [41] 2L(N+J) O(LN) no N2/2

X. Level-by-level [42] N2/4+LN+L O(N2) yes N2/2 � 0.67N2

XII. Semi-recursive [44] ≈N2 O(N2) yes 4N2/3

XIII. Quadri-filter folded [45] 2NL O(LN) no 2/3 N2

XIV. Quadri-Filter pipe-lined [45] 2NL O(LN) no N2/2

FPGA designs are classified as ASIC designs; most of the design considerations for

ASIC implementations are common for FPGAs and custom ICs. There are,

however, several design differences depending on the specific application.

Memory is one of the prime issues for an FPGA application. The limited storage

resources of FPGAs compared to which custom ICs offer, may make an FPGA

implementation infeasible despite its suitability for a custom IC. Typical resources

including both registers and on-chip block RAMs are given in [47]. The limited

number of resources forces designer to concentrate on reduced memory

implementations of the wavelet transform.

Table 2.1 shows the storage requirement and computation times of various

implementations. The architectures can be roughly divided into two groups one of

which has a storage requirement bounded with O(LN) or O(LJN) while the other

group has a storage requirement bounded with O(N2). It is clearly preferable to

design an architecture which is O(LN) bounded in storage for reduced memory

applications rather than an architecture which is O(N2) or O(JN) bounded. For fast

49

applications, architectures having computation times independent of N may be

preferred.

For transforming large images on FPGA, architectures of type I,II,X and XII are not

feasible, since they require large sizes of storage. Even if an architecture with a

smaller memory requirement is chosen, the required storage still may not be

accommodated in the distributed registers available in FPGA devices [47-48], and

the use of RAM blocks provided in such devices may be necessary. This also

provides a considerable reduction in circuit complexity and routing. However not

every type of architecture is suitable for RAM employment. The suitability of an

architecture to use RAM blocks is given in Table 2.1.

Table 2.2 Comparisons of 2-D DWT Architectures (II)

Architecture Routing
Control/

Scheduling
Complexity

I. Direct Approach [32] simple simple

II. SIMD Architecture [33] complex complex

III. Parallel Filter 1 [37] moderate moderate

IV. Parallel Filter 2 [37] moderate moderate

V. Masud [39] moderate moderate

VI. Non-Seperable [33] complex complex

VII. Systolic-parallel [32] complex complex

VIII. Row-parallel [40] complex complex

IX. Lattice Architecture [41] complex complex

X. Level-by-level [42] moderate simple

XII. Semi-recursive [44] simple moderate

XIII. Quadri-filter folded [45] complex complex

XIV. Quadri-Filter pipe-lined [45] moderate simple

Routing and control complexity is another problem for FPGA devices. Large

multiplexors bring complex routing and consumption of precious logic function

generators [47]. Table 2.2 tabulates routing and control complexity of different

architectures. Systolic, SIMD array and lattice architectures like II, VII, VIII, IX

50

have excessively large routing due to control and multiplexing/directing logic

among the processing cells. Therefore although implementing those architectures on

custom IC have many benefits, they are not suitable for FPGAs.

Folded architectures aim to minimize the number of filter modules by feeding

multiple levels� outputs to a single filter module. This increases the utilization of the

filters however brings extra multiplexing of intermediate outputs and the need for a

scheduling circuitry to the system. Folded architectures like III-IX XIII require

complex circuitry to schedule the output computation. For most applications N is

much greater than L. This means that the area requirements for storage are the

dominant design consideration and not the number of MAC units. Moreover for J

values up to a certain number, folded architectures consume more area. [45].

Bus routing is another important issue. Internal RAM blocks may be spread over the

entire FPGA device and it may require complex routing if a number of distant

blocks are to be connected to the same data bus. Most of the RPA-like architectures

have central control blocks which handle the data access by applying a harder

strategy unlike architectures such as XIV, which handle data access of each level

independently.

51

Table 2.3 Comparisons of 2-D DWT Architectures (III)

Architecture Scalability Programmable Non-sep.
Filtering

Frame
Sequence

Processing
I. Direct Approach [32] Difficult No No No

II. SIMD Architecture [33] Easy Yes No No

III. Parallel Filter 1 [37] Difficult No No Yes

IV. Parallel Filter 2 [37] Difficult No No Yes

V. Masud [39] Moderate No No Yes

VI. Non-Seperable [33] Difficult No Yes Yes

VII. Systolic-parallel [32] Difficult No No Yes

VIII. Row-parallel [40] Easy Yes Yes Yes

IX. Lattice Architecture [41] Difficult No No Yes

X. Level-by-level [42] Moderate No No No

XII. Semi-recursive [44] Moderate No No No

XIII. Quadri-filter folded [45] Complex No Yes Yes

XIV. Quadri-Filter pipe-lined [45] Moderate No Yes Yes

Scalability and coefficient programmability is another issue in DWT architectures.

Some architectures are aimed to be generic architectures which are designed

independent of the filter size and coefficients and can be adapted to different filters.

However, some architectures are tuned for a single filter like in [36]. SIMD

architectures like II and VIII are scalable and can easiliy be adopted to different

filters. Systolic parallel architecture (VII) can also be expanded by some

modifications on hardware. MRPA architectures and non-seperable filter

architectures, on the other hand, are not easily expandable. In certain applications

the architecture may be preferred to be programmable, i.e. user may program filters

of different size and with different coefficients, or different image sizes. SIMD

architectures like II and VIII are easy to expand and suitable for filter-

programmable designs, however programming image size may be a problem for

these architectures, while architectures having computation units independent of

image size are much easier for image size programming.

52

Another point of concern is the dynamic range expansion. In DWT computations,

the required precision increases with each level of sub-band decomposition. Since

the folded architectures use a single computation module for all levels up, these

architectures must accommodate the precision of the highest level J. Pipe-lined

architectures, on the other hand, can be designed with different precision for each

slice.

Some 2-D DWT filters are non-separable. Separable filtering approaches cannot be

used for 2-DWT with non-separable filters. Among the architectures discussed

above, only VI, VIII, XIII, XIV are capable of utilizing non-separable filtering.

Only a few of the studies in the literature address processing of the boundaries and

usually zero padding is assumed. If the processes frame is a partition of a whole

frame, zero padding may result degradation of the recovered image. Moreover, if

perfect recovery is desired, symmetric extension must be applied at the boundaries.

RPA based architectures are not efficiently modified to achieve boundary

processing. This is because handling these boundaries requires extra control logic

and modifications on scheduling procedures. However the row-parallel architecture

(VIII), which has a SIMD array to process rows in parallel, has the inherent

capability of applying symmetric extension. Architecture proposed by Masud et al

(V) is reported to be easily modified concerning these boundaries if desired. It is

reported to have reduced complexity in controllers used to process boundaries and

thus to have a considerably higher efficiency in boundary processing compared to

RPA-based architectures [39].

These architectures also differ in the reception of input data. In most applications

input is received in raster scan. When an architecture receiving input in the same

scan is used (as in I, III, IV, V, VI, VIII, X) additional data adapting circuitry is not

needed. However architectures like VII, IX, XIII, XIV, some of which are capable

of computing N2 samples in cycles fewer than N2, should be fed two rows at a time.

This requires the additional row splitting circuitry.

53

Another concept is the ability to process consecutive frames. If the hardware is used

repetitively to process a sequence of frames, the arrival of the frames may be

another concern. The frames may be the partitions (tiles) of a bigger size image and

there might be no gap between the reception of two consecutive frames. In this case

some architectures may not have finished with a frame when the next one arrives.

So these architectures may need extra input buffers to get rid of the early arrival of

input data. I, II,X and XII are not suitable for processing frame sequences and

require extra queue buffers.

54

CHAPTER 3

A REAL-TIME, LOW-LATENCY FPGA IMPLEMENTATION OF THE 2-D

WAVELET TRANSFORM

This chapter presents the proposed architecture for a 2-D DWT processor in a multi-

spectral imaging application environment. Figure 3.1 shows the block diagram of

the 2-D DWT processor. The processor receives image data from M sources. In

order to handle large sized images a pre-buffering and tiling method is proposed.

Pixels are buffered into off-chip memory either after or before component transform

(reversible color transform), and read back in re-ordered fashion (see Figure 3.1).

The processor is capable of processing P image blocks in parallel.

In
pu

t I
nt

er
fa

ce DC Level
Shift and

Component
Transform

Buffering
and

Tiling

2-D DWT
Processor 0

2-D DWT
Processor P-1

O
ut

pu
t I

nt
er

fa
ce

DC Level
Shift and

Component
Transform...

..

...
..

...
.. ...
..

... ...
..

Off-chip
Storage

Entropy
Coding/

Coefficient
Storage

0..M-1

Figure 3.1 Block diagram of the DWT processor.

55

3.1 Input Data Stream Format and Notation

The data to the DWT processor is assumed to be received through M serial links

each carrying image information from a camera of a specific spectrum. Each camera

m (m=0..M-1) sends an image (yxIm ,)

)

 of n1 x (n2 + 2β) unsigned B-bit pixels in

row-major order. For the reminder of the discussion every two dimensional signal

 is called a frame and x denotes the vertical index and y denotes the

horizontal index. The reception of data may be in quadrants since the image may

have been partitioned into quadrants either internally by the CCD or by the camera

electronics as shown in Figure 3.2. Both cases (with or without quadrants) are

discussed whenever necessary.

(yxA ,

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

Quadrant 1

Quadrant 2 Quadrant 3

B
la

ck
 P

ix
el

s B
lack Pixels

Figure 3.2 Image data acquisition with quadrants. On both sides of the image there

are β pixels wide stripes which contain no information other than black pixels.

Quadrant 0

On both sides of the image (shaded areas in the Figure 3.2) there are β pixels wide

stripes which contain no information other than black pixels (zeros). Therefore,

data from these stripes should be ignored during acquisition.

56

The input interface block is designed in order to handle the physical layer

considerations such as LVDS links etc. between the cameras and the DWT

processor. It receives the serial bit stream, discards the black pixels and sends the

images of size n(yxIm ,) 1 x n2 to rest of the hardware.

3.2 DC-Level Shift

Pixels from each camera are initially B bit unsigned where B is called �the bit

depth� of the pixels As the JPEG 2000 standard suggests (see Figure 1.9) an offset

of 2B-1 should be subtracted from the pixel values. After DC level shift,

representation of the values become B-bits signed 2�s complement. (i.e. -2B-1 ≤ I <

2B-1).

The motivation for the DC-level shift is that all sub-band samples produced by the

DWT other than LL sub-bands involve high-pass filtering and hence have a

symmetric distribution about 0. With the level offset samples can be assumed as

signed with a bit depth of B+1, however this would increase the bit depths of

computation. [10]

DC-level shift can be done just as the pixels are received from the input interface.

Subtracting 2B-1 from a B-bit value in 2�s complement arithmetic is equivalent to

inverting the MSB of the value.

3.3 Color Transform

According to the JPEG 2000 standard, component transform is optional. However it

is a known fact that the transformed components lead to better compression

performance and shorter coding time than the RGB components [49].

The transform converts the RGB data into an �opponent� color representation, with

a luminance channel, and two color difference channels. This has the effect of

exploiting some of the redundancy between the original color components. In

particular, color difference components commonly account for less than 20% of the

bits used to compress a color image [10].

57

For this reason reversible color transformation is essential in our implementation.

Reversible color transform employs a matrix operation on some components of the

image (see (3.1)). The transform requires at least 3 components. The remaining

components are left unchanged. For the cases P<3 this transform should be

performed before the tiling step because after tiling only P number of components

are available at the same time (see Figure 3.1). The component transformed data can

be explained as follows:

 



 ++

=
4

),(),(2),(),(210
0

yxIyxIyxIyxX (3.1a)

 (3.1b)

 (3.1c)

)

)

,(),(),(121 yxIyxIyxX −=

,(),(),(102 yxIyxIyxX −=

where I0 , I1 and I2 are assumed to be red, green and blue components respectively.

For an architecture having P less than 3, computation of the transform components

and writing them to off-chip memory presents a problem, which is the expansion of

dynamic range in some components. It is apparent in (3.1) that the original

components I0, I1, I2 and I3 are of B bits depth, but the new components X0 , X1 and

X2 are of B, B+1 and B+1 bits depth respectively (Xm is the same as Im for 4 ≤ m <

M). Storing B+1 bit values is usually not feasible for a low memory hardware

since the excess bits may require extra words or higher bandwidth to transmit them

or large buffers in order to be rearranged in multiples of B bit words. In such cases

the expanded components should be either;

 i. quantized: least significant bit should be omitted as follows:

 () ()




=

2
,, yxXyxX k

k

(
 (3.2)

 for k=1,2

58

 or,

ii. clamped: clamping the values to B-bit signed range ([-2B-1 , 2B-1-1 as

follows:

 (3.3) ()
()

() ()
()








≥−

<≤−

−<−

=
−−

−−

−−

11

11

11

2,for 12

,2,2for ,

,2,for 2

,
B

k
B

B
k

B
k

B
k

B

k

yxX

yxXyxX

yxX

yxX
(

 for k=1,2.

Computation of X1 and X2 involves subtraction of original components. Although

the dynamic range is increased one bit after subtraction theoretically, it actually

reduces the dynamic range on correlated data such as natural images. Experiments

show that clamping gives better results for satellite images.

3.4 Lifting Implementation

Consider the lifting structure in Figure 1.8 consisting of a series of filter-and-add

steps. A possible way of row-based implementation of such a structure is to

perform one step at a time, that is, each row is first processed in step one and the

intermediate result is stored and then this result is fed to the second step and so on.

However, this method requires a local memory which is equal to the row length.

Furthermore, if the filtering is along columns in which the memory required for a

single tap is equal to the row length, the whole frame should be stored. This method

is not feasible for a low memory hardware implementation.

Another way is to process each step in cascaded fashion. In this case the

intermediate results are immediately fed to the next step. The prediction and update

filters and U in Figure 1.8 may not be �which is usually the case- causal.

For a non-causal system access to the entire signal is required. However the signal

samples may be received one by one or a low memory application may not

accommodate such a large number of samples. Therefore, causal versions of predict

and update filters may have to be used. In [50] and [51] an efficient memory usage

)(zPk

)
)(zk

)

59

for row-based lifting implementations is presented. A brief summary of the results

in [50] is presented below.

Both and of Figure 1.8 may be thought as the summation of a causal

and a purely anti-causal filter, such that:

)(zPk

)
)(zUk

)

 (3.4a) () () ()zPzPzP c
k

a
kk +=

)

 (3.4b) () () ()zUzUzU c
k

a
kk +=

)

where superscript a and c are used to denote the anti-causal and causal parts

respectively. At this point the reader should be informed that the analysis in [50]

assumes that the transfer function applied to the odd branch before the down-

sampling is not z but z-1, and therefore differs from the structure of Figure 1.8.

Nevertheless, it does not affect our calculations.

It should be also noted that the notation used to discriminate between the forward

and reverse filters in Section 1.2.2 is absent here. For consistency with the

discussion in Section 1.2.2, the anti-causal and causal parts of the filters should

actually be denoted by , and , respectively. Since our

analysis here focuses only on forward path, a simpler notation is preferred for the

present discussion.

)(zPa
k

)
)(zU a

k

)
)(zPc

k

)
)(zU c

k

)

The filters can be given as :

 (3.5a) () zpzpzpzP k

k

k

k

l
l

l
l

a
k 11 −+−− +++= L

 (3.5b) () k

k

k

k

g
g

g
g

c
k zpzpzppzP −+−

−
− ++++= 1

1
1

10 L

 (3.5c) () zuzuzuzU k

k

k

k

m
m

m
m

a
k 11 −+−− +++= L

 (3.5d) () k

k

k

k

f
f

f
f

c
k zuzuzuuzU −+−

−
− ++++= 1

1
1

10 L

For prediction and update steps in the above equations we assume that:

60

 (3.6a) 12,1,0 −= pNk K

 (3.6b) 12,1,0 −= uNk K

respectively, and

 (3.7a) 12,1,0for0 −≠== pkk Nkgl K

 (3.7b) 12,1,0for0 −≠== ukk Nkfm K

In order to realize a non-causal system which has computations based on future

samples, we have to buffer a proper amount of the signal until no future sample is

required to compute the earliest output sample. Mathematically speaking, we use the

causal versions of the filters instead of the original ones.

 Let and U be the causal versions of and of Figure 1.8,

which can be obtained by multiplying the transfer functions by the least possible

delays and respectively:

()zPk
~

klz−

()zk
~

kmz−

)(zPk

)
)(zUk

)

 () (PzP k ⋅ (3.8a))zz k
l

k

)
= −~

 (3.8b) () ()zUzzU k
m

k
k

)
⋅= −~

Figure 3.3 shows the realization of the structure with causal filters. It is apparent

that the amount of delay applied to make the filter causal should also be applied to

the unfiltered side.

61

()zU
uN 1

~
−

0lz−

ox

()zP
pN 1

~
−

0lz−

0mz−

0mz−

()zP0
~ ()zU0

~

1−− pNlz

1−− pNlz

1−− uNmz

1−− uNmz....

....

....

-

+ +

-

ex
nl

nh

Figure 3.3 Lifting realization with causal filters.

Note that in Figure 3.3 the delay lines are repeated at the filtered channel side in

order to synchronize the outputs of the stage. The taps for the anti-causal part of the

filters can be provided from these delay lines and thus no extra memory is needed

for calculation of and outputs. To compute the outputs of the

causal parts of the filters, and , we need more g

()zPz a
k

lk−

z−

()zUz a
k

mk−

()z z−Pc
k

lk ()zU c
k

mk
k and fk delay

elements. The required delay line can be provided by applying and to the

branches placed at the outputs of prediction and update steps respectively as shown

in Figure 3.4.. In figures 3.3 through 3.6, square boxes represent delay elements.

kgz− kfz−

The delays and can be combined with the delays of the next lifting step

(the larger ones absorb the smaller ones) which results in the structure in Figure 3.5.

kgz− kfz−

62

... ...

...

...

...

...

...

...

...

....

....

....

....
lk

lk

gk
fk gk+1

mk

mk lk+1

lk+1

-

+

-

Pk Uk Pk+1

xe

xo

Figure 3.4 Delay lines of lifting implementation

We define γk and φk as :

 (3.9a) { kkk mg ,max=φ }

}

)

 (3.9b) { 1,max −= kkk flγ

Then, the total memory required to implement filtering is found to be:

 (3.10) () (∑∑
==

+++=
N

k
kk

N

k
kk lm

00
γφµ

where,

 { }pu NNN ,max= (3.11)

63

.... ...

... ...

...

...

...

....

....

....

lk

γk
φk+1 γk+1

mk

lk+1

-

+

-

Pk Uk Pk+1... φk

Figure 3.5 Modified delay line structure

Clarification of some of the more obscure points in these calculations may be in

order:

Let a delay of z-1 be inserted into both the even and odd branches just after the

down-samplers (the leftmost side in Figure 3.3). The introduced delay at the even

branch can be reflected to the input side of the down-sampler as z-2 . The one at the

odd side can be merged with , and all the delays along the path can be

rearranged so that each delay block donates to or accepts from the adjacent block a

delay of z

0lz −

-1. Cancelling the delays at the input side we end up with a system similar

to Figure 3.3. . Although we have the same predict and update filters, lk�s and mk�s

have been modified as follows:

 1 (3.12a) +=′ kk ll

 1 (3.12b) −=′ kk gg

 1 (3.12c) −=′ kk mm

 1 (3.12d) +=′ kk ff

64

 (3.12e) { kkk mg ′′=′ ,maxφ }

}

)

 (3.12f) { 1,max −′′=′ kkk flγ

 (3.12g) () (∑∑
==

′+′+′+′=′
N

k
kk

N

k
kk lm

00
γφµ

As far as the values of the output samples are concerned, disregarding the delay

introduced, we can say that �causality degree�s of the filters change depending on

the type of input. For the one in Figure 3.3, predict filters are �more causal� and the

update steps are �less causal�, while, for the modified structure, update steps are

�more causal� and the predict steps are �less causal�. As an example the 5/3 filter

of [15] which is used in our hardware can be given.

The predict and update steps of 5/3 filter are as follows:

 () (11
4
1,11

2
1

00 == UP)

0

2γ

 (3.13)

and

 1 (3.14) ,1 == up NN

For the input mode depicted in Figure 3.3, i.e. where odd samples lag even samples;

l, m, γ, φ values are as follows:

 (3.15a) ,0,1,0,1,1,0 1000000 ======= γγφfgml

 (3.15b) 10000 =++++= γφµ ml

and for the modified input mode i.e where odd samples lead even samples; l, m, γ, φ

values are as follows:

65

 (3.16a) 1

3

,1,0,1,0,0,1 1000000 =′=′=′=′=′=′=′ γγφfgml

 (3.16b) 10000 =′+′+′+′+′=′ γγφµ ml

Note that in (3.12) the delay required to split the signal into even and odd parts is

not included. Furthermore, one more delay may be needed if the odd and even

signals are to be combined at the end of the filtering.

Both structures for the 5/3 filter are shown in Figure 3.6a and Figure 3.6b.

66

+
+

1/4

-

+

1/2

xe

xo

ln

hn

(a)

+ +

1/2

1/4

-

+
xe

xo

ln

hn

(b)

Figure 3.6 Lifting structure of 5/3 filtering. (a) Odd samples lag even samples, (b)

Even samples lag odd samples.

From the above discussion it is apparent that the even-lagging system needs less

storage than the odd-lagging system; therefore it is preferred. However the low-pass

(even) outputs and high-pass (odd) outputs do not begin and end at the same time;

odd outputs begin one sample later than the even outputs. For the purpose of parallel

processing at the next stages of filtering, filters can be arranged so that one sample

earlier version of the high-pass outputs which are already in registers can be

taken as outputs.

1−uNf

67

3.5 Symmetric Extension in Lifting Steps

The main purpose of using symmetric extension is to maintain the symmetry of the

samples around the boundaries even after filtering. This is needed for perfect

reconstruction. Symmetry of filtered coefficients is possible in the case where

symmetric filter kernels are used [52]. In this thesis we consider only the odd-length

filter kernels applied to even length signals. Other combinations of filter kernels and

signal lengths are beyond the scope of this work.

For an even-length signal which is to be filtered with odd-length filters whole point

extension should be applied at the boundaries (see Figure 3.7). One way of applying

symmetric extension is to copy the required amount of beginning samples ahead of

the signal and ending samples after the signal before feeding it to the filters.

However, copying existing samples may constitute a problem in terms of memory,

especially when filtering along the vertical direction. Since each delay buffer has the

same length as a row, a number of rows equal to half the filter length should be

stored.

x7 x6 x5 x4 x3 x2 x1 x0 x1 x2 x3 x4 x5 x6 x7

(a)

x7 x6 x5 x4 x3 x2 x1 x0 x1 x2 x3 x4 x5 x6 x7x0

(b)

Figure 3.7 Symmetric extensions: (a) Whole point (b) Half point

68

A better way of applying symmetric extension is to use the memory already

available in the filters. The required extension of the signal, which is half the length

of the filter, can be copied symmetrically as the signal is received in. At the

beginning of the signal, while the incoming samples are shifted in from one end of

the filter, they are also copied symmetrically to the other end. Filter buffers are

filled up as the first output is to come out and thus it is computed with the valid

values in the filter. At the end of the signal the samples inside the filter are fed back

to the filter in order to compute the last output samples [50].

This method applies to not only convolution filters, but also to the lifting steps

implementations as well [50]. Each lifting step can handle its own symmetric

extension individually according to the beginning and ending of the signal it

receives from the previous step. Figure 3.8 shows which types of symmetric

extension should be applied to the odd and even parts of the even-length signal in

order to achieve the equivalent whole-point extension which should be used in the

convolution filter. Even samples are required to be whole-point extended at the

beginning of the signal and half-point extended at the end of the signal, while odd

samples are required to be half-point extended at the beginning and whole-point

extended at the end.

x1

x0
x1

x2 xN-2x2
xN-1

xN-2
xN-3

...
xN-3...

whole point

whole point

half point

half point

...

......
...

Figure 3.8 Application of symmetric extension to even-length signals.

69

With this method, the need of extra memory for storing copy samples is eliminated.

However, a main drawback of such a system may be the added time required to

complete the filtering due to copy samples:

Note that the filter buffers are not fully utilized at the beginning and ending periods

of the signal in such a system. i.e. a useful output is not always produced for every

shift of samples. This is not a problem for the processing of a single row/frame

where the signal begins and end once. However, if a sequence of row/frames are to

be processed with a fully utilized input transmission, this structure will lack the time

to process the boundary data. The required gap in terms of row time between the

input tiles can be calculated with a similar method as in (2.5).

In order to provide the full utilization of the filter, a modified structure is proposed,

where instead of duplicating or feeding back the genuine samples at the boundaries,

multiplexing the proper samples into the MAC operator is used. The idea is to

emulate the symmetric extension at the input of the MAC operators. This

corresponds to a particular application of time/location varying filters instead of

fixed filters. Time varying filters for finite signals are explained in detail in [53]

With this scheme, the filter buffers are only used to apply straight shifting on the

received samples. This also provides a regular buffering pattern and simplifies the

read back operation of the tiling module.

It is possible to construct a lifting circuit with the method explained above, which is

equivalent to any convolution filtering with symmetric extension where even-length

signals and symmetric odd-length filter kernels are used.

70

............

xl-2n+2xl-2n xl-2 xl-2 xl-2n+2 xl-2n x2n-4x2n-2 x2 x0 x2n-2 x2n...

end of signal i begin of signal i+1

geniune samples copy samples

even :

geniune samplescopy samples

x1xl-1odd :

Figure 3.9 Symmetric extension applied to consecutive signals.

It was mentioned earlier that the required type of symmetric extension is whole-

point for odd-length filters and even-length signals. Since lifting of odd-length

symmetric filters lead to even-length symmetric lifting filters and even-length filters

lead to odd-length symmetric filters [13], we always deal with lifting filters which

are even-length. Let the filter length of such a filter be 2n and the length of the

signal be l. As it is apparent from Figure 3.9, in order to compute the first odd

output sample, n+1 genuine samples are needed while n genuine samples are needed

to compute the last sample of the previous signal. Assuming that the copy samples

can be obtained by multiplexing, at time t (where the last output of prior signal is

released) the filter should be storing n+1 genuine samples from the prior signal, and

at time t+1, (where the first output of the latter signal is released), it should be

storing n genuine samples from the latter signal. This guarantees that the filter

should at most �excluding the most recently received sample- store (n+1)+n-1=2n

samples at a given time. Figure 3.10 shows the buffer content at the joint of two

consecutive signals where l=16 and 2n=8. Main entries denote the index of the

contained sample where superscript denotes the multiplexed data to the

computation units. Shaded numbers belong to the prior signal.

71

014 212 410 68 8 10 12 14

014 212 410 6 8 10 1214

014 212 4 6 8 1012 14

014 2 4 6 810 12 14

0 2 4 68 10 12 14

0 2 46 8 10 12 142

0 24 6 8 10 1214 142

02 4 6 8 106 124 142

79 11 13 15 1 3 5

Ie
D0

Io

D1

D2

D3

D4

D5

D6

t

Figure 3.10 The buffer content at the joint of two consecutive signals where l=16

and 2n=8.

With the added boundary handling properties, filter architectures become more

complex; they involve state machines which interpret the row/tile beginning and

ending signals and multiplexing circuitry, and hence diverge from being a

combination of dummy tap delay lines and MAC operators. Multiplexing schemes,

signal beginning/ending and memory access controls can be combined in a

processing block called control unit and the module handling weighted sum

computations can be referred to as computation kernel. The elements of a filter is

shown in Figure 3.11.

72

Delay
Element

µ

Computation
Kernel

Control
and Mux

Unit

Delay
Element

0

OutputInput

Delay
Element

1
...

Figure 3.11 The elements of a filter architecture for lifting.

3.6 Tiling

In Section 2.3 it was explained that the memory size of most 2-D DWT

architectures is dominated by the vertical filter requirement and is O(LN) bounded.

Since the processing of n1 × n2 size images would require an excessively large

vertical filter, the original image is tiled into smaller (n1/k1) × (n2/k2) size tiles

() as described in [54][10]. Z∈21, kk

Although reducing the size of the vertical filter storage dramatically, tiling

introduces the need to store a portion of the image locally before processing can

begin. For an image of size n1 × n2 and tile sizes of (n1/k1) × (n2/k2), a (1/k1) portion

of the image should be accumulated before one tile can be formed. Tiles are

therefore formed in groups of k2 for each n1 × n2 size image. Since the processing of

any given group of tiles overlaps with the accumulation of the next group, a (2/k1)

portion of each image must be stored locally at any given time. This also introduces

a latency equal to the time elapsed to accumulate a (1/k1) portion of the image. Note

that the maximum possible number of tiles to be fetched from storage

73

simultaneously is equal to the number of tiles in a group. Therefore more than

P=Mk2 number of parallel processing units are redundant.

The amount of data buffered before beginning computation (and hence the delay

introduced due to buffering) in terms of pixels is:

1

21

k
nMnS = (3.17)

As explained above, the local storage size to perform tiling is 2S. The latency and

local storage requirement can be reduced by half by receiving the images divided

into four quadrants as shown in Figure 3.12. This, however, requires some minor

modifications to the CCD camera read-out circuitry.

Each frame is divided into tiles forming a tile matrix as shown in Figure 3.12.

The tile , which is on the rth row and sth column of the qth quadrant (if

quadrants are used) of the tile matrix, is assigned a global-tile index g and is equal

to a portion π of a �global-tile�, T

iX
(

srq ,,
iX

(

g

π

g (π=0..P-1). Since the hardware performs

decoupled and parallel operations on T �s, instead of mentioning T �s

individually, for simplicity we can assume the concatenation T

g

π

g

π

g as a vectorized

form of T , which consists of P×B bits , such as :

 (3.18)

























=

−

∆

g

P

g

g

g

T

T

T

1

1

0

LL

LL

LL

M
T

A notation similar to that of Tg is used for all intermediate and output frames in the

remainder of this discussion.

74

s

r

i

q=3

q=0 q=1

q=2

srq
iX ,,(

n1/k1

n2/k2

Figure 3.12 Application of tiling to the image components. Each frame is

divided into tiles forming a tile matrix. The tile , which is on the rth row and

sth column of the qth quadrant (if quadrants are used) of the tile matrix, is assigne

iX
(

srq
iX ,,(

d

a global-tile index g and is equal to a portion π of a �global-tile�, Tg (π=0..P-1).

For a frame size of n1 × n2 and tile size of (n1/k1) × (n2/k2), with M spectral

components and P parallel processing units, there are two cases:

i. without quadrants:

)1..1,0 and 1..1,0(12
2 −=−=



 ++

= kskr
P

iMsMrkg (3.19a)

 (3.19b))(modfor),(),(2
, PiMsMrkyxTyxX g
sr

i π
π

≡++=
(

ii. with quadrants (note that k1 and k2 should be even) :

75

()

)(mod24for

),(),(

3,2,1,0 1..1,0 1..1,0

24

221

,,

12

221

PiMsMrkMrqkk

yxTyxX

qkskr
P

iMsMrkMrqkkg

g
srq

i

π

π

≡++⋅+⋅

=

=−=−=





 ++⋅+⋅

=

(
 (3.19c)

Tiles are processed in the global-tile order : T0,�, Tg, Tg+1,� TZ-1, where Z is the

number of global-tiles, and it is equal to :

 



=

P
MkkZ 21 (3.20)

After S pixels have been received the reading of tiled image data can begin reading

and writing is continued simultaneously until the entire image has been received.

The direction of reading is either from top to bottom first and from left to right

(column-major order) or from left to right first and from top to bottom (row-major

order). Which direction of read back results in a smaller memory requirement

depends on the tile dimensions. Reading back along the smaller side results in a

smaller internal memory requirement and therefore will be preferred. From this

point on it is assumed that
2

2

1

1

k
n

k
n

≤ , and reading back is performed along the

vertical direction. After writing is completed, the last S pixels are read from the

memory.

Since Reversible Color Transform (RCT) [19] requires R, G, and B components, it

should be applied before the image data is buffered for P<3. However for P≥3,

RCT can be also applied after tiling.

Since for each write operation a read-back is performed, this scheme requires a

storage-processor link with a bandwidth which is twice the bandwidth of the image

input stream.

76

Symmetric extension may be applied at the boundaries of the tiles, since it

eliminates the high frequency content inherent in boundary treatments such as zero

padding, or circular convolutions and makes perfect reconstruction possible for

symmetric filters. In addition to the architectural complexities introduced to the

system (which are discussed in Section 3.5), performing 2-D DWT on tiles also

introduces blocking artifacts, which are present as similar in traditional JPEG

images [55] at the boundaries whenever a lossless filtering or recovering procedure

is not preferred. Especially when sub-bands are discarded and further quantization is

applied, these artifacts may result in considerable perceptual quality degradations

[54] [55]. This is due to the fact that the boundary coefficients are computed with

false values obtained by symmetric extension. However, if instead of reflection

pixels the genuine boundary pixels are used such degradation will never occur.

Moreover, the smaller tile sizes can be chosen in order to reduce the internal

memory. To avoid such degradation, the overlap reading method can be applied.

Without the application of symmetric extension the values at the boundaries can be

obtained by reading extra area (extension area) around each tile which is already

available in off-chip storage. This method also reduces the logic in the filters that is

due to symmetric extension (see Section 3.5).

Let a and b be the extension needed at the beginning and ending boundaries of a

row respectively., i.e. at least one of and depends on and at least one

of

()jg0
()jh0

()1−
−

j
ah

()j
rg 12− or ()j

rh 12− depends on for a row length of r. Figure 3.13 shows the one

dimensional case of a filtering operation. For the sake of illustration let us assume

r=16, a=2 and b=1, which is the case for a lifting implementation of the 5/3 filter

[15]. For the odd-length symmetric filters a+b=l-2 where l is the length of the

longer filter.

(1
1

−
−+

j
brh)

77

X
X

XXXXXXXXXXXXXX

X

XXXXXXXXXXXXXXXX

X

X

XX

X

XXXX

X

XXXXXXXX

XXXX

XX

X X X X X X X X X X X X X
X X X X X X

X X X

X

X X
X

X
X

X X

X

X
X X

X
X X

X

X

X X X X X
X X X

X

X X
X

X
j=1

j=2

j=3

j=4

Xi
q,r,s(x0,y)Xi

q,r,s-1(x0,y) Xi
q,r,s+1(x0,y)Xi

q,r,s-2(x0,y)

Figure 3.13 Overlap reading for one-dimensional transform for r=16, a=2 and b=1

The overall number of extra reads performed due to overlap reading for a 1-D J

level transformation is :

 (3.21) () ∑
=

−⋅−=+=
J

j

jleee
1

1
21 22

Figure 3.14 shows the overlap reading for 2-D wavelet transform.

Reading extra pixels from storage results in a bandwidth expansion between the

storage and the processing unit. Note that the required bandwidth depends on the

location of the tile which is being processed since overlap reading is not applied for

the boundaries coinciding with those of the entire frame. However the maximum

expansion factor in number of reads performed can be calculated as:

 







+⋅








+=

2

2

1

1
ext 11

n
ek

n
ekR (3.22)

and the overall bandwidth expansion factor is

78

2

1 extR+ (3.23)

For example, if we would like to apply 3 levels of 5/3 transform to tiles of size

256×256, the expansion factor is only 1.09. If we would like to apply 5 levels of

transform, this time the expansion factor becomes 1.43, which may be intolerable

for our application. Furthermore, if we would like to apply 9/7 transform of 5 levels

to tiles of size 64×64 (we may be concerned about the internal storage size), the

expansion factor turns out to be 10.14, which results in a gigantic read/write

requirement.

With the proposed method blocking artifacts are eliminated. However, for smaller

tile sizes, larger levels of decomposition, or longer filter kernels, the bandwidth

increases rapidly and the method loses its practicality.

Xq,r,s

Xq,r+1,s Xq,r+1,s+1

Xq,r,s+1

Xq,r-1,s+1Xq,r-1,sXq,r-1,s-1

Xq,r,s-1

Xq,r+1,s-1

e1

e2

e2e1

Figure 3.14 Overlap reading for two dimensional transform

79

3.7 Cascade Filter Structure

Various implementations have been summarized in Chapter 2. An FPGA

implementation of the 2-D wavelet transform processing large image frames may

exhibit a large routing network due to access to distributed RAM blocks which are

usually distributed over the entire FPGA IC. A centralized approach to RAM access,

by means of a single control unit that manages all levels sub-band generation, or

that has complex scheduling algorithms or intermediate sub-band multiplexing may

also introduce excessive logic to the system. Moreover, lifting structures which

ensures considerable memory reductions and signal boundary handling which is

inevitable for most applications may pose a problem in terms of circuit complexity

in such architectures [39][57]. A more straightforward approach to the problem,

which uses cascaded 2-D filtering blocks each controlling its own memory space in

parallel is a more appropriate choice for resolution levels up to a certain number. A

similar approach is discussed in [45] as a pipelined approach. However the

discussed architecture does not use RAM blocks but shift registers. In our

application, though, memory usage and independent memory space for each level is

essential.

Figure 3.15 shows the proposed cascaded DWT structure. jth resolution level is

computed by the 2-D DWT module at the jth stage. Except for their directions of

filtering, both the horizontal and the vertical filtering perform the same type of

computation. In hardware implementations, however, the vertical filter requires

several whole rows to be stored in memory during processing. Vertical filtering

thus, consume much more area than the horizontal filtering. Besides, filters of

vertical and horizontal directions have some structural differences in that the

vertical filter utilizes internal RAM storage whereas the horizontal filter uses only

shift registers.

80

Computation
Kernel

CM(h)

(µ+1)P shift
registers

Computation
Kernel

CM(v)

RAM Block

Computation
Kernel

CM(h)

Computation
Kernel

CM(v)

RAM Block

hor1ver0hor0 ver1 ...

...

...

hor2

LL0
g(x,y)

Lg

Hg

LH1
g, HL1

g, HH1
g

LL1
g

LL2
g

LH2
g, HL2

g, HH2
g

(LL1)Lg

(LL1)Hg
stage 1 stage 2

to stage 3

(µ+1)P shift
registers

Figure 3.15 Proposed cascaded filter architecture. jth resolution level is computed

by the 2-D DWT module at the jth stage. Row beginning/endings are asserted by

the signal horj. Tile beginning/endings are asserted by signal verj.

(LL)j-1
i

Horizontal
Filtering

(LL)j-1Li (LL)j-1Hi

(N/2j-1) x (N/2j-1) (N/2j) x (N/2j-1) (N/2j) x (N/2j-1)

Figure 3.16 Horizontal filtering and decomposition of LL subband

3.7.1 Horizontal Filter

This block is the part which handles the filtering along the horizontal direction. The

term �horizontal direction� implies that filtering is along the �rows�. Since what the

filter receives as �rows� may be along any direction, from the perspective of the

81

whole image, this module may actually be processing �vertical� filtering. (see

Section 3.6)

The horizontal filter operates on the pixels in one row of the input sub-band. As

shown in Figure 3.16, horizontal filter at level j divides the input sub-band (LL)j-1
i

which is of size (N/2j-1) × (N/2j-1) into (LL)j-1Li and (LL)j-1Hi frames of size (N/2j)

× (N/2j-1), where

1

1

k
nN = (3.24)

For the sake of simplicity, it is assumed that the image and tile sizes are chosen such

that (n1/k1) < (n2/k2).

To comply with the JPEG 2000 standard [19] symmetric extension may be applied

at the row boundaries.

Row-based acquisition of input frames does not pose a problem in horizontal

filtering of the incoming rows, since they can be filtered as they are received. Each

row can be filtered independently of adjacent rows with boundary manipulation.

This requires a small time gap between two consecutive rows, however for

resolution levels other than the first level this gap is inherent. For the 0th level �i.e.

for the input time variant boundary filtering can be used (see Section 3.5).

The row length is programmable. Input row length to a horizontal filter at any level

can be of any even number greater than or equal to 4 (This requires that the first

level input length should be multiple of 2J greater than or equal to 2J+1). As it was

mentioned earlier, row length determines the memory requirement for the system.

Therefore it is upper bounded with the memory available. Since the row length is

not a fixed value, horizontal filter needs to be aware of the row beginning/endings.

This is done by the signal horj. When this signal is high the row transmission

occurs. This method provides a design simplification since the horizontal filter in

each level is identical, and has no counters.

82

3.7.2 Vertical Filter

This block receives the low-pass and high-pass data sequences and filters them

vertically. Like the horizontal filter, this module also uses lifting steps to filter the

data.

The vertical filter operates on the rows of the input block. Horizontal filter at level j

divides the input blocks (LL)j-1Li and (LL)j-1Hi which are of size (N/2j) x (N/2j-1)

into sub-bands (LL)j
i , (LH)j

i , (HL)j
i and (HH)j

i which are of size (N/2j) x (N/2j) as

shown in Figure 3.17.

In vertical processing, row-based acquisition requires whole rows to be treated as a

single pixel. This imposes a memory requirement which is proportional to the row

length and this memory requirement is therefore much larger than that of horizontal

filtering.

Vertical
Filtering

(LL)j
i

(N/2j-1) x (N/2j-1)
(N/2j) x (N/2j)

(LL)j-1Li (LL)j-1Hi

(LH)j
i (HH)j

i

(HL)j
i

(N/2j-1) x (N/2j-1)

Figure 3.17 Vertical filtering and decomposition of (LL)H and (LL)L subbands.

83

• •• • • •

•• •
∇ ∇ ∇∇ ∇ ∇

∇ ∇

•

∇

•

input

: LLj
g-HLj

g

∇
• • • • • • • • • • • • • • •

∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇

:
LHj

g-HHj
g

level 1

level 2

level 3

...

...

...

...

(a)

•

•
∇

∇

input
•
∇level 1

level 2

level 3

• •

•
∇ ∇

∇

• • • •
∇ ∇ ∇ ∇

• •

•
∇ ∇

∇

• • • •
∇ ∇ ∇ ∇

• •

•
∇ ∇

∇

• • • •
∇ ∇ ∇ ∇

• •

•
∇ ∇

∇

• • • •
∇ ∇ ∇ ∇

...

...

...

...

...

...

...

...

Tile Tg Tile Tg+1

(b)

Figure 3.18 Output timing diagrams of three cascaded 2-D filters. (a) for g=0, (b) for

0<g<Z

In Figure 3.18, output timing diagrams of 3 cascaded 2-D filters are illustrated for

the case when the horizontal and vertical filters have the architecture as explained in

Section 3.4. Figure 3.18a illustrates the tile g=0 and 5.18b illustrates 0<g<Z.

For the sake of illustration, the integer 5/3 filter, which provides a better

demonstration of the case, is shown. Each box represents a row of data from sub-

bands belonging to the corresponding resolution level. A row from resolution level j

contains N/2j pixels and each level contains N/2j rows.

84

Figure 3.18a shows the case for the first tile. Each level receives its input from the

previous level -say input level- and releases its data after a delay of d=2 rows (see

Section 3.4).

In Figure 3.18b the joint of two consecutive tiles is illustrated. It is apparent that the

DWT stages do not finish with a tile at the same time. As long as the input rows

keep arriving at a stage, the DWT module at that stage maintains its outputting

scheme regardless of the tile beginning/endings. Symmetric extensions are

performed by location variant filters which use the multiplexing among the buffers

explained in Section 3.5. Hence the buffers are fully utilized and there is no need for

gaps between the adjacent tiles. The shading of each box in Figure 3.18b denotes to

which tile the rows belong.

Like the row length, the column length is also programmable. Input column length

to a level of decomposition may be any number greater than or equal to 4. Since the

columns are not constrained, unlike the rows, they can be infinitely long. Hence, the

architecture is suitable for space imaging applications employing linear sensors

which scan the earth�s surface generating an unbounded data in vertical axis.

Vertical filter needs to be aware of the tile beginning/endings in order to handle

symmetric extension. This is done by the signal verj . When this signal is high,

row transmission occurs. Low to high transition indicates a tile beginning whereas

high to low transition indicates a tile ending.

3.7.3 Memory Requirements

The system discussed in detail in sections 3.4-6, 3.7.1-2 uses row-based processing

in which a minimum amount of data to compute the output is stored in buffers.

Figure 3.19 shows the part of the image which is inside the 2-D DWT processor.

85

�������
�������

����
����

��
�

level 0

level 1

level 2

level 3

...

Figure 3.19 Part of the image allocated in filter memories.

Since the memory required to compute a frame is the same for every π , (0≤ π

<P-1), one can deduce that the memory required to compute a single frame is :

π

F

 }Mem{1}Mem{ F
P

F =
π

 (3.25)

where F is the concatenated frame and P is the number of parallel processing units.

Therefore only computation of concatenation frames are taken into consideration.

The memory required by the horizontal filters to compute (LL)j-1Lg and (LL)j-1Hg in

terms of pixels is independent of the level and is:

 (3.26) () Pm h
j ⋅+= 1)(µ

and the memory required by the vertical filters to compute (LL)j
g, (LH)j

g, (HL)j
g

and (HH)j
g in terms of pixels is:

86

 () jv
j P

k
nm −⋅⋅+⋅








= 1

1

1)(21µ (3.27)

where is the total memory required to implement the lifting steps defined in

(3.12), and

µ

1

1

k
n is the smaller side dimension of the tiles. The term (µ+1) is due to

the fact that one more delay element is used in order to split the signals.

The total memory requirement can be found by summation of all and for

all the levels 1 through J :

)(h
jm)(v

jm

()

() P
k
n

mmm

J

j

j

J

j

h
j

v
j

⋅+⋅







+=

+=

∑

∑

=

−

=

112
1

1

1

1

1

)()(

µ
 (3.28)

3.7.4 Output Bandwidth Considerations

The link between the 2-D DWT processor and the forthcoming units such as

memory blocks for coefficient storage or CPUs handling entropy coding may not be

able to accommodate the high-bandwidth output generated by the DWT processor.

The scheme in Figure 3.18 results in a �burst-full� output generation, i.e., all stages

are in silent mode and in transmitting mode during the same time intervals.

Therefore, although the amount of data received and produced is the same (dynamic

range expansion is not taken in to account), the output bandwidth turns out to be

larger than that of input and may exceed the output link capabilities. For some cases,

the high output bandwidth may require large buffers in order to compensate for the

stall periods of the output link.

The maximum bandwidth requirement within a row transmission, i.e. at the instance

where stages are transmitting, for the scheme discussed in previous section can be

given as :

87

 in
1

out 2
3

2
1 BB

J

j
jJ ⋅







+= ∑

=

 (3.29)

which converges to 3Bin for large J. We can solve this problem and eliminate the

triple bandwidth requirement with some modifications to the cascade filter structure.

Due to the sub-sampling by two present in sub-band decomposition, each resolution

level can be interspersed between the data of the parent resolution level. The sub-

bands can be scheduled so as to exploit this property. With a modification in

processors of each stage accept the last one a burst-free transmission can be

achieved.

•

•
∇

input
•

∇level 1

level 2

level 3

• •

•
∇ ∇

∇

• • • •
∇ ∇ ∇ ∇

• •

•
∇ ∇

∇

• • • •
∇ ∇ ∇ ∇

• •

•
∇ ∇

∇

• • • •
∇ ∇ ∇ ∇

•

•
∇ ∇

∇

• • • •
∇ ∇ ∇ ∇

...

...

...

...

...

...

...

...

Tile Tg Tile Tg+1

•
∇

∇

• : HLj
g

:
LHj

g-HHj
g

-LLJ
g-HLJ

g

Figure 3.20 �Burst-free� output timing diagram for the modified structure

Note that in the natural output scheme illustrated in Figure 3.18 sub-band rows

(HH)j
g{x0,y} and (LH)j

g{x0,y} are computed at the same time with (LL)j-

1
g{2x0+d+2,y} and (HL)j

g{x0,y} is computed at the same time with (LL)j-

1
g{2x0+d,y} . If (HH)j

g , (LH)j
g and (HL)j

g (excluding the ones in the last level) are

scheduled so that these sub-bands are released as (LL)j-1
g{2x0+d+1,y} is computed,

we end up with an output transmission which is burst free as shown in Figure 3.20.

For the lifting structures which have Np=Nu (see Section 3.4) (HH)j
g and (LH)j

g can

be supplied earlier than their natural scheduling time from the memory, however

(HL)j
g requires an additional memory of a unit row size. The modified structure will

have the memory requirement of :

88









=

<≤⋅⋅





 +⋅









=′
−

Jjm

JjP
k
n

m
v

j

j
v

j
)(

1

1

1
)(

,02
2
3

µ
 (3.30)

and,

 () () ∑
−

=

−− ⋅⋅





 +⋅








+⋅⋅+⋅








+⋅+⋅=′

1

1

1

1

11

1

1 2
2
3211

J

j

jJ P
k
nP

k
nPJm µµµ (3.31)

The new maximum bandwidth over a row is :

 inout 2
3 BB ⋅=′ (3.32)

3.8 Precision and Channel Constraints

As it is explained in Section 3.2 input data to the transformer is B- bit signed having

zero offset. Unfolded structure makes it possible to assign different precision for the

computation of each sub-band. Each sub-band { })()()()()(,,, jjjjj HHHLLHLL∈β , is

computed in bit precision, where)(jB
β

Γ+

 (3.33))()()(jjj G
βββ

+Χ=Γ

)(jβ
Χ accounts for the resultant nominal gain of the filtering operations involved in

computation of β(j) . For the 5/3 filter the value of is :)(jβ
Χ

 (3.34) jjjjj ∀=Χ=Χ=Χ=Χ ,2 and,1,0)()()()(HHHLLHLL

)(jG
β

 is the number of extra guard bits in order to prevent any computation to fall

beyond the nominal range bounds. A typical value for G is 1, or more

conservatively G=2 [10].

89

Since for achieving high rates of compression quantization is already applied to

coefficients, some bits can be omitted prior to the coding process (resulting a

uniform quantization in coefficients) for the following reasons:

i. The channel bandwidth between DWT processor and entropy coder or the

coefficient storage may not be high enough for the throughput requirements,

ii. Large coefficient storage may not be feasible for the system

configuration,

iii. Rearrangement of coefficients in order to store B+Γ bit data compactly in

multiple-of-B bit storage unit may require excessive amount of logic or

buffers in reconfigurable logic.

Applying uniform quantization by discarding qβ LSB�s of the coefficients is

equivalent to setting the of the entropy coder [19] to : max
βK

 (3.35) 1max −−Γ+= βββ qBK

Note that in the above discussion it is assumed that the input data is not color

transformed. For the case of color transformation, input precision for particular

components should be taken as B+1 as explained in Section 3.3.

High frequency sub-bands HH, LH and HH usually consist of very small

coefficients centered around zero. Therefore these sub-bands can be transmitted in a

number of bits smaller than B+Γ by clamping rather than quantizing, or both can be

applied. With this method risking some large coefficients to fall beyond the range,

we can get rid off the necessary quantization. The clamped and quantized

coefficients of sub-band β is expressed by :

90

















−<−

−>−

−≤≤





=

−+−

−+−

−+−+

11

11

11

22

,1212

,122
2

�

βββ

βββ

ββββ

β

θθ

θθ

θθ

β

β

β
β

β

q

q

qq
q

 (3.36)

where θβ is the new precision for transmission.

91

CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

This chapter is organized as follows: Section 4.1 presents the implementation of the

architecture that is explained in detail in Section 3. In Section 4.2 comparisons of

the architecture with the present architectures in literature and the comparisons of

the JPEG 2000 compression achievements are given. Section 4.3 presents the

simulation results obtained.

4.1 FPGA Implementation

The hardware is part of a JPEG 2000 compression system, designed as a payload for

a Low Earth Orbit (LEO) micro-satellite, which will be launched in September

2003. Figure 4.1 is a photograph of GEZGİN [23], the payload for JPEG 2000

image compression. The design is implemented on a XILINX XCV300EPQ240-6

IC (The large black package populated on the top left portion of the circuit board in

Figure 4.1) [47].

92

Figure 4.1 Photograph of GEZGİN, the image compression system which is

designed as a payload for a LEO micro-satellite, BILSAT-1. (The photograph is

provided with the courtesy of TÜBİTAK-BİLTEN).

4.1.1 Specifications

The hardware receives multi-spectral image data from four cameras (M=4)

simultaneously. The number of parallel DWT processors (see Figure 3.1) is 2 (P=2).

Since P<3, RCT is applied prior to the tiling step. For this application two different

tile sizes of 256 and 128 (n1/k1 = n2/k2 = 128, 256) are used. Although the tile size

can be run-time programmable, since commanding FPGA would result in a more

complex circuit board topology, it is preferred to be fixed for this application The

image streams are received in quadrants as explained in Section 3.6. The hardware

employs 3 levels of sub-band decomposition (J = 3) in which 5/3 integer filtering

[19] is used. In order to prevent burst output generation and the congestion at the

output link, a burst-free scheme is preferred. The local storage size required for the

tiling operation is S=2 MB.

The throughput requirement of the hardware is 80Mbps (Four cameras streaming

out at 20 Mbps each). The two DWT processors are operated at 20 MHz, however

interface modules are operated at 80 MHz in order to increase the RAM excess

93

bandwidth and to sample the input data properly. The filter is capable of handling

tiles up to 512×512 in size, but this is not preferred due to the increased requirement

for local storage and transform latency. The DWT processor block can be operated

at frequencies up to 40MHz. This results in a throughput capability of 160Mbps.

When the hardware operates at 80Mbit/s using 256×256 size tiles, the latency

introduced is 0.105 sec (compared to a total transmission time of

2048×2048×8/(20Mbit/s) = 1.678 sec).

4.1.2 FPGA Operation Environment

Figure 4.2 shows the block diagram of the image compression system. Transformed

data is transmitted through HPI link and stored in coefficient storage. Coefficients

are entropy coded by DSP which implements MQ coder of [19]. Operation mode of

entropy coder is �run-mode� with code-block size of 32 for tile size 256 and 16 for

tile size 128.

FPGA
XCV300E
(2-D DWT)

DSP
TMS320

(Entropy Coding
& Formating)

Comm
Controller SSDR

DSP EMIF Data Bus

Data
Memory

16MB

Buffer
Memory

2MB

Program
Memory

512K

IR

B

G

R

M
ul

tis
pe

ct
ra

l
C

am
er

as

Figure 4.2 Block diagram of the image compression system.

94

The XILINX FPGA communicates with LVDS interface chips from which it

receives the multi-spectral image data, SRAM buffers which are used to partition

the input image, DSP which implements the entropy coding and data formatting,

configuration memory from which the FPGA downloads its configuration data.

4.1.3 Design

This section introduces the design environment and synthesized chip.

4.1.3.1.Design Environment

The Design is implemented on a XILINX XCV300EPQ240-6 IC [47]. Before the

GEZGİN implementation, the hardware was implemented and verified on

CELOXICA RC1000a prototyping card [58], which populates a XCV2000E FPGA,

8MB SRAM and a PCI host interface. For the synthesis and front-end design

SYNOPSYS FPGA Express 2000 v.3.5 is used. Design entry is in Verilog HDL, a

hardware description language. Place & route is done on Xilinx Flow Engine

v3.3.08i. Simulations and tests are done in MATLAB and GEZGİN Test and

Decoder Suite v1.0 [67] provided with the courtesy of TÜBİTAK-BİLTEN.

4.1.3.2.Synthesized Chip

The top level design has 9 structural modules. These are : trig and reset module,

lvds interface, sequencer (buffering and tiling module), frequency adaptor,

reversible color transformer (RCT module), 2-D DWT module, HPI module, HPI

multiplexor, SRAM interface. All these modules are briefly explained in Appendix

A.

Figure 4.3 shows the schematic of the synthesized computation kernel explained in

Section 3.4 and 3.8, which implements four 10-bit adders and one 2�s

complementor.

95

Figure 4.3 The schematic of the synthesized computation kernel, which implements

four 10-bit adders and one 2�s complementor.

96

4.1.4 Overall Architecture

Figure 4.4 shows the floorplan of the design. The figure is provided to give an idea

about the logic placement of figures. Area consuming modules are contoured and

numbered. The hierarchy is not flattened during synthesis1.

1
1

2

2

2

3

4
5

5

6

6

6

7

7

8
8

8

9
9

10

1- Sequencer
2- Level1 Vertical
3- Level1 Horizontal
4- Level2 Vertical
5- Level2 Horizontal

6- Level3 Vertical
7- Level3 Horizontal
8- SRAM interface
9- Color Transform
10- HPI module

Figure 4.4 The floorplan of the design. Area consuming modules are contoured and

numbered

Table 4.1 shows the resources used in the DWT module and resources available in

the XCV300EPQ240 chip. Equivalent gate count for the design is 292,447.Table 4.2

shows the detailed resource usage of the hierarchical modules. Throughout the

1 The motivation for the non-flattened hierarchy has actually been a non-systematic failure of the
flattened hardware encountered during GEZGİN tests, which may possibly be due to the skew at
internal clock boundaries. Although the flattened hierarchy results in a slight reduction in resource
usage and a slight increase in minimum clock periods, it could not be verified, and therefore is not
reported in this work.

97

design maximum fanout constrained by 20. Table 4.3 shows the BRAM modules

required in each level for various implementations for n1/n2=n2/k2=N and P=2.

Shaded column corresponds to GEZGİN�s case. In Appendix B cells of the device

is explained.

Table 4.1 Resources used in DWT module and resources available in

XCV300EPQ240 chip

Resource Number Used Out of
Slices 2,778 3,072
Bonded IO Buffers 79 158
GCLKIOBs 2 4
GCLKs 4 4
DLLs 2 8
Slice FFs
 DWT
 Rest

1,784
679

1,105

6,144

LUTs (FGs)
 DWT
 Rest

4,473
2,963
1,510

6,144

Block RAMs
 DWT
 Rest

14
14
-

32

98

Table 4.2 Detailed resource usage of the hierarchical modules

Hierarchy FG CY DFF BRAM
sequencer 37 46 183 -
freq_adapt 16 - 28 -
lvds_inf 57 20 118 -
reset_module 13 - 8 -
ram_inf 42 - 104 -
rct 53 34 33 -
hpi_mux 99 - 75 -
hpi_mdl 1191 - 555 -
DWT - - - -
 Lev3 - - - -
 Hor 100 - 109 -

kernel1 44 49 - -
kernel2 44 49 - -

total 188 98 109 -
 Vertical 569 7 114 -

kernel1 40 47 - -
kernel2 40 47 - -
kernel3 40 47 - -
kernel4 40 47 - -
ram_module - - - 4

total 729 195 114 4
 total 917 293 223 4
 Lev2 - - - -
 Hor 100 - 109 -

kernel1 44 49 - -
kernel2 44 49 - -

total 188 98 109 -
 Vertical 612 - 72 -

kernel1 40 47 - -
kernel2 40 47 - -
kernel3 40 47 - -
kernel4 40 47 - -
ram_module - - - 5

total 772 188 72 5
 total 960 286 181 5
 Lev1 - - - -
 Hor 217 - 203 -

kernel1 44 49 - -
kernel2 44 49 - -

total 305 98 203 -
 Vertical 621 - 72 -

kernel1 40 47 - -
kernel2 40 47 - -
kernel3 40 47 - -
kernel4 40 47 - -
ram_module - - - 5

total 781 188 72 5
 total 1086 286 275 5
 total 2963 865 679 14
total 4472 1064 1784 14

99

Table 4.3 BRAM modules required in each level for various implementations for

n1/n2=n2/k2=N and P=2

J = 2 J = 3 Module
N=128 N=256 N=512 N=128 N=256 N=512

Level 1 5 5 10 5 5 10
Level 1 4 4 4 5 5 5
Level 1 - - - 4 4 4
Total 9 9 14 14 14 19

4.1.5 Power, Timing and Test Subjecting

The hardware uses three clock signals with periods of 12.50 ns (CLK80), 25.00 ns

(CLK40), and 50.00 ns (CLK20) each having 50% duty cycles. These clocks are

generated form the internal DLL circuitry provided on the IC. Table 4.4 shows the

clock groups and which hierarchical modules contain these groups. Note that the

Trig-and-Reset Module does not contain any of these clock groups since it is

clocked by the external system clock of 20 MHz. Maximum delays from one clock

group to itself and to the others, and the number of logic levels (routing and FG)

contained by the critical paths are tabulated in Table 4.5.

Table 4.4 Clock groups

Clock Group Modules

CLK20 HPI module (Partly), DWT
module, Freq. Adaptor (Partly)

CLK40 HPI module (Partly)

CLK80
LVDS interface (Partly), RCT,
Sequencer, SRAM interface,

Freq. Adaptor (Partly)

100

Table 4.5 Maximum path delays for clock groups

Path Constrained Value
(ns) Actual (ns) # Logic

Levels
CLK20 to CLK20 50.000 44.073 21
CLK20 to CLK40 25.000 14.701 3
CLK20 to CLK80 10.000 7.376 4
CLK40 to CLK20 - - -
CLK40 to CLK40 25.000 22.623 6
CLK40 to CLK80 - - -
CLK80 to CLK20 18.000 11.173 5
CLK80 to CLK40 25.000 8.368 6
CLK80 to CLK80 10.000 10.075 7

Power consumption of the device is estimated by using Power Estimator provided at

[59]. The parameters to the estimator is supplied larger than original values in order

to allow for a safety margin. Table 4.6 shows the estimated internal power

consumption in CLB logic, Block RAMs and DLLs, output power consumption in

output pins and the device quiescent power during processing time (i.e, while the

camera data reception occurs). The design and physical layout of the GEZGİN

module does not provide a means for measuring the power consumption of

individual ICs. The module is operated at 28 V and has a supply current of ~230 mA

and a power consumption of ~6.44 W during full processing. The power

consumption of the DWT hardware is estimated to be about 400 mW which is only

6% of the total system power. This estimation is also supported with the observed

current characteristics of the module during FPGA run-time.

101

Table 4.6 Estimated power consumption

Device Quiescent Power 36 mW
CLB Logic Power
 CLK20 Logic 55 mW
 CLK40 Logic 38 mW
 CLK80 Logic 184 mW
 Total CLB Logic Power 278 mW
Block SelectRAM Power 14 mW
Clock DLL Power
 DLL 1 @20MHz 6 mW
 DLL 2 @40MHz 10 mW
 Total Clock DLL Power 16 mW
Total Estimated Internal Power @1.8V 344 mW
Input/Output Power 56 mW
 SRAM Interface 40 mW
 LVDS Interface 0 mW
 HPI 16 mW
 Total Input/Output Power 56 mW
Total Estimated External Power @3.3V 56 mW
Total Estimated Power 400 mW

The GEZGİN module was subjected to exhaustive tests such as -20C to 50C

temperature cycling, vibration and continuous operation. It passed all tests.

4.2 Comparisons

4.2.1 Resource Used

Table 4.7 shows the resource used by 2-D DWT processor implemented for

GEZGİN [23] and various 2-D DWT architectures. For this comparison each

architecture is assumed to realize the 2-D DWT with 3 levels of sub-band

decomposition and to use 5/3 filters. Tile size is assumed to be 256 × 256.

Asymptotic internal storage requirement is given for large J. For J=3 the internal

storage requirement is 1344 pixels (for �burst-full� case) and 1536 pixels (for

�burst-free� case).

102

Table 4.7 Resource used by 2-D DWT processor implemented for GEZGİN and

various 2-D DWT architectures.

Architecture
Storage Size

(pixels)
(for large J)

Adders
(for J=3)

Multipliers
(for J=3)

Computation
Time (ccs)

Direct[32] 65536 5 3 4N2
SIMD[33] 131072 256-512 256-512 4JL

Parallel 1[37] ≈ 2944 20 12 ≈ N2
Parallel 2[37] ≈ 2816 24 18 ≈ N2

Masud[39] ≈ 2560 16 11 3/2 N2
Non-Separable[33] 2560 32 18 N2

Systolic-Parallel[32] 2560 18 12 N2+N
Row-parallel [40] 1536J 1024(FA) - ≈ N2+N

Lattice [41] 2590 16 12 N2/2
Level-by-Level[42] 18944 16 12 N2/2-0.67 N2
Semi-recursive[44] ≈65536 12 12 4N2/3

Quadri-Filter Folded [45] 2560 13 13 2/3 N2
Quadri-Filter Piple-lined[45] 2560 39 39 N2/2

Our Design 1536-1792 36 9 N2/2

4.2.2 JPEG 2000 Achievement

For this discussion the Peak Signal-to-Noise Ration (PSNR) is computed by the

formula:

MSE

12log20PSNR 10
−

⋅=
B

 (4.1)

where B is the bit-depth of the samples, which is equal to 8 in our application, and

MSE (mean square error) is calculated by:

 () ()[∑ ∑
−

=

−

=

−=
1

0

1

0

2

21

1 2

,�,1MSE
n

i

n

j
jixjix

nn
] (4.2)

for monochrome images and

 () ()[∑ ∑∑
∈

−

=

−

=

−=
},,{

1

0

1

0

2

21

1 2

,�,
3

1MSE
BGRm

n

i

n

j
mm jixjix

nn
] (4.3)

for RGB images.

103

where and is the original and the recovered image respectively. (jix ,))

(jix ,�

Figure 4.5-7 show the output obtained by conventional JPEG algorithm[60] and

GEZGİN output. Images on the right hand side are provided from the GEZGİN

engineering model1 with the courtesy of TÜBİTAK-BİLTEN. For comparison

purposes output file sizes are kept nearly equal. Tile sizes of 256 × 256 are used. It

is apparent that for high compression rates JPEG 2000 gives superior results

compared to conventional JPEG algorithm. The blocking effects of JPEG seen in

high compression rates are not present in JPEG 2000. For high compression ratios

conventional JPEG exhibits color degradation. (see Figure 4.5-7)

1 The output of the engineering model is obtained from the testbench.

104

(a) Original 24 bpp

(b) 0.0882 bpp / 22.7705 dB

(c) 0.1499 bpp / 20.013 dB

(d) 0.1292 bpp / 24.1498 dB

(e) 0.5318 bpp /28.3373 dB

(f) 0.5395 bpp / 26.891 dB

Figure 4.5 The outputs of conventional JPEG and the outputs of GEZGİN for the

original image of ERCIYES 2048×2048 24 bpp RGB. Images on the right hand side

are provided from the GEZGİN test bench with the courtesy of TÜBİTAK-

BİLTEN.

105

(a) |Original 8bpp

(b) 0.0706 bpp / 26.2663 dB

(c) 0.1516 bpp / 26.5415 dB

(d) 0.1496 bpp / 28.7723 dB

(e) 0.4889 bpp / 34.6126 dB

(f) 0.4928 bpp / 33.0988 dB

Figure 4.6 The outputs of conventional JPEG and the outputs of GEZGİN for the

original image of MERSIN 2048×2048 24 bpp RGB. Images on the right hand side

are provided from the GEZGİN test bench with the courtesy of TÜBİTAK-

BİLTEN.

106

(a) Original 8 bpp

(b) 0.0556 bpp / 27.1002 dB

(c) 0.1657 bpp / 29.7121 dB

(d) 0.1612 bpp / 31.8248 dB

(e) 0.4273 bpp / 35.1126 dB

(f) 0.4247 bpp / 33.8123 dB

Figure 4.7 The outputs of conventional JPEG and the outputs of GEZGİN for the

original image of GOLCUK 2048×2048 24 bpp RGB. Images on the right hand side

are provided from the GEZGİN test bench with the courtesy of TÜBİTAK-

BİLTEN.

107

Table 4.8 shows the lossless compression performance of JPEG 2000 and TIFF for

various images. JPEG 2000 operation mode for the example is 3 levels of

decomposition with color transform, tile-based processing with tile sizes of

256×256, and run-mode entropy coding with fixed code block sizes of 32×32, which

is the same as that of GEZGİN.

Table 4.8 Lossless compression performance of PNG, LS and JPEG 2000.

JPEG2000 results are obtained using GEZGİN Simulator.

Compression (bpp) Image
PNG[61] LS[62] JPEG 2000[19]

Erciyes
 2048,24b,RGB 15.5725 15.5679 15.1292

Mersin
2048,24b,RGB 12.2316 11.3179 11.0489

Gölcük
2048,24b,RGB 11.3176 10.2187 9.8127

BİLTEN Staff
2048,24b,RGB 10.1375 8.6200 7.2175

Denver
512,24b,RGB 17.9659 18.1640 11.0174

Lena
512,24b,RGB 14.5320 13.6047 13.7630

4.3 Results

4.3.1 Levels of Sub-band decomposition

Lossy compression is achieved by discarding specific sub-bands and applying

quantization to the filter coefficients. For different levels of sub-band

decomposition, bit discarding and sub-band omission is applied and PSNR values

are reported. In all figures Si, 0≤ i ≤ J denotes that all HH, LH and LH outputs

except the ones in the i greatest levels are omitted. For example S2 indicates that

LL3, LH3, HL3, HH2, LH2, HL2, HH2 are included but LH1, HL1, HH1 are omitted

for 3 levels of sub-band decomposition. In Figure 4.8, compression ratios achieved

108

for various number of decomposition levels and reconstruction resolutions are seen.

Compression results are obtained from GEZGİN Test and Decoder Suite v1.0 [67].

1 2 3 4 5 6
10-2

10-1

100

Erciyes (1024x1024) 24b RGB
pp

)
C

om
pr

es
si

on
 (b

Number of Decomposition Levels

S(J)
S(J-1)
S(J-2)
S(J-3)
S(J-4)
S(J-5)
S(J-6)

(a)

1 2 3 4 5 6
10-2

10-1

100

Mersin (1024x1024) 24b RGB

pp
)

C
om

pr
es

si
on

 (b

Number of Decomposition Levels

S(J)
S(J-1)
S(J-2)
S(J-3)
S(J-4)
S(J-5)
S(J-6)

(b)

(c)

100

101
Lena (512x512) 24b RGB

p)

(d)

Figure 4.8 Compression ratios achieved for various number of decomposition levels

and reconstruction resolutions.

101

102

101

102

1 2 3 4 5 6
10-2

10-1

100

101

102
Bilten Staff (1024x1024) 24b RGB

C
om

pr
es

si
on

 (b
pp

)

Number of Decomposition Levels

S(J)
S(J-1)
S(J-2)
S(J-3)
S(J-4)
S(J-5)
S(J-6)

1 2 3 4 5 6
10-3

10-2

10-1

C
om

pr
es

si
on

 (b
p

Number of Decomposition Levels

S(J)
S(J-1)
S(J-2)
S(J-3)
S(J-4)
S(J-5)
S(J-6)

4.3.2 Tile Size

For different tiles sizes 3 levels of sub-band decomposition is applied. Figure 4.9

shows the PSNR variation and compression achievements with tile size.

Compression results are obtained from GEZGİN Test and Decoder Suite v1.0 [67].

It is apparent that smaller tile sizes lead to quality reduction, however this effect is

109

minor compared to sub-band exclusion. The quality gained by increasing the tile

size from 256 to 512 is very small despite the huge memory requirement it brings,

hence it is not preferred.

32 64 128 256 512
22

23

24

25

26

27

28

29

30

31
Erciyes (1024x1024) 24b RGB

PS
N

R
 (d

B
)

Tile Size

L1,L2,L3 omitted
L1,L2 omitted
L1 omitted

(a)

32 64 128 256 512
0

1

2

3

4

5

6

7
Erciyes (1024x1024) 24b RGB

C
om

pr
es

si
on

 (b
pp

)

Tile Size

L1,L2,L3 omitted
L1,L2 omitted
L1 omitted

(b)

32 64 128 256 512
28

30

32

34

36

38

40

42
Mersin (1024x1024) 24b RGB

PS
N

R
 (d

B
)

Tile Size

L1,L2,L3 omitted
L1,L2 omitted
L1 omitted

(c)

32 64 128 256 512
0

1

2

3

4

5

6
Mersin (1024x1024) 24b RGB

C
om

pr
es

si
on

 (b
pp

)

Tile Size

L1,L2,L3 omitted
L1,L2 omitted
L1 omitted

(d)

Figure 4.9 PSNR variation with tile size for 3 levels of sub-band decomposition and

the corresponding compression achievements.

110

32 64 128 256 512
22

24

26

Tile Size
(e)

32 64 128 256 512
0

1

2

Bilten Staff (1024x1024) 24b RGB

m
pr

es
si

on
 (b

pp
)

C
o

Tile Size
(f)

(g)

3

4

5

6

7
Lena (512x512) 24b RGB

pr
es

si
on

 (b
pp

)
C

om

Tile Size

L1,L2,L3 omitted
L1,L2 omitted
L1 omitted

(h)

Figure 4.9 (Continued) PSNR variation with tile size for 3 levels of sub-band

decomposition and the corresponding compression achievements.

28

30

32

34

36
Bilten Staff (1024x1024) 24b RGB

PS
N

R
 (d

B
)

3

4

5

6

7

L1,L2,L3 omitted
L1,L2 omitted
L1 omitted

L1,L2,L3 omitted
L1,L2 omitted
L1 omitted

32 64 128 256 512
22

24

26

28

30

32

34
Lena (512x512) 24b RGB

PS
N

R
 (d

B
)

Tile Size

L1,L2,L3 omitted
L1,L2 omitted
L1 omitted

32 64 128 256 512
0

1

2

4.3.3 Coefficient Truncation

Figure 4.10 shows the PSNR versus the number of bits discarded for various cases

of sub-band decomposition. Up to a certain number of discarded bits, quality

reduction of the recovered image is insignificant for S0, S1 and S2 cases, however

the PSNR value rapidly decreases with beyond certain number of discarded bits.

Note that further truncation of sub-band coefficients leads to vanishing benefit of

sub-band inclusion. This is because the extra quantization of HL HH and LH sub-

111

bands introduces errors to these low energy sub-bands, and hence to the

reconstructed image. As quantization increases, these extra noise becomes

significant compared to -or may even become larger than- the noise eliminated by

the inclusion of the sub-bands.

0 1 2 3 4 5
15

20

25

30

35

40

Erciyes (1024x1024) 24b RGB

PS
N

R
 (d

B
)

Number of Bits Discarded

S0
S1
S2
S3

(a)

0 1 2 3 4 5
15

20

25

30

35

40

Denver (512x512) 24b RGB

PS
N

R
 (d

B
)

Number of Bits Discarded

S0
S1
S2
S3

(b)

(c)

45
Lena (256x256) 24b RGB

(d)

Figure 4.10 PSNR versus the number of bits discarded for various cases of sub-band

decomposition.

45 45

0 1 2 3 4 5
15

20

25

30

35

40

45
Mersin (1024x1024) 24b RGB

PS
N

R
 (d

B
)

Number of Bits Discarded

S0
S1
S2
S3

0 1 2 3 4 5
15

20

25

30

35

40

PS
N

R
 (d

B
)

Number of Bits Discarded

S0
S1
S2
S3

In GEZGİN wavelet coefficients are computed with a precision of B+Γ=10 bits.

Input bandwidth is 4×20 Mbps = 80 Mbps. From (3.32), taking into account the

precision expansion, the required output bandwidth is calculated to be 150 Mbps.

112

Due to the limited output bandwidth available through the 16-bit HPI link, [63], the

bit depth expansion constitutes a problem of transmission especially if these excess

two bits are accommodated in 8-bits words. In this case, for each 16 bits a redundant

transmission of 6 bits occurs resulting in a bandwidth expansion by a factor of two.

Moreover it doubles the coefficient storage.

On the other hand rearrangement of coefficients in order to store B+Γ bit data

compactly in multiple-of-B bit storage unit may require excessive amount of logic

or buffers in reconfigurable logic.

For these reasons it is preferred to apply bit discarding of q=2 to the wavelet

coefficients prior to transmission. Figure 4.10 also shows the quality reduction in

terms of PSNR due quantization of 2 bits. Note that high frequency sub-bands

usually consist of very small coefficients centered around zero, i.e., these sub-

bands contain less energy. Moreover, color transformed components which

represent the difference of two input components, have smaller dynamic ranges.

Therefore, specific sub-bands can be transmitted in 8 bits by clamping rather than

quantizing, or both can be applied i.e. discarding only one bit and clamping

coefficients in the range [�128, 128) .

4.3.4 Compression Time Experiments

Compression time is an important issue since each frame should be captured,

compressed and transmitted before the next one arrives. Since the entropy coding

and transmission time is proportional to the output size (capture time is constant and

transform time depends only on the tile size) there is a trade-off between process

time and image distortion. One of the missions of GEZGİN is to compress and

transmit consecutive images which have overlapping areas. The time between two

shots is a function of the satellite speed and the desired size of overlap area, and it is

about 6.5 seconds for BILSAT-1. Therefore, it is important to identify modes of

operation which fit the allotted time, while providing the highest quality.

113

Table 4. 9 Time required to process image and achieved distortion, bit-rate for various
options available in GEZGİN

Tile Size

Discarded
Bits

Subbands
Included

Fetch +
Coding +
Transmit
Time (sec)

Capture +
Transform

Time
(sec)

Overall
Time
(sec)

Quality
(dB)

Compression
(bpp)

With RCT
256 4 LL LH HL 1,78 3,76 5,54 23.87 0.229
256 3 LL LH HL 1,78 4,79 6,57 25.53 0.335
256 3 LL 1,78 2,10 3,88 23.78 0.120
256 3 LL LH HH 1,78 4,96 6,74 24.89 0.351
256 3 LL HH 1,78 3,59 5,37 24.01 0.244
256 2 LL 1,78 2,44 4,22 23.96 0.167
256 2 LL LH 1,78 4,16 5,94 24.82 0.317
256 2 LL HH 1,78 4,33 6,11 24.25 0.337
256 2 LL LH HL 1,78 5,87 7,65 25.93 0.468
256 4 LL LH HL HH 1,78 4,84 6,62 24.08 0.314
256 5 LL LH HL HH 1,78 3,65 5,43 19.91 0.230
128 4 LL LH HL 1,73 3,52 5,25 23.78 0.247
128 3 LL LH HL 1,73 4,55 6,28 25.44 0.354
128 3 LL 1,73 2,04 3,77 23.67 0.128
128 3 LL LH HH 1,73 4,72 6,45 24.79 0.242
128 3 LL HH 1,73 3,47 5,20 23.88 0.258
128 2 LL 1,73 2,38 4,11 23.84 0.175
128 2 LL LH 1,73 4,04 5,77 24.72 0.331
128 2 LL HH 1,73 4,21 5,94 24.13 0.351
128 2 LL LH HL 1,73 5,69 7,42 25.85 0.488
128 4 LL LH HL HH 1,73 4,61 6,34 24.00 0.339
128 5 LL LH HL HH 1,73 3,41 5,14 19.82 0.253

Without RCT
256 4 LL LH HL 1,78 4,45 6,23 24.51 0.351
256 3 LL LH HL 1,78 5,59 7,37 25.70 0.351

High compression ratios are obtained by bit discarding (quantizing) wavelet

coefficients and sub-band exclusion. Applying a Reversible Color Transform (RCT)

[19] prior to the DWT reduces the dynamic range of the wavelet coefficients, and

hence higher compression rates are achieved [66]. RCT also speeds up the

compression job, but added noise due to quantization is amplified (also due to the

reduction in dynamic range). Table 4.9 shows the time required to capture,

compress and transmit and the achieved distortion, bit-rate for various options

available on GEZGİN. The test is performed on the image, Erciyes (2048×2048)

24b RGB. Figure 4.11 shows the PSNR reduction introduced due to RCT and the

corresponding bit rate achievement for different cases. Compression results are

114

obtained from GEZGİN Test and Decoder Suite v1.0 [67]. Tile size is chosen as

256.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Erciyes (1024x1024) 24b RGB

PS
N

R
 R

ed
uc

tio
n

(d
B

)

Number of Bits Discarded

S0
S1
S2
S3

(a)

0 1 2 3 4 5
10-2

10-1

100

101

102
Erciyes (1024x1024) 24b RGB

C
om

pr
es

si
on

 (b
pp

)

Number of Bits Discarded

S3 w/o RCT
S2 w/o RCT
S1 w/o RCT
S0 w/o RCT

(b)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
Denver (512x512) 24b RGB

PS
N

R
 R

ed
uc

tio
n

(d
B

)

Number of Bits Discarded

S0
S1
S2
S3

(c)

0 1 2 3 4 5
10-2

10-1

100

101

102
Denver (512x512) 24b RGB

C
om

pr
es

si
on

 (b
pp

)

Number of Bits Discarded

S3 w/o RCT
S2 w/o RCT
S1 w/o RCT
S0 w/o RCT

(d)

Figure 4.11 PSNR reduction introduced due to RCT and the corresponding bit rate

achievement for different cases. Tile size is chosen as 256.

115

0 1 2 3 4 5
0

0.2

0.4

0.6

Mersin (1024x1024) 24b RGB

N
R

 R
ed

uc
tio

n
(d

B
)

PS

Number of Bits Discarded

S0
S1
S2
S3

(e)

0 1 2 3 4 5
10-2

10-1

Mersin (1024x1024) 24b RGB

m
pr

es
si

on
 (b

pp
)

C
o

Number of Bits Discarded
(f)

(g)

100

101

102
Lena (256x256) 24b RGB

pr
es

si
on

 (b
pp

)

(h)

Figure 4.11 (Continued) PSNR reduction introduced due to RCT and the

corresponding bit rate achievement for different cases. Tile size is chosen as 256.

100

101

102

0.8

1

1.2

1.4

1.6

1.8

2

S3 w/o RCT
S2 w/o RCT
S1 w/o RCT
S0 w/o RCT

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Lena (256x256) 24b RGB

PS
N

R
 R

ed
uc

tio
n

(d
B

)

Number of Bits Discarded

S0
S1
S2
S3

0 1 2 3 4 5
10-2

10-1C
om

Number of Bits Discarded

S3 w/o RCT
S2 w/o RCT
S1 w/o RCT
S0 w/o RCT

4.3.5 Dynamic Range Expansion at the RCT output

In Section 3.3 the dynamic range expansion of color transformed pixels is discussed.

Several experiments are done by clamping and/or quantizing color transformed

pixels the images are supplied from [64]. Table 4.10 shows the results obtained.

Images with asterisk are the aerial images from satellites. It is apparent that, for

aerial images, applying clamping to the pixels give better results than bit discarding.

116

In GEZGİN applications it is preferred to apply clamping to these color components

after RCT.

Table 4.10 Quality achievement of quantizing and clamping of color transformed

samples

S3 S2 S1 S0 Image
Q (dB) C (dB) Q (dB) C (dB) Q (dB) C (dB) Q (dB) C (dB)

1 53.66 73.03 32.50 32.51 27.84 27.85 24.69 24.70
2 53.46 39.92 31.19 30.73 26.65 26.53 22.81 22.78
3 53.49 50.28 26.46 26.45 22.54 22.53 19.54 19.54
4 53.58 29.70 32.21 27.83 26.18 24.65 21.79 21.20
5 53.49 62.04 31.34 31.34 26.23 26.23 22.91 22.92
6 53.48 33.85 23.31 22.96 20.62 20.44 19.40 19.27
7 53.49 48.35 28.62 28.58 24.50 24.49 21.27 21.27
8 53.58 33.60 31.38 29.43 27.77 26.84 24.28 23.87

9* 53.21 Inf 23.93 23.93 20.39 20.39 18.51 18.51
10 53.51 42.53 28.34 28.25 23.75 23.73 21.33 21.33
11 53.49 27.24 32.71 26.26 29.19 25.24 25.61 23.47
12* 53.48 61.47 25.92 25.92 23.32 23.32 21.81 21.81
13 53.41 56.14 25.76 25.76 23.07 23.07 21.30 21.30
14 53.48 99.31 33.81 33.83 28.00 28.00 23.94 23.95
15* 53.51 Inf 30.31 30.33 26.22 26.23 23.49 23.49
16* 53.48 Inf 40.23 40.33 34.52 34.55 29.89 29.92
17* 53.48 Inf 27.14 27.15 23.77 23.77 21.64 21.64
18* 53.56 57.85 31.68 31.69 27.95 27.96 25.89 25.89
19* 53.48 90.96 30.25 30.26 25.28 25.28 22.02 22.02
20* 53.48 Inf 29.26 29.27 26.75 26.76 25.21 25.22
21* 53.48 Inf 31.43 31.45 28.80 28.81 27.35 27.36
22* 53.48 Inf 38.90 39.0 8 34.40 34.42 31.75 31.77

4.3.6 Blocking Artifacts

Effect of tiling to quality degradation is examined for several cases. Figure 4.12

shows recovered images. For visual purposes tile size is kept small in order to

recognize blocking effects and degradations. Tile sizes are chosen as 64×64. As the

number of discarded HH, HL and LH sub-bands increases the blocking effect

grows, however bit discarding does not have much impact on amount of blocking

artifacts.

117

Figure 4.12 also shows the comparison of symmetric extension and zero padding.

Images on the right side are subjected to zero padding, left side images are filtered

using symmetric extension. It is apparent that zero padding does not allow for

perfect reconstruction and that the symmetric extension is very beneficial since it

results in considerably reduced blocking artifacts compared to zero padding.

Although symmetric extension brings extra logic to the architecture, its application

is vital.

(a) J=4 S4 q=0

(b) J=4 S4 q=0

(c) J=4 S3 q=0

(d) J=4 S3 q=0

Figure 4.12 Effect of tiling to quality degradation. Images on the right side are

subjected to zero padding, left side images are filtered using symmetric extension.

118

(e) J=4 S2 q=0

(f) J=4 S2 q=0

(g) J=4 S1 q=0

(h) J=4 S1 q=0

Figure 4.12 (Continued) Figure 4.12 Effect of tiling to quality degradation. Images

on the right side are subjected to zero padding, left side images are filtered using

symmetric extension.

Figure 4.13 shows the effect of quantization and Figure 4.12 shows the effect of

sub-band exclusion. It is apparent that the effect of quantization is very minor and

the tile information is contained in HL LH and HH sub-bands.

119

(a) J=4 q=2

(b) J=4 q=2

(c) J=4 q=4

(c) J=4 q=4

(c) J=4 q=6

(c) J=4 q=6

Figure 4.13 The effect of quantization of LL sub-band.

120

Although the 5/3 filter provides for reversibility, due its non-linear property [65][12]

further quantizations result in poor results (see Figure 4.14). This can be reduced by

applying dead-zone quantizing to the filter coefficients, rather than bit discarding. In

GEZGİN only bit discarding is present, however it is observed that, in recovery,

applying DC adjustment (i.e. setting a zero DC by subtraction) to truncated

coefficients, provides improvements. In Figure 4.14, images (a), (c), and (e) are

obtained by only truncation in coding and multiplication by 2q in decoding, while

images (b), (d) and (f) are obtained by applying DC adjustment to the truncated

coefficients before multiplication by 2q.

121

(a) J=4 q=3

(b) J=4 q=3

(c) J=4 q=5

(d) J=4 q=5

Figure 4.14 Quantization of the sub-bands. Images on the left are obtained by only

truncation in coding and multiplication by 2q in decoding, while images on the right

obtained by applying DC adjustment to the truncated coefficients before

multiplication by 2q.

122

(e) J=4 q=7

(f) J=4 q=5

Figure 4.14 (Continued) Quantization of the sub-bands. Images on the left are

obtained by only truncation in coding and multiplication by 2q in decoding, while

images on the right obtained by applying DC adjustment to the truncated coefficients

before multiplication by 2q.

123

CHAPTER 5

CONCLUSION

In this thesis, an architecture and an FPGA implementation of the two dimensional

discrete wavelet transformation (DWT) is presented, for applications where row-

based raw image data is streamed in at high bandwidths and local buffering of the

entire image is not feasible. The architecture is especially suited for multi-spectral

imager systems, such as on board an imaging satellite, however can be used in any

application where time to next image constraints require real-time processing of

multiple images.

The proposed hardware has been implemented on an FPGA and is part of a JPEG

2000 compression system designed as a payload for a low earth orbit (LEO) micro-

satellite, which will be launched in September 2003. The fundamental mission of

the system is to process (compress) the output of digital imaging sensors in real-

time, as the image data is output from the sensors, while storing only a small portion

of the incoming image stream at any given time. The task of the processor presented

in this work is to accomplish required transforms (RCT and DWT) and transmit data

efficiently with a latency as small as possible.

In applications requiring high bandwidth processing of images, internal storage

utilization is inevitable. Large sized multi-spectral images are partitioned into tiles,

which dramatically reduces the internal storage requirement at the expense of off-

chip (local) storage, where a minimum required portion of the incoming image

stream is stored. The latency that is introduced as the images stream through the

124

DWT processor and the amount of locally stored image data is a function of the

image and tile size. For an n1 × n2 size image processed using (n1/k1) × (n2/k2) sized

tiles the latency is equal to the time elapsed to accumulate a (1/k1) portion of one

image. In addition, a (2/k1) portion of each image is buffered locally.

The memory requirement depends on the tile size and the tile size in turn affects the

quality of the compressed image and the processing delay of the wavelet transform.

With the help of simulation data on several images including aerial and satellite

pictures we arrived at a wavelet decomposition level of three, applied on tile sizes of

256×256, which, as reported, gives optimum results in terms of distortion and

compression.

A literature survey on architectures implementing 2-D DWT and a comparison in

from an FPGA implementation perspective are given. Although the proposed

architecture is memory optimized, the internal memory required to transform tiles of

such a large size imposes the utilization of SRAM blocks provided in FPGA

devices. We propose an unfolded architecture in which each stage utilizes its own

RAM block resulting in simpler logic and less routing. The stages handling each

level use no scheduling logic, but simple counters which generate the address for

RAM access. For three levels of wavelet decomposition with 5/3 filter, the proposed

architecture compares favorably to existing architectures in terms of memory

requirement, resources used, and computation time. To accommodate high

bandwidth data, parallel processing of P DWT modules is proposed.

The symmetric extension at the tile boundaries is inevitable for perfect

reconstruction. It is reported that symmetric extension is also vital for lossy

compression. Therefore, although it brings extra logic and routing to the hardware,

an architecture capable of handling boundaries is preferred. A method which

employs time variant filtering is proposed in order to eliminate the need for time gap

between consecutive tiles. This scheme provides for a regular gap-free tile

acquisition.

125

In terms of compression efficiency, it is beneficial to apply, to the image

components, a color transform which de-correlates the data. It is reported that the

application of RCT results in a shorter encoding and transmission period, which

provides for a better compression and quality performance within the time

restrictions of overlap image capturing. The bandwidth expansion due to the color

transformation of data is examined and several simulation results are presented.

Since the bandwidth expansion results in an increase in local storage requirement,

for some applications avoiding the extra storage may be desired. It is reported that,

for aerial images, truncation of one bit from the resultant 9 bit representation via

clamping rather than quantizing gives better results.

The proposed architecture inherently results in a bandwidth requirement at the

output stage. As was the case in GEZGİN, the output link may not accommodate

such high-bandwidths, and therefore, a simple modification to the architecture is

proposed, by which the burst-full operation of the original structure is eliminated

and a bandwidth of only 3/2 times that of the input is achieved. Experimental results

for quantization and clamping of the coefficients and the restoration quality that is

sacrificed due to truncation of bits are also given.

The proposed hardware has been implemented on a XILINX XCV300EPQ240-6 IC

to cooperate with a 32-bit floating-point Digital Signal Processor (DSP) which

implements the entropy coding. The application requires a throughput of 80Mbits/s.

The implementation can achieve a throughput of up to 160Mbit/s when the DWT

processors are operated at 40MHz. The latency introduced is 0.105 sec (6.25% of

total transmission time) for tile sizes of 256×256. The local storage size required for

the tiling operation is 2 MB. The internal storage requirement is 1536 pixels.

Equivalent gate count for the design is 292,447. The hardware has two parallel

DWT processors (P=2). While storing color transformed coefficients in local

storage for tiling operation clamping is used. Due to the limited output bandwidth

available through the 16-bit HPI link between FPGA and DSP, it is preferred to

apply bit discarding of q=2 to the wavelet coefficients prior to transmission.

126

In our study, we have focused on the design and the implementation of a 2-D DWT

processor for a multi-spectral imaging application. The work presents optimizations

for a configurable logic implementation and a possible imaging application

environment. As a future work, the implementation of memory efficient line-based

entropy coder can be studied. Alternatively, integration of entire JPEG 2000

algorithm on a single IC and the design of system-on-a-chip (SOC) of the entire

image compression system, GEZGİN, arise as possible future studies of the thesis.

127

REFERENCES

[1] G. M. Davis and A. Nosratinia, �Wavelet-based image coding: an overview,�

Applied and Computational Control, Signals, and Circuits, vol. 1, no. 1, Spring

1998.

[2] W. Woods and S. D. O'Neil, �Subband coding of Images,� IEEE Transactions

on Acoustic, Speech and Signal Processing, vol. ASSP-34, pp. 1278-1288, October

1986.

[3] O. Rioul and M. Vetterli, �Wavelets and signal processing,� IEEE Signal

Processing Magazine, vol. 8, pp. 14-38, October 1991.

[4] I. Daubechies, �Orthonormal bases of compactly supported wavelets,�

Communications on Pure and Applied Mathematics, vol. XLI, pp. 909-996, 1988.

[5] C. Chui, Wavelets: A Tutorial in Theory and Applications. Academic Press,

New York, 1992.

[6] M. Vetterli and J. Kovačević, Wavelets and Subband Coding. Prentice Hall,

Englewood Cliffs, New Jersey, 1995.

[7] J. Shapiro, �Embedded image coding using zero-trees of wavelet coefficients,�

IEEE Transactions on Signal Processing, vol. 41, pp. 3345-3462, December 1993.

[8] A. Said and W. A. Pearlman, �A new, fast and efficient image codec based on

set partitioning in hierarchical trees,� IEEE Transactions on Circuits and Systems

for Video Technology, vol. 6, pp. 243-250, June 1996.

128

[9] M. W. Marchellin and T. Fischer, �Trellis coded quantization of memoryless

and Gauss-Markov sources,� IEEE Transactions Communications, vol. 38, no. 1,

pp. 82-93, January 1990.

[10] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression

Fundamentals, Standards and Practice. Kluwer Academic Publishers, Norwell,

Massachusetts, 2002.

[11] M. L. Hilton, B. D. Jawerth, and A. Segupta, �Compressing still and moving

images with wavelets,� Multimedia Systems, vol. 2, no. 5, pp. 218-227, December

1994.

[12] S. G. Mallat, �A theory for multiresolution signal decomposition: The wavelet

representation,� IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 11, no. 7, pp. 674-693, July 1989.

[13] I. Daubechies and W. Sweldens, �Factoring wavelet transforms into lifting

steps,� Journal of Fourier Analysis and Applications, 4(3), pp.245-267, 1998.

[14] W. Sweldens, �The lifting scheme: A custom-design construction of

biorthogonal wavelets,� Applied and Computational Harmonic Analysis, 3(2): 186-

200, 1996.

[15] A. R. Calderbank, I. Daubechies, W. Sweldens, and B. Yeo, �Wavelet

transforms that map integers to integers,� Applied and Computational Harmonic

Analysis, 5(3):332-369, 1998.

[16] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, �An overview

of JPEG 2000,� Proceedings of IEEE Data Compression Conference, pp. 523-541,

2000.

[17] D. Santa-Cruz, and T. Ebrahimi, �A study of JPEG 2000 still image coding

versus other standards,� X European Signal Processing Conference, vol. 2, pp. 673-

676, September 2000.

129

[18] A. Kaarna and J. Parkkinen, �Comparison of compression methods for

multispectral images,� Proceedings of the Nordic Signal Processing Symposium,

NORSIG 2000, pp. 251-254, June 2000.

[19] ISO/IEC JTC 1/SC 29/WG 1 N1646R, �JPEG2000 Image Coding System�.

[20] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, �Image coding using

wavelet transform,� IEEE Transactions on Image Processing., vol. 1, no. 2, pp. 205-

220, April 1992.

[21] �Information technology � coded representation of picture and audio

information � lossy/lossless coding of bi-level images�, 14492 Final Committee

Draft, ISO/IEC JTC1/SC 29/WG1 N1359, July 1999.

[22] A. Bradford, L. Gomes, G. Yüksel, and C. Özkaptan, �BİLSAT-1: A Low-

cost, Agile, Earth Observation Micro-satellite for Turkey,� IAF2002, October 2002.

[23] N. İsmailoğlu, O.Benderli, I. Korkmaz, M. Durna, T. Kolçak, and Y. Ç.

Tekmen, �A Real Time Image Processing Subsystem: GEZGİN�, Sixteenth Annual

Conference on Small Satellites, August 12-15, 2002, Utah, US.

[24] Aware Wavelet Transform Processor (WTP) Preliminary. Aware Inc.,

Cambridge, MA, 1991

[25] F. Fridman and E. S. Manolakos, �Distributed memory and control VLSI

architectures for the 1-D discrete wavelet transform,� Proceedings, IEEE VLSI

Signal Processing VII, 1994.

[26] R. Lang, E. Plesner, H Schröder, and A. Spray, �An efficient systolic

architecture for the one-dimensional wavelet transform,� Proceedings SPIE

Conference on Wavelet Applications, pp. 925-935, April 1994.

[27] A. Grzeszczak, M. K. Mandal, S. Panchanathan, and T. Yeap, �VLSI

implementations of discrete wavelet transform,� IEEE Transactions on VLSI

Systems, vol. 4, pp. 421-433, December 1996.

130

[28] S.Masud and J. V. McCanny, �Rapid design of biorthogonal wavelet

transforms,� Proceedings, IEEE Circuits Devices and Systems, vol. 147, pp. 293-

296, October 2000.

[29] J. T. Kim, Y. H. Lee, T. Isshiki, and H. Kunieda, �Scalable VLSI

architectures for lattice structure-based discrete wavelet transform,� IEEE

Transactions on Circuits and Systems - II, vol. 45, no. 8, pp. 1031-1043, 1998.

[30] M. Vishwanath, �The Recursive Pyramid Algorithm for the discrete wavelet

transform,� IEEE Transactions on Signal Processing, vol. 42, no. 3, pp. 673-676,

March 1994.

[31] G. Knowles, �VLSI architecture for the discrete wavelet transform,�

Electronics Letters, vol. 26, no. 15, pp. 1184-1185, July 1990.

[32] M. Vishwanath, R. M. Owens, and M. J. Irwin, �VLSI architectures for the

discrete wavelet transform,� IEEE Transactions on Circuits and Systems - II, vol.

42, no. 3, pp. 305-316, May 1995.

[33] C. Chakrabarti and M. Vishwanath, �Efficient realization of the discrete and

continuous wavelet transforms: From single chip implementations to mapping on

SIMD array computers,� IEEE Transactions on Signal Processing, vol. 43, pp. 759-

771, March 1995.

[34] I. Urriza, J. I. Artigas, J. I. Garcia, L. A. Barragan, and D. Navarro, �VLSI

architecture for lossless compression medical images using the discrete wavelet

transform,� Proceedings, Design, Automation and Test in Europe, pp. 196-201,

February 1998.

[35] Y. Kim, K. Jun, and K. Rhee, �FPGA implementation of subband image

encoder using discrete wavelet transform,� Proceedings, IEEE Region 10

Conference TENCON 99, vol. 2, pp. 1335-1338, September 1999.

131

[36] A.S. Lewis and G. Knowles, �VLSI architecture for 2-D Daubechies wavelet

transform without multipliers,� Electronics Letters, vol. 27, no. 2, pp. 171-173,

January 1991.

[37] C. Chakrabarti and C. Mumford, �Efficient realizations of analysis and

synthesis filters based on the 2-D discrete wavelet transform,� Proceedings, IEEE

ICASSP, pp. 3256-3259, May 1996.

[38] C. Chakrabarti and M. Vishwanath, �Architectures for wavelet transforms: A

survey,� Journal of VLSI Signal Processing, vol.14, pp. 171-192, 1996.

[39] P. McCanny, S. Masud, and J. McCanny, �An efficient architecture for the 2-

D biorthogonal discrete wavelet transform,� Proceedings, 2001 International

Conference on Image Processing, vol. 3, pp. 314-317, October 2001.

[40] C. Chen, Z. Yang, T. Wang, and L. Chen, �A programmable VLSI

architecture for 2-D discrete wavelet transform,� Proceedings, International

Symposium on Circuits and Systems, pp. 619-622, May 2000.

[41] T. Park and S. Jung, �A high performance lattice architecture of 2D discrete

wavelet transform for hierarchical image compression,� International Conference

on Consumer Electronics, pp. 352-353, June 2002.

[42] P. Wu and L. Chen, �An efficient architecture for two-dimensional discrete

wavelet transform,� IEEE Transactions on Circuits and Systems for Video

Technology, vol. 11, no. 4, pp. 536-545, April 2001.

[43] T. Denk and K. Pahri, �Calculation of minimum number of registers in 2-D

discrete wavelet transforms using lapped block processing,� Proceedings,

International Symposium on Circuits and Systems, vol. 26, pp. 1184-1185, July

1995.

[44] S. Paek, H. Jeon, and L. Kim, �Semi-recursive VLSI architecture for two

dimensional discrete wavelet transform,� Proceedings, International Symposium on

Circuits and Systems, vol. 5, pp. 469-472, May 1998.

132

[45] F. Marino, �Two fast architectures for the direct 2-D discrete wavelet

transform,� IEEE Transactions on Signal Processing, vol. 49, no. 6, pp. 1248-1259,

June 2001.

[46] P. E. Danielsson, �Serial/parallel convolvers,� IEEE Transactions on

Computers, vol. 33, pp. 1079-1086, 1988.

[47] The Programmable Logic Data Book 2000, Xilinx Inc., 2000, online available

at http://www.xilinx.com.

[48] Data Book 1998, Altera Co., 1998, online available at http://www.altera.com

[49] M. J. Gormish, E. L. Schwartz, A. Keith, M. Boliek, and A. Zandi, �Lossless

and nearly lossless compression for high quality images,� Proceedings of the

SPIE/IS&T Conference on Very High Resolution and Imaging II, vol. 3025, pp. 62-

70, February 1997.

[50] C. Chrysafis, Wavelet Image Compression Rate Distortion Optimizations and

Complexity Reductions, PhD Thesis, Department of Electrical Engineering,

University of Southern California, March 2000.

[51] J. Reichel, M. Nadenau, and M. Kunt, �Row-based wavelet decomposition

using the lifting scheme,� Proceedings of the Workshop on Wavelet Transforms and

Filter Banks (WTFB 99), March 1999.

[52] C. M. Brislawn, �Preservation of subband symmetry in multirate signal

coding,� IEEE Transactions on Signal Processing, 43(12), pp. 1248-1259,

December 1995.

[53] C. Herley, �Boundary filters for finite length signals and time varying filter

banks,� IEEE Transactions on Circuits and Systems II, vol. 42, no. 2, pp. 102-114,

February 1995.

133

http://www.xilinx.com/

[54] J. Ritter and P. Molitor, �A partitioned wavelet-based approach for image

compression using FPGA�s,� IEEE 2000, Custom Integrated Circuits Conference,

November 1999.

[55] G. K. Wallace, �The JPEG still picture compression standard,� Comm. ACM,

vol. 34, pp. 30-44, 1991.

[56] W. Jiang and A, Ortega, �Lifting factorization-based discrete wavelet

transform architecture design,� IEEE Transactions on Circuits and Systems for

Video Technology, vol. 11, no. 5, May 2001.

[57] M. Ravasi, L. Tenze, and M. Mattavelli, �A scalable and programmable

architecture for 2-D DWT decoding,� IEEE Transactions on Circuits and Systems

for Video Technology, vol. 12, no. 8, August 2002.

[58] RC1000 Hardware Reference Manual, Celoxica Ltd, 2001.

(http://www.celoxica.com)

[59] XAPP152 �Power Estimator Tools v2.0� (http://www.xilinx.com/xapp/xapp-

152.pdf), (http://www.xilinx.com/ise/power_tools/virtex_power_estimator_v16.xls)

[60] ISO/IEC 10918-1 and ITU-T Recommendation T.81. Information technology

� digital compression and coding of continuous-tone still images: Requirements and

guidelines, 1994.

[61] W3C, PNG (Portable Network Graphics) Specification, 1996

[62] ISO/IEC IS 14495, �Lossless and near-lossless compression of continuous-

tone still images.�

[63] TMS320C6000 Peripherals � Reference Guide, Texas Instruments Inc., 2001.

[64] University of Southern California � SIPI Image Database [Online].

http://sipi.usc.edu/services/database/Database.html

134

http://www.celoxica.com/
http://www.xilinx.com/xapp/xapp-152.pdf
http://www.xilinx.com/xapp/xapp-152.pdf
http://sipi.usc.edu/services/database/Database.html

[65] M. D. Adams, Reversible Wavelet Transforms and Their Application to

Embedded Image Compression, MSc Thesis, Department of Electrical and

Computer Engineering, University of Waterloo, 1993.

[66] M. Domański and K. Rakowski, �Lossless and near-lossless image

compression with color transformations,� Proceedings, International Conference on

Image Processing, pp. 454-457, October 2001.

[67] Taner Kolçak, GEZGİN Test and Decoder Suite v1.0 - Documentation and

Manual, Technical Report, TÜBİTAK-BİLTEN, 2002.

[68] M. Aşkar and O. Tekinalp, �Turkish small satellite program: goals and

policies,� 2nd International Symposium of the International Academy of

Astronautics, pp. 369-372, April 2001.

135

APPENDIX A

DESIGN HIEARCHY

Figure A.1 The hierarchical structure of the design.

136

Figure A.1 shows the hierarchical structure of the design.

The description of the modules is as follows:

lvds_inf : This module receives the camera data form 4 serial links,

discards the black stripes, translates it to 80MHz and sends to the next

module (rct).

hpi_mux: This module multiplexes the level outputs of multi_lev

module and translates the operation clock from 20MHz to 40MHz, and

sends data to hpi_mdl_16_buff.

trig_reset: This module controls the reset signals distributed to the

device and triggers the hardware when a TRIG signal from the cameras is

received. TRIG signal indicates a new image has been shot and ready to be

transmitted by the cameras.

wr_sequencer: This module handles the buffering (writing to local

storage), tiling, reading back and sending data to the forthcoming modules.

It receives data from rct and sends it to ram_inf for buffering, and sends

the data that is read back from ram_inf to freq_adaptor .

freq_adaptor: this module receives data in 80MHz and sends it in

20MHz. It receives data from wr_sequencer and sends it to multi_lev.

rct: This module handles the DC-level shift operation and color transform.

It receives data from lvds_inf and sends it to wr_sequencer.

multi_lev: This is the top module of the 2-D DWT, architecture. Data is

received from frq_adaptor and send to hpi_mux lvds_inf.

two_dim: module handling 2-D DWT of 1 level. There are three

instantiations of this module each belonging to a stage.

137

Hor: horizontal filtering and decomposition

Vertical: vertical filtering and decomposition

lifter_core: This module implements the arithmetic operations required

for the lifting scheme of 5/3 filtering.

RAM80x256: This module contains five RAMB4_S16_16 ram block

primitives, and used to store the samples required by stage 1 and 2.

RAM64x256: This module contains four RAMB4_S16_16 ram block

primitives, and used to store the samples required by stage 3.

hpi_mdl_16buff1: this module is the HPI driver. It send the computed

coefficients to the DSP through HPI link. It also contains buffer which

compensate the temporary link stalls. It receives data from hpi_mux and

outputs it from HPI pins.

ram_inf: this module is the SRAM driver for local storage. It receives

data from wr_sequencer and outputs it from SRAM pins.

1 This module is coded by Soner Yeşil.

138

APPENDIX B

VIRTEX-E RESOURCES

B.1 Architecture Overview

Figure B.1 Virtex-E Aarchitecture Overview.

139

Figure B.1 shows the Virtex-E Aarchitecture Overview. The FPGA comprises two

major configurable elements: configurable logic blocks (CLBs) and I/O blocks

(IOBs).

CLBs provide the functional elements for constructing logic, and IOBs provide the

interface between the package pins and the CLBs. CLBs interconnect to a general

routing matrix, which consists of an array of routing switches located at the

intersections of horizontal and vertical routing channels.

The Virtex-E architecture also includes the following circuits that connect to the

general routing matrix:

• Dedicated block memories of 4096 bits each.

• Clock Dlls for clock-distribution delay compensation and clock domain

control

• Tri-state buffers associated with each CLB that drive dedicated segmentable

horizontal routing resources.

Values stored in static memory cells control the configurable logic elements and the

interconnect resources. These values load into the memory cells on power-up, and

can reload if necessary to change the function of the device.

B.2 Configurable Logic Blocks (CLBs) and Slices

The basic building block of the Virtex-E CLB is the logic cell. a logic cell includes

a 4-input function generator, carry logic, and a storage element. The output from the

function generator in each logic cell drives both the CLB output and the D input of

the flip-flop. Each Virtex-E CLB contains four logic cells as shown in Figure B.2.

Each CLB is divided into two slices.

140

Figure B.2 Virtex-E CLB. Each Virtex-E CLB contains four logic cells and CLB is

divided into two slices.

141

B.3 Look-up Tables (FGs)

Figure B.3 The detailed schematic of a slice. A slice contains two LUTs, two DFFs,

and one CY.

Virtex-E function generators are implemented as 4-input look-up tables (LUTs). In

addition to operating as a function generator, each LUT can provide a 16 × 1-bit

RAM, and a 16-bit shift register. Figure B.3 shows the detailed schematic of a slice

having two LUTs.

B.4 Storage Elements (DFFs)

Figure B.3 shows the two storage elements provided in a slice. These elements can

be either configured as edge-triggered D-type flip-flops or as level sensitive latches.

The D inputs can be driven either by the function generators within the slice or

directly from slice inputs, bypassing the function generators.

142

B.5 Arithmetic Logic (CYs)

Dedicated carry logic provides fast arithmetic carry capability for high-speed

arithmetic functions. A CLB supports two separate carry chains, one per slice. They

are indicated as �CY� in the Figure B.2.

The arithmetic logic also includes an XOR gate that allows a 2-bit full adder to be

implemented within a slice.

B.6 Block SelectRAM (BRAM)

In Virtex-E FPGA provides with large Block SelectRAM memories. Block

SelectRAM memory blocks are organized in columns (see Figure B.1) and inserted

every 12 CLB columns. Each memory block is four CLBs high, and each memory

column extends the full height of the chip. Each Block SelectRAM cell, as

illustrated in Figure B.3 is a dual-ported 4096-bit RAM with independent control

signals for each port. The data widths of the two ports can be configured

independently.

Figure B.4 Block SelectRAM cell.

143

Table B.1 shows the depth and width aspect ratios available for the RAM blocks.

Table B.1 Depth and width aspect ratios available for the RAM blocks.

Width Depth ADDR Bus Data Bus
1 4096 ADDR<11:0> DATA<0>
2 2048 ADDR<10:0> DATA<1:0>
4 1024 ADDR<9:0> DATA<3:0>
8 512 ADDR<8:0> DATA<7:0>

16 256 ADDR<7:0> DATA<15:0>

B.7 Digital Delay-Locked Loop (DLL)

Figure B.5 Locations of the eight digital delay-locked loops (DLLs) in the device.

Virtex-E FPGA provides with eight delay-locked loops. four of them is located at

the top and the other four is located at the bottom as shown in Figure B.4. The DLLs

can be used to eliminate skew between the clock input pad and the internal clock

input pins throughout the device. Each DLL can drive two global networks. The

144

DLL monitors the input clock and the distributed clock, and automatically adjusts a

clock delay element.

In addition to eliminating clock-distribution delay, the DLL provides control of

multiple clock domains. The DLL provides four quadrature phases of the source

clock., and can double the clock or divide the clock by 2, 4, 8 or 16.

B.8 Global Clock Routing (GCLKs and GCLKIOBs)

In order to allow for high-speed, low-skew clock distribution, global routing

resources are used. These are four dedicated clock nets (GCLK) and dedicated

input pins (GCLKIOB). Each global clock net can drive all CLB, IOB, and block

RAM clock pins. The global nets may only be driven by glocal buffers. There are

four global buffers, one for each global net. Two global buffers are placed at the top

center of the device and the remaining two at the bottom center as shown in Figure

B.5. The input of the global buffer is selected either from global input pins or from

signals in the general purpose routing.

Figure B.6 Locations of the four global clock buffers (GCLKs) in the device.

145

146

