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ABSTRACT

STATE ESTIMATION TECHNIQUESFOR SPEED
SENSORLESSFIELD ORIENTED CONTROL OF INDUCTION
MOTORS

Akin, Bild
M.Sc. Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Aydin Ersak

August, 2003

This thesis presents different state estimation techniques for speed sensorlees
field oriented control of induction motors. The theoretical basis of each algorithm is
explained in detail and its performance is tested with simulations and experiments
individually.

First, a stochastical nonlinear state estimator, Extended Kalman Filter (EKF)
is presented. The motor model designed for EKF application involves rotor speed,
dg-axis rotor fluxes and dg-axis stator currents. Thus, using this observer the rotor
speed and rotor fluxes are estimated simultaneoudly. Different from the widely
accepted use of EKF, in which it is optimized for either steady-state or transient
operations, here using adjustable noise level process agorithm the optimization of
EKF has been done for both states; the steady-state and the transient-state of
operations. Additionally, the measurement noise immunity of EKF is also

investigated.



Second, Unscented Kalman Filter (UKF), which is an updated version of
EKF, is proposed as a state estimator for speed sensorless field oriented control of
induction motors. UKF state update computations, different from EKF, are derivative
free and they do not involve costly calculation of Jacobian matrices. Moreover,
variance of each state is not assumed Gaussian, therefore a more realistic approach is
provided by UKF. In this work, the superiority of UKF is shown in the state
estimation of induction motor.

Third, Model Reference Adaptive System is studied as a state estimator. Two
different methods, back emf scheme and reactive power scheme, are applied to
MRAS algorithm to estimate rotor speed.

Finally, a flux estimator and an open-loop speed estimator combination is
employed to observe stator-rotor fluxes, rotor-flux angle and rotor speed. In flux
estimator, voltage model is assisted by current model via a closed-loop to

compensate voltage model’ s disadvantages.

Keywords: Induction motor drive, sensorless field-oriented control, state estimation,
EKF, UKF, MRAS



Oz

HI1Z DUYACSIZ ALAN YONLENDIRMELI ENDUK SIYON
MOTOR DENETIMINDE DURUM TAHMIN TEKNIK LERI

Akin, Bild
Y uksek Lisans, Elektrik ve Elektronik Muhendidligi BolUmu
Tez Danismani : Prof. Dr. Aydin Ersak

Agustos,2003

Bu ¢alismada hiz duyagsiz alan yonlendirmeli endiiksiyon motor denetiminde
uygulamaya yonelik durum tahmin yontemleri gelistirilmistir. Sunulan tim
yontemlerin  kuramsal igerigi ayrintili olarak arastirillmis ve bu yontemlerin
basarimlari benzetim yoluyla ve deneysel olarak test edilmistir.

Ilk olarak, dogrusal olmayan sistemlerde durum tahmini icin gelistirilmis olan
EKF yontemi ele alinmistir. Bu yonteme uyarlanan motor modeli, rotor hizi, rotor
akilar1 ve rotor akimlari ayni anda birlikte tahmin edilmeye yonelik olarak
tasarlanmistir. Genellikle EKF basarimi ya kararli-durum ya da gegici-durum icin
ayri ayr1 olarak en iyilendiriimeye calisilir. Burada kullanilan ANLP yOntemiyle
desteklenerek EKF nin basarimi hem kararli-durumda hem gegici-durumda birlikte
en iyilestirilmistir. EK olarak EKF yonteminin 6l¢cim hatalarina olan duyarliligida
test edilmistir.

EKF ye ek olarak EKF nin gelistirilmis bir versiyonu olan UKF yontemi,

endiksiyon motorlarinda bir durum tahmin teknigi olarak sunulmustur. UKF



yonteminde sistemi dogrusal yapmak igin uygulanan tirev alma yontemleri ve bu
yontemler icin gerekli olan ve hesaplamalar zorlastiran bazi basamaklar
kullaniimamistir. Ayrica UKF modeli belirsizlikleri gergege daha yakin bir tarzda
hesaplar. UKF nin bu Gstin 6zelliklerinin motor durum tahminine nasil olumlu
yansidigl gosterilmistir.

Bunlara ek olarak MRAS yoOntemi de rotor hiz tahmini icin endiksiyon
makinesi modeline uyarlanmistir. Bunun icin MRAS modeli geri besleme ve reaktif
guc yontemleri  seklinde isimlendirilen iki farkli algoritma ile denenmis ve hiz
tahmini bu algoritmalarla yapilmistir.

Son olarakta, gelistirilmis bir aki tahmin yontemi ve bir agik déngult hiz
tahmin yontemi durum tahmini icin uygulanmistir. Bu yontemlerle, stator-rotor
akilarini, rotor hizini ve rotor agisini hesaplamak mumkundir. Burada kullanilan aki
tahmin yonteminde gerilim yontemi olarak bilinen aki tahmin yontemi akim modeli
ile kapal1 bir dongl sayes nde desteklenmistir.

Anahtar Kelimeler : Endiksiyon motor siriictisl, sensorsiiz alan yonlendirmeli
kontrol, durum tahmini, EKF, UKF, MRAS
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CHAPTER 1

INTRODUCTION

Induction motors are relatively rugged and inexpensive machines. Therefore
much attention is given to their control for various applications with different control
requirements. An induction machine, especially squirrel cage induction machine, has
many advantages when compared with DC machine. First of all, it is very cheap. Next, it
has very compact structure and insensitive to environment. Furthermore, it does not
require periodic maintenance like DC motors. However, because of its highly non-linear
and coupled dynamic structure, an induction machine requires more complex control
schemes than DC motors. Traditional open-loop control of the induction machine with
variable frequency may provide a satisfactory solution under limited conditions.
However, when high performance dynamic operation is required, these methods are
unsatisfactory. Therefore, more sophisticated control methods are needed to make the
performance of the induction motor comparable with DC motors. Recent developments
in the area of drive control techniques, fast semiconductor power switches, powerful and
cheap microcontrollers made induction motors alternatives of DC motors in industry.

The most popular induction motor drive control method has been the field
oriented control (FOC) in the past two decades. Furthermore, the recent trend in FOC is
towards the use of sensorless techniques that avoid the use of speed sensor and flux
sensor. The sensors in the hardware of the drive are replaced with state observers to

minimize the cost and increase the reliability.



Thiswork is mainly focused on the state observers to estimate the states that are
used in the FOC algorithms frequently. For this purpose, two different Kalman Filtering
techniques, EKF and UKF, are employed to estimate rotor speed and dg-axis rotor
fluxes. Using these techniques, one can obtain very precise flux and speed information
as shown in the simulations and experimental results. Furthermore, model reference
adaptive system (MRAYS) is used to estimate the rotor speed. The back emf and the
reactive power schemes are applied to MRAS which are superior to the previous MRAS
schemes proposed in the literature. In this work, it is also shown that the rotor speed
estimation performance of these schemes is quite satisfactory in the simulations and
experimental results. Finally, a combination of well-known open loop observers, voltage
model and current model, is used to estimate the rotor flux and rotor flux angle which

are employed in direct field orientation.

1.1 Overview of the Chapters
Thisthesisis organized asfollows:

The literature review is given in Chapter 2. The review mainly focused on field
oriented control, sensorless control and state observers such as EKF, UKF and MRAS.
The previous works are discussed briefly and compared with each other.

Chapter 3 presents a generalized dynamic mathematical model of the induction
motor which can be used to construct various equivalent circuit models in different
reference frames. A torque-speed control of induction machine with indirect field
orientation is simulated to be familiar with the FOC.

Chapter 4 presents the theoretical background of space vector pulse width
modulation (SVPWM) in detail. DSP implementation of SVPWM is also given in this
part. Moreover, the simulation and the experimental results of SVPWM are illustrated.

Chapter 5 is devoted to Kalman filtering techniques. First the theoretical base of
EKF is given in detail. The discretized model of the motor, which is applied to EKF, is
studied for microcontroller implementation. Afterwards, derivative free, non-linear state
estimator technique, UKF, is presented and compared with EKF. The performance of

each technique is confirmed by simulations and experimental results.
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In Chapter 6, MRAS method is introduced to estimate the rotor speed. Two
different schemes are applied to MRAS for this task. The stability analysis and
discretized forms of both schemes are given for microcontroller implementation. The
performance of these schemes is examined under varying conditions in simulations. The
simulations are supported with the experimental results.

Chapter 7 summarizes the development of a flux estimator with a well known
speed estimator. The originality of the flux estimator is emphasized and experimental
results are added for both estimators.

Chapter 8 introduces the experimental setup and the software of this thesis
briefly.

Chapter 9 summarizes the thesis and concludes with the contributions associated

with the observation techniques employed in FOC.



CHAPTER 2

LITERATURE REVIEW

An induction machine, a power converter and a controller are the three major
components of an induction motor drive system. Some of the disciplines related to
these components are electric machine design, electric machine modeling, sensing
and measurement techniques, signal processing, power electronic design and electric
machine control. It is beyond the scope of this research to address all of these areas: it
will primarily focus on the issue related to the induction machine control. A
conventional low cost volts per hertz or a high performance field oriented controller
can be used to control the machine. This chapter reviews the principles of the field
orientation control of the induction machines and outline major problems in its design

and implementation.

2.1  Induction Machine Control

The controllers required for induction motor drives can be divided into two
major types. a conventional low cost volts per hertz v/f controller and torque
controller [1]-[4]. In v/f control, the magnitudes of the voltage and frequency are kept
in proportion. The performance of the v/f control is not satisfactory, because the rate
of change of voltage and frequency has to be low. A sudden acceleration or
deceleration of the voltage and frequency can cause a transient change in the current,
which can result in drastic problems. Some efforts were made to improve v/f control
performance, but none of these improvements could yield a v/f torque controlled drive
systems and this made DC motors a prominent choice for variable speed applications.

This began to change when the theory of field orientation was introduced by Hasse
4



and Blaschke. Field orientation control is considerably more complicated than DC
motor control. The most popular class of the successful controllers uses the vector
control technique because it controls both the amplitude and phase of AC excitation.
This technique results in an orthogonal spatial orientation of the electromagnetic field

and torque, commonly known as Field Oriented Control (FOC).

2.2  Field Orientation Control of Induction Machine

The concept of field orientation control is used to accomplish a decoupled
control of flux and torque. This concept is copied from dc machine direct torque
control that has three requirements [4]:

* An independent control of armature current to overcome the effects of

armature winding resistance, leakage inductance and induced voltage,

* Anindependent control of constant value of flux;
If all of these three requirements are met at every instant of time, the torque will
follow the current, allowing an immediate torque control and decoupled flux and
torque regul ation.
Next, a two phase d-g model of an induction machine rotating at the synchronous
speed is introduced which will help to carry out this decoupled control concept to the
induction machine. This model can be summarized by the following equations (see
chapter 3 for detail):

Vs = pWCes + W W s + 1 s (2.1)
Vs = pWss — W P s + I %as (2.2
0=pY Sy +(W, =W )P a + 1"y (2.3)
0=pya —(We =W )P + 1" (2.4)
We =L +Loi' (2.5)
Wos = Laig + L' (2.6)
We =L L% (2.7)
We =Laig +Li% (2.8)
T2 (g in - u i) @9)
T, =Jow, r+ Bw, +T, (2.10)

and it is quite significant to synthesize the concept of field-oriented control. In this
model it can be seen from the torque expression (2.9) that, if the flux along the g-axis

can be made zero then al the flux is aligned along the d-axis and, therefore, the
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torgque can be instantaneously controlled by controlling the current along g-axis. Then
the question will be how it can be guaranteed that all the flux is aligned along the d-
axis of the machine. When three-phase voltages are applied to the machine, they
produce three-phase fluxes both in the stator and the rotor. The three-phase fluxes can
be represented in a two-phase stationary (a-f) frame. If these two phase fluxes along
(a-B) axes are represented by a single-vector then all the machine flux will be aligned
along that vector. This vector is commonly specified as d-axis which makes an angle

O, with the stationary frame a-axis, as shown in Fig.2.1. The g-axis is set
perpendicular to the d-axis. The flux along the g-axis in this case will be obviously
zero. The phasor diagram Fig.2.1 presents these axes. When the machine input
currents change sinusoidally in time, the angle 8, keeps changing. Thus the problem
is to know the angle 6, accurately, so that the d-axis of the d-q frame is locked with

the flux vector.
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Fig.2.1- Phasor Diagram of the Field Oriented Drive System

The control inputs can be specified in two phase synchronously rotating d-q frame as
i%s and i%s such that i%s being aligned with the d-axis or the flux vector. These two-
phase synchronous control inputs are converted into two-phase stationary quantities

and then to three-phase stationary control inputs. To accomplish thisthe flux angle 6,
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must be known precisely. The angle 6,can be found either by Indirect Field
Orientation control (IFO) or by Direct Field Orientation control (DFO). The controller

implemented in this fashion that can achieve a decoupled control of the flux and the
torque is known as field oriented controller. The block diagram is shown in the
Fig.2.2 In the field-oriented controller the flux can be regulated in the stator, air-gap

or rotor flux orientation [1]-[4].
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Fig.2.2- Field Oriented induction Motor Drive System

The control algorithm for calculation of the rotor flux angle 6,using IFO control is

shown in the Fig 2.3. This algorithm is based on the assumption that, the flux along

e

the g-axis is zero, which forces the command slip velocity tobe wy =i /(T,ig) asa

necessary and sufficient condition to guarantee that all the flux is aligned with d-axis
and the flux along g-axis is zero. The angle 6, can then be determined as the sum of

the dip and the rotor angles after integrating the respective velocities. This dlip angle
includes the necessary and sufficient condition for decoupled control of flux and
torque. The rotor speed can be measured directly by using an encoder or can be
estimated. In case the rotor speed is estimated, the control technique is known as
sensorless control. This concept will be studied in detail in the following chapters. Fig
2.4. shows the control algorithm block diagram for DFO control. In this technique the
flux angle 8, is classically calculated by sensing the air-gap flux through the use of



flux sensing coils, or can be calculated by estimating the flux along the a-f axes using

the voltage and current signals.
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Fig.2.3- Indirect Field Oriented Drive System
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Fig.2.4- Direct Field Oriented Drive System

2.2.1Indirect Field Orientation Control

In indirect field orientation, the synchronous speed we is the same as the
instantaneous speed of the rotor flux vector g and the d-axis of the d-q coordinate
system is exactly locked on the rotor flux vector (rotor flux vector orientation). This
facilities the flux control through the magnetizing current ig by aigning al the flux

with the d-axis while aligning the torque-producing component of the current with the
g-axis. After decoupling the rotor flux and torque-producing component of the current

components, the torque can be instantaneously controlled by controlling the current

ig- The requirement to align the rotor flux with the d-axis of the d-q coordinate

system means that the flux along the g-axis must be zero. This means that (2.7)

becomes iz =—(L,ig)/L,and the current through the g-axis of the mutual

inductance is zero.



Based on thisrestriction wy IS :

Wy=—" (2.11)

These relations suggest that flux and torque can be controlled independently
by specifying d-q axis currents provided the slip frequency is satisfied (2.11) at all
instants.

The concept of indirect field oriented control developed in the past has been
widely studied by researchers during the last two decades. The rotor flux orientation
is both the original and usual choice for the indirect orientation control. Also the IFO
control can be implemented in the stator and air-gap flux orientation as well. De
Doncker [5] introduced this concept in his universal field oriented controller. In the
air-gap flux the dip and flux relations are coupled equations and the d-axis current
does not independently control the flux as it does in the rotor flux orientation. For the
constant air-gap flux orientation, the maximum of the produced torque is %20 less
than that of the other two methods [3]. In the stator flux orientation, the transient
reactance is a coupling factor and it varies with the operating conditions of the
machine. In addition, Nasar [3] shows that among these methods, rotor flux oriented
control has linear torque curve. Therefore, the most commonly used choice for IFO is
the rotor flux orientation.

The IFOC is an open loop, feed-forward control in which the slip frequency is
fed-forward guaranteeing the field orientation. This feed-forward control is very
sensitive to the rotor open circuit time constant, t.. Therefore, T, must be known in

order to achieve a decoupled control of torque and flux components by controlling

i 5 andig, respectively. When 1, is not set correctly, the machine is said to be detuned

and the performance will become sluggish due to loss of decoupled control of torque
and flux. The measurement of the rotor time constant, its effects on the system
performance and its adaptive tuning to the variations resulting during the operation of
the machine have been studied extensively in the literature [6-8]. Lorenz, Krishnan
and Novotny [6-8] studied the effect of temperature and saturation level on the rotor
time constant and concluded that it can reduce the torque capability of the machine
and torque/amps of the machine. The detuning effect becomes more severe in the

field-weakening region. Also, it results in a steady-state error and, transient
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oscillations in the rotor flux and torque. Some of the advanced control techniques
such as estimation theory tools and adaptive control tools are also studied to estimate
rotor time constant and other motor parameters[25, 26, 29, 30, 31, 50, 61-63]

2.2.2 Direct Field Orientation

The DFO control and sensorless control rely heavily on accurate flux
estimation. DFOC is most often used for sensorless control, because the flux observer
used to estimate the synchronous speed or angle can also be used to estimate the
machine speed. Investigation of ways to estimate the flux and speed of the induction
machine has also been extensively studied in the past two decades. Classicaly, the
rotor flux was measured by using a specia sensing element, such as Hall effect
sensors placed in the air-gap. An advantage of this method is that additional required
parameters, Ly, Ly, and L, are not significantly affected by changes in temperature
and flux level. However, the disadvantage of this method is that a flux sensor is
expensive and needs special installation and maintenance. Another flux and speed
estimation technique is saliency based with fundamental or high frequency signal
injection. One advantage of saliency technique is that the saliency is not sensitive to
actual motor parameters, but this method fails at low and zero speed level. When
applied with high frequency signal injection [9], the method may cause torque ripples,
and mechanical problems.

Gabriel [10] avoided the specia flux sensors and coils by estimating the rotor
flux from the terminal quantities (stator voltages and currents). This technique
requires the knowledge of the stator resistance along with the stator, rotor leakage
inductances and magnetizing inductance. This method is commonly known as the
Voltage Model Flux Observer (VMFO). The stator flux in the stationary frame can be
estimated by the equations:

l‘IJZS = VZS - rSI ZS (213)
W5 = Vos ~Telgs (2.14)
Then the rotor flux can be expressed as:
S Lr S HE
qur = (l‘IJdS_LO'IdS
- (2.15)
S Lr S 1S
l-Iqu = L (l-qus - Lolqs (216)
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where L, = (L, - L? /L) isthetransient |eakage inductance.

In this model, integration of the low frequency signals, dominance of stator resistance
voltage drop at low speed and leakage inductance variation result in a less precise flux
estimation. Integration at low frequency is studied by [11] and three different
alternatives are given. Estimation of rotor flux from the terminal quantities depends
on parameters such as stator resistance and leakage inductance. The study of
parameter sensitivity shows that the leakage inductance can significantly affect the
system performance such as stability, dynamic response, and utilizations of the
machine and the inverter.

The Current Model Flux Observer (CMFO) is an alternative approach to
overcome the problems of leakage inductance and stator resistance at low speed. In
this model flux can be estimated as:

s l s S Lm HE]

Ller = _-I—_l'IJdT _er‘Iqu +T—|ds (217)
A R T

l'Iqu - T_quqr er'IJdr +-|-_IqS (218)

r

However, it does not work well at high speed due to its sensitivity to the rotor
resistance. Jansen [12] did an extensive study on VMFO and CMFO based direct field
orientation control, discussed the design and accuracy assessment of various flux
observers, compared them, and analyzed the aternative flux observers. To further
improve the observer performance, closed-loop rotor flux observers are proposed
which use the estimated stator current error [12-13] or the estimated stator voltage
error [13] to estimate the rotor flux. Furthermore, Lennart [14] proposed reduced

order observers for this task.

2.3 Variable Speed Control Using Advanced Control Algorithms

There are two issues in motion control using field-oriented controlled (FOC)
induction machine drives. One isto make the resulting drive system and the controller
robust against parameter deviations and disturbances. The other is to make the system
intelligent e.g. to adjust the control system itself to environment changes and task

requirements. If the speed regulation loop fails to produce the command current
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correctly, than the desired torque response will not be produced by the induction
machine. In addition, such a failure may cause the degradation of dip command as
well. As a result, a satisfactory speed regulation is extremely important not only to
produce desired torque performance from the induction machine but also to guarantee
the decoupling between control of torque and flux.

Conventionally, a Pl controller has been used for the speed regulation to
generate a command current for last two decades, and accepted by industry because of
its simplicity. Even though, a well-tuned PI controller performs satisfactorily for a
field-oriented induction machine during steady state. The speed response of the
machine at transient, especialy for the variable speed tracking, may sometimes be
problematic. In last two decades, aternative control algorithms for the speed
regulation were investigated. Among these, fuzzy logic, sliding mode, and adaptive
nonlinear control algorithms gained much attention, however these controllers are not
in the scope of thisthess.

A traditional rotor flux-oriented induction machine drive offers a better
control performance but it often requires additional sensors on the machine. This adds
to the cost and complexity of the drive system. To avoid these sensors on the
machine, many different algorithms are proposed for the last three decades to estimate
the rotor flux vector and or/ rotor shaft speed. The recent trend in field-oriented
control is to use such algorithms based on the terminal quantities of the machine for
the estimation of the fluxes and speed. They can easily be applied to any induction
machine. Therefore, our focusin this study is also on these algorithms.

Before looking into individual approaches, the common problems of the speed
and flux estimation are discussed briefly for genera field-orientation and state
estimation algorithms.

* Parameter sensitivity: One of the important problems of the sensorless
control algorithms for the field-oriented induction machine drives is the
insufficient information about the machine parameters which yield the
estimation of some machine parameters along with the sensorless
structure. Among these parameters stator resistance, rotor resistance and
rotor time-constant play more important role than the other parameters
since these values are more sensitive to temperature changes. The
knowledge of the correct stator resistance rs, is important to widen the

operation region toward the lower speed range. Since at low speeds the
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induced voltage is low and stator resistance voltage drop becomes
dominant, a mismatching stator resistance induces instability in the
system. On the other hand, errors made in determining the actual value of
the rotor resistance r,, may cause both instability of the system and speed
estimation error proportional to r, [15]. Also, correct T, value is vita
decoupling factor in IFOC.

Pure Integration: The other important issue regarding many of the
topologies is the integration process inherited from the induction machine
dynamics where an integration process is needed to calculate the state
variables of the system. However, it is difficult both to decide on the initial
value, and prevent the drift of the output of a pure integrator. Usually, to
overcome this problem alow-pass filter replaces the integrator.
Overlapping-loop Problems. In a sensorless control system, the control
loop and the speed estimation loop may overlap and these loops influence
each other. As aresult, outputs of both of these loops may not be designed
independently; in some bad cases this dependency may influence the

stability or performance of the overall system.

The agorithms, where terminal quantities of the machine are used to estimate the

fluxes and speed of the machine, are categorized in two basic groups. First one

is "the open-loop observers" in a sense that the on-line model of the machine does

not use the feedback correction. Second one is "the closed-loop observers’ where

the feedback correction is used along with the machine model itself to improve the

estimation accuracy. These two basic groups can also be divided further into

subgroups based on the control method used. These can be summarized as.

Open-loop observers based on;

Current model,
Voltage model,

Full-order observer,

13



Closed loop observers based on;
- Model Reference Adaptive Systems (MRAS),
- Kaman filter techniques,
- Adaptive observers based on both voltage and current model,
- Neura network flux and speed estimators,
- Sliding mode flux and speed estimators.

Open-loop observers, in general, use different forms of the induction machine
differential equations. Current model based open-loop observers [12]-[14] use the
measured stator currents and rotor velocity. The velocity dependency of the current
model is very important since this means that athough using the estimated flux
eliminates the flux sensor, the position sensor is still required. On the other hand,
voltage model based open-loop observers [12]-[14] use the measured stator voltage
and current as inputs. These types of estimators require a pure integration that is
difficult to implement for low excitation frequencies due to the offset and initia
condition problems. Cancellation method open-loop observers can be formed by using
measured stator voltage, stator current and rotor velocity as inputs, and use the
differentiation to cancel the effect of the integration. However, it suffers from two
main drawbacks. One is the need for the derivation which makes the method more
susceptible to noise than the other methods. The other drawback is the need for the
rotor velocity similar to current model. A full-order open-loop observer, on the other
hand, can be formed using only the measured stator voltage and rotor velocity as
inputs where the stator current appears as an estimated quantity. Because of its
dependency on the stator current estimation, the full order observer will not exhibit
better performance than the current model. Furthermore, parameter sensitivity and
observer gain are the problemsto be tuned in afull order observer design [16]. These
open-loop observer structures are all based on the induction machine model, and they
do not employ any feedback. Therefore, they are quite sensitive to parameter
variations, which yield the estimation of some machine parameters along with the
sensorless structure.

On the other hand, some kind of feedback may be helpful to produce more
robust structures to parameter variations. For this purpose many closed-loop
topologies are proposed using different induction machine models and control

methods. Among these MRAS attracts attention and several different algorithms are
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produced. In MRAS, in general, a comparison is made between the outputs of two
estimators. The estimator which does not contain the quantity to be estimated can
be considered as a reference model of the induction machine. The other one which
contains the estimated quantity, is considered as an adjustable model. The error
between these two estimators is used as an input to an adaptation mechanism. For
sensorless control algorithms most of the times the quantity which differs the
reference model from the adjustable model is the rotor speed. The estimated rotor
speed in the adjustable model is changed in such a way that the difference between
two estimators converges to zero asymptotically, and the estimated rotor speed will be
equal to actual rotor speed. The basics of the analysis and design of MRAS are
discussed in [2, 17]. In [15, 18, 19] voltage model is assumed as reference model,
current model is assumed as the adjustable model and estimated rotor flux is assumed
as the reference parameter to be compared. In [20] similar speed estimators
are proposed based on the MRAS, and a secondary variable is introduced as the
reference quantity by letting the rotor flux through a first-order delay instead of
a pure integration to nullify the offset. However, their algorithms produce inaccurate
estimated speed if the excitation frequency goes below certain level. In addition these
algorithms suffer from the machine parameter uncertainties since the parameter
variation in the reference model cannot be corrected. [19, 21] suggest an alternative
MRAS based on the electromotive force rather than the rotor-flux as reference
quantity for speed estimation where the integration problem has been overcome.
Further in [21], another new auxiliary variable is introduced which represents the
instantaneous reactive power for maintaining the magnetizing current. In this MRAS
algorithm stator resistance disappear from the equations making the algorithm robust
to that parameter. Zhen [22] proposed an interesting MRAS structure that is built with
two mutual MRAS schemes. In this structure, the reference model and the adjustable
models are interchangeable. For rotor speed estimation, one model is used as
reference model and other model is used as adjustable model. The pure integration is
removed from reference model. For stator resistance estimation the models switch
their roles. [23-24] supported the MRAS scheme with ANN using its training and
modeling of non-linear systems. MRAS scheme is also used for the on-line adaptation
of the motor parametersin field oriented control techniques [25-26].

Kaman filter (KF) is another method employed to identify the speed and

rotor-flux of an induction machine based on the measured quantities such as stator
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current and voltage [27,28]. Kalman filter approach is based on the system model and
a mathematical model describing the induction motor dynamics for the use of Kalman
filter application. Parameter deviations and measurement disturbance are taken into
consideration in KF. For this purpose covariance matrices of the KF must be properly
initidized. KF itself works for linear systems, so for non-linear induction motor
model extended Kaman filter (EKF) is used. However, KF approach is
computationally intensive and depends on the accuracy of the model of the motor. In
the EKF model proposed by [28], one can estimate rotor fluxes and rotor speed which
makes the field orientation. EKF is also used for online parameter estimation of
induction motor [29-31]. Reduced order models are also proposed to shorten and
speed up the complex EKF algorithm [32]. A new KF technique for non-linear
systems, Unscented Kalman Filter (UKF), is applied to induction machine state
estimation in this thesis [33]. UKF is a derivative free KF technique which avoids
costly calculation of Jacobian matrix, linearization and biasedness of the estimates
[34-36].

Another method used for the sensorless control of induction motor is the
neural network technique, which is based on a learning process. It has the advantage
of tolerating machine parameter uncertainties. For speed estimation, a two-layered
neural network, based on back propagation technique, is used and the neural network
outputs are compared with the actual measurement values and error then back-
propagated to adjust the weights such that the estimated speed converges to actual
one. The neural network based sensorless control algorithms have the advantages of
fault-tolerant characteristics. However, because of the neural network learning
process these algorithms may suffer from the computational intensity.

Another approach is diding mode control for FOC of induction machine. In
the dliding mode technique, the control action is very strong and being switched into
either “on” or “off” a high frequency. The command signals control directly the
power devices. This type of control is also favorable because “on-off” is the only
admissible mode of operation for the power converters. Therefore, it seems more
natural to employ the algorithm towards discontinuous control.

In addition to the agorithms mentioned above, some of the proposed work is
hard to classify because of their combined structure. For instance, [37-38] propose
open-loop observer structures based on voltage model of the induction machine and

attempt to avoid integration problem by using different low-pass filter structures. On
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the other hand, some works use both voltage and current models of the induction

machine to construct an open-loop observer structure and claims that rotor-flux

estimation is insensitive to rotor time-constant variations. In [39], a nonlinear high-

gain observer structure is proposed, and it is claimed that with the exact knowledge of

stator resistance, flux and speed estimation convergence is guaranteed.

2.4 CONCLUSIONS

The literature review of DFOC, IFOC, flux, position and velocity estimation

and speed control can be summarized as:

The DFOC and IFOC are the methods for instantaneous torque and speed control
of an induction motor drive system. These methods can be implemented with or
without a speed sensor. An IFOC is synthesized by properly controlled dlip-
frequency which is necessary for the field-orientation.

The main problem of an IFO drive system is the rotor time-constant deviation.
The drive system torque control performance decreases if the rotor time-constant
is not set precisely. Therefore, on-line estimation is necessary and is one of the
main challenges for better performance of an IFOC. Most of the techniques
proposed so far either need some special hardware or are very complex with
respect to the software and require intensive calculations which put extra burden
on the processor.

The main problem in DFO control is precise rotor flux or position observation.
This observation from terminal quantities is more desirable than the one including
additional hardware.

Voltage model and current model flux observers are the two most common ways
to estimate the flux using the terminal quantities. The voltage model flux observer
is dominated by stator IR drop at low speed, whereas the current model flux
observer has problems of rotor time constant variations. Also the current model
flux observer requires the rotor speed. Therefore, if the flux observer is being used
for the sensorless control, an error in the estimated speed will be fed back in to the
system. Thus will affect the observer accuracy.

The proposed open-loop observers can be simple in the structure but they are

susceptible to variety of errors that become specialy detrimental at low stator
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frequencies, including measurement, noise digital approximation errors, parameter
detuning and DC offset in measurements, which ultimately may drive the observer
instability.

For the time-varying system model problems, closed-loop observers are proposed
here feedback correction is used along with the machine model itself to improve
the estimation accuracy. The algorithmic complexity and calculation intensity
looks higher when compared with former solutions but the recent processors are
fast enough to solve these algorithms in real-time applications. They also require a
strong mathematical background to deal with. Their state estimation performance
is studied in many applications and they are proved to be good alternatives for

high performance ac drive area.
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CHAPTER 3

INDUCTION MACHINE MODELING AND FOC SSIMULATION
3.1 The Induction Motor

The two names for the same type of motor, Induction motor and
Asynchronous motor, describe the two characteristics in which this type of motor
differs from DC motors and synchronous motors. Induction refers to the fact that the
field in the rotor is induced by the stator currents, and asynchronous refers to the fact
that the rotor speed is not equal to the stator frequency. No dliding contacts and
permanent magnets are needed to make an induction motor work, which makes it
very smple and cheap to manufacture. As motors, they rugged and require very little
mai ntenance. However, their speeds are not as easily controlled as with DC motors.
They draw large starting currents, and operate with a poor lagging factor when lightly
loaded.

3.1.1 Construction of the Three Phase Induction M otors (Physical L ayout)

Most induction motors are of the rotary type with basically a stationary stator
and arotating rotor. The stator has a cylindrical magnetic core that is housed inside a
metal frame. The stator magnetic core is formed by stacking thin electrical steel
laminations with uniformly spaced slots stamped in the inner circumference to
accommodate the three distributed stator windings. The stator windings are formed
by connecting coils of copper or aluminum conductors that are insulated from the slot
walls.

The rotor consists of a cylindrical laminated iron core with uniformly spaced
peripheral slots to accommodate the rotor windings. In this thesis a squirrel cage rotor
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induction motor is used. It has uniformly spaced axial bars that are soldered onto end
rings at both ends. After the rotor core laminations are stacked in a mold, the mold is
filled with molten aluminum. There is no insulation between the bars and alls of the

rotor dots.

3.2 Mathematical Model of Induction M otor

During the entire report, a complex vector notation and some reference frame
conversions are used. Since thisis quite essential to the understanding of the rest of
the theory, it will shortly be described in the next subsection.

3.2.1 Three-Phase Transfor mations
In the study of generalized machine theory, mathematical transformations are
often used to decouple variables, to facilitate the solutions of difficult equations with
time varying coefficients, or to refer all variables to a common reference frame [39].
The most commonly used transformation is the polyphase to orthogonal two-
phase (or two-axis) transformation. For the n-phase to two-phase case, it can be

expressed in the form:
[f 1 =[TONf1o.....] (3.1)

where

5 cosge co{ge - aj ...... co{%e -(n —1)0()
[T(6)] = \ﬁ (3.2)

NlsnPg sin(EG—O(j ...... sjn(Ee—(n—l)aJ
2 2 n

and a isthe electrical angle between the two adjacent magnetic axes of a uniformly

distributed n-phase windings. The coefficient+/2/n, is introduced to make the
transformation power invariant.
Important subsets of the general n-phase to two-phase transformation, though

not necessarily power invariant, are briefly discussed in the following part.
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a-axis o-axis
c-axis

Fig.3.1- Relationship between the aff abc quantities
3.2.2 Clark Transformation
The Clark transformation is basically employed to transform three-phase to
two-phase quantities. The two-phase variables in stationary reference frame are
sometimes denoted as a and B. As shown in Fig.3.1 the a-axis coincides with the

phase-a axis and the B-axis lags the a-axis by 90°.
[fago] = [Tagol[f ] (3.3)

where the transformation matrix, [T,,] , is given by:

1 1
2 2
3 3
T =—|0 34
[Tego] > 13 (34
l i1
2 2 2 |
Theinverse transformation is;
1 0 1
_ 1 3
T o -= - 1 35
L R R (35)
13y
2 2 ]

3.2.3 Park Transformation

The Park’s transformation is a well-known transformation that converts the
guantities to to-phase synchronoudly rotating frame. The transformation isin the form
of:

[f sa0] = [Taao (O [F e (3.6)
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where the dgO transformation matrix is defined as :

cosf, cos(ed —Z—HJ co{ed + Z—HJ
3 3
20 . . 21 , 2n
[Tago(04)] = 3 -sin@, —sm[ed —?J —sm(ed +?j (3.7)
1 1 1
| 2 2 2 |
and the inverse is given by:
cosB, -sin@, 1
[T (@)™ = cos{ed —%T[J —sin[eGI —%T[J 1 (3.8)
cos(ed +2_nj —sin(ed +2_nj 1
- 3 3 -

where the 0, is the transformation angle.

The positive g-axis is defined as leading the positive d-axis by 90° in the
original Park’s transformation. Some authors define the g-axis as lagging the d-axis
by 90°. The transformation with g-axis lagging d-axis s given by:

coseq co{eq—%nj co{9q+2?n)

[quo(ed)]=§ sing, sin(eq —%ﬂj sin(eq+%n) (3.9

1 1
2 2

N |-

with an inverse given by:

coseq sineq 1
[T (60)] " = co{eq—%”j sjn(eq—%”j ! (310
co{eq +2_nj sin(eq +2_nj 1
— 3 3 -

where 8, is the transformation angle when g-axisis leading.
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The relationship between the, and 6, is:

1
Gq :Gd +§

(3.11)

One can show that[T,,,]and[T,,,], are basically the same, except for the ordering of

the d and g variables. Both of the alternatives are shown in Fig.3.2 and Fig.3.3.

B-axis
d-axis 5
b-axi W=W,
04 aaxis
c-axis
g-axis

B-axis
g-axis 5
b-axi W=W,
0 aaxis

c-axis

d-axis

Fig.3.2- Relationship between
the dg and the abc quantities

Fig.3.3 - Relationship between
the gd and the abc quantities

3.3 Circuit Model of a Three Phase I nduction M otor

Using the coupled circuit approach and motor notation, the voltage equations of the

magnetically coupled stator arotor circuit can be written as follows:

Stator Voltage Equations:

Vi, =i r+—dq"as \
dt

Vis = lpls +

S bs's

cs cs's

V=i r+—dq"CS \Y
dt

Rotor Voltage Equations:
du, \,

V, =i,r +

o dy
V,, =i, +—2= V
br br'r dt

dLlJ cr V

V., =i r.+

cr crors d

dl-IJbs \V

(3.12)

(3.13)




In matrix notation, the flux linkages of the stator and rotor windings, in terms
of the winding inductances and currents, may be written compactly as
W ||l Ly i
LIJ*C | LA L | Wh.turns (3.19)
where

qubc :(l'IJas’q"bs’l'IJcs)t
qubc =(l'IJar’q"br’q"cr)t
izbc :(ias’ibs’ics)t

-abc_ .
i =

(3.15)

. . t
a? I br i cr )
and the superscript T denotes the transpose of the array.
The sub-matrices of the stator-to-rotor and rotor-to-rotor winding inductances

are of the form:

L. +Ly Ly, L.,
L= L, L.+Lg L., H
| La, L,, L.+Lg
(3.16)
L,+L, L, .
L= L, L +L, L, H
Lo L. L, +L,

Those of the stator-to-rotor mutual inductances are dependent on the rotor angle, that

is:

cos0, cos(er +2—HJ cos(er —E[j
3 3

L% =[L™]' =L, co{e —%’T) cos8, cos(er +%T[J H (317)

S r

cos(er +2—T[j cos(er —Z—HJ coso,
i 3 3

where L s is the per phase stator winding leakage inductance, L, is the per phase rotor

winding leakage inductance, L is the self inductance of the stator winding, L is the
self inductance of the rotor winding, Lsy is the mutual inductance between stator
windings, L, is the mutual inductance between rotor windings, and Ly is the peak
value of the stator to rotor mutual inductance.

Note that the idealized machine is described by six first-order differentia

equations, one for each winding. These differential equations are coupled to one
24



another through the mutual inductance between the windings. In particular, the stator-
to-rotor coupling terms vary with time. Transformations like the dg or af can
facilitate the computation of the transient solution of the above induction motor
model by transforming the differential equations with time-varying inductances to

differential equations with constant inductances.

3.4 Machine Modd in Arbitrary dg0 Reference Frame

The idealized three-phase induction machine is assumed to have symmetrical
airgap. The dgo reference frames are usually selected on the basis of conveniences or
computational reduction. The two commonly used reference frames in the analysis of
induction machine are the stationary and synchronously rotating frames. Each has an
advantage for some purpose. In the stationary rotating reference, the dq variables of
the machine are in the same frame as those normally used for the supply network. In
the synchronously rotating frame, the dq variables are steady in steady-state. Here,
firstly the equations of the induction machine in an arbitrary reference frame which is
rotating at a speed of (w) in the direction of the rotor rotation will be derived. Those
if the induction machine in the stationary frame can then be obtained by setting w=0,
and those for the synchronously rotating frame are obtained by setting w = we The
relationship between the abc quantities and dg0 quantities of a reference frame

rotating at an angular speed, w, is shown in Fig.3.4.

B-axis

d-axis

g-axis

Fig.3.4- Relationship between abc and arbitrary dq0
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The transformation equation from abc to this dgO reference frame is given by:

fq fa

fo | = [T ®] |1, (3.18)
fO fc
where the variable f can be the phase voltages, current, or flux linkages of the
machine. The transformation angle, 6(t), between the g-axis of the reference frame
rotating at a speed of w and the a-axis of the stationary stator winding may be

expressed as:
a(t) = jot w(t)dt+6(0) elecrad. (3.19)

Likewise, the rotor angle, 0,(t), between the axes of the stator and rotor a-phases for a

rotor rotating with speed w; (t) may be expressed as:

8,(t) = '[Otwr(t)dt +6,(0) elecrad. (3.20)

3.4.1dq0 Voltage Equations

In matrix notation, the stator winding abc voltage equations can be expressed

VI = e+ (3:21)

Applying the transformations given in (3.7) and (3.8), to the voltage, current
and flux linkages egn. (3.21) becomes

VI = [T O)p[To O [0+ [T @] . [T )] 2] (322)
solving the equation above it becomes:
0 10
v =w|-1 0 O P +pPF + ¥ (3.23)
0 0O
where
100
de g0
=4 @4 KP=rjo 10 (3.24)
001

26



Likewise, the rotor voltage equation becomes:
0 10
VIO =(w-w,)[=1 0 Of W™ +ppF +r*0 (3.25)
0 0O

3.4.2 qd0 Flux Linkage Relation
The stator qdO flux linkages are obtained by applying Tqqo (8) to the stator abc
flux linkagesin (3.14).

B = [T (O)] (LTS +LGT1ST) (3.26)
skipping the transformation steps the stator and the rotor flux linkage relationships
can be expressed compactly:

W | L, +L,, 0 o L, 0 0[]
W 0 Lg+L, O 0 L., 0 ||ig
Wos | 0 0 L 0 0 0 ||ios
We | | La 0 0 L +L, 0 0 |lig
W, 0 L, 0 0 Ly +L, O (i,
W, | L O 0 0 0 0 Lo llig

(3.27)

Substituting the (3.27) into voltage equations and then grouping g, d, O, and 6 terms
in the resulting voltage equations, we obtain the voltage equations that suggest the
equivalent circuit shownin Fig.3.5.

g-axis
s Y gsW Lls Lir lIJ'dr(W_Wr) I’;

igs igr
—’ 4—

+

as qr

Vags

+E, - Lm -E +
% Var

Fig.3.5- Equivalent circuit representation of an induction machine in the arbitrary
reference frame
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Fig.3.5- (continued) Equivalent circuit representation of an induction machine in the

arbitrary reference frame

3.4.3qd0 Torque Equations

The sum of the instantaneous input power to all six windings of the stator and rotor
isgiven by :
pin :Vasias +Vbsi bs +Vcsics +V’ari’ar +V’bribr +V I W (328)

crocr

in terms of dqg quantities

r ;i
p (Vqs qs Vds ds + 2VOSI Os + Vqu gar + Vdr dr + 2V0rI Or) W (329)

Using stator and rotor voltages to substitute for the voltages on the right hand side of
(3.29) , we obtain three kinds of terms: ir, ipy, and wyi. (i’ ) terms are the

copper losses. The (i.py) terms represent the rate of exchange of magnetic field
energy between windings. The electromechanical torque developed by the machine is
given by the sum of the (w.yi ) terms divided by mechanical speed, that is:

Tem - __[W(Lpds gs Lqusl ds) + (W w )(LlJ:jr :]r - LIJ:]rI:ir)] Nm (330)
using the flux linkage relationships, TenCan aso be expressed as follows:

Tem - __[W(Lpds gs Lqus ds) + (W w )(LIJ:jr :]r LIJ:]H:jr)] Nm (331)
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Using the flux linkage relationships, one can show that

3P [ r 31
Tem =§§(q}qudr _LIJdrIqr) Nm

3P . .

:EE(LIstlqs _qusl ds) Nm (332)
3P - -

:EELm(Idrlqs_lquds) Nm

One can rearrange the torque equations by inserting the speed voltage terms given
below:

Eqs = Wl'les Eds = _Wl'qus
Ee =(W-w)yy  Ey =-(W-w)y, (3.33)

Table 3.1- Induction Machine Equations in Arbitrary Reference Frame

Sator qd0 voltage equations:
Vqs = pl'IJqs + Wq"ds + rsi gs
Vds = pl'les - Wl'qus + rsi ds (334)

VOs = pl-IJOS + rsi Os

Rotor qdO voltage equations:
Vo = PWe +(W =W )Wy +rig
V'dr = pl-IJ:jr - (W - Wr)l'IJ'qr + rlr'i'dr (335)

T ] "
VOr - pl'lJOr + rrIOr

where
W] fLy+L, O o L, 0 0 g |
Wy 0 Lg+L, O 0 L., 0 ||ig
0 0 L 0 0 0 ||i

l'lJOS - Is ' .OS (336)
Wy L., 0 0 L, +L, 0 O |[ig

W, 0 L, 0 0 L,+L, O iy

W, | L 0 0 0 0 0 L] io
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Table 3.1- (continued) Ind. Machine Equations in Arbitrary Reference Frame

Torque Equations:

3 . . o '
em = EZ_\I;)Vr[W(LleSI gs - LIJqsl ds) + (W _Wr)(LlerIqr - LqurIdr)] Nm (337)

3P r r -
Tem =E§(L|quldr _l'lerlqr) Nm

3P . .

= EE(LIJdSI as q"qsl ds) Nm (338)
3P o .

=EELm(Idrlqs—lquds) Nm

3.5qd0 Stationary and Synchronous Refer ence Frames

There is seldom a need to simulate an induction machine in the arbitrary
rotating reference frame. But it is useful to convert a unified model to other frames.
The most commonly used ones are, two marginal cases of the arbitrary rotating
frame, stationary reference frame and synchronously rotating frame. For transient
studies of adjustable speed drives, it is usually more convenient to ssimulate an
induction machine and its converter on a stationary reference frame. Moreover,
calculations with stationary reference frame is less complex due to zero frame speed
(some terms cancelled). For small signal stability analysis about some operating
condition, a synchronously rotating frame which yields steady values of steady-state
voltages and currents under balanced conditionsis used.

Since we have derived the equations of the induction machine for the general
case, that isin the arbitrary rotating reference frame, the equations of the machinein
the stationary and synchronously rotating reference frame, w to zero and we,
respectively. To distinguish these two frames from each other, an additional
superscript will be used, s for stationary frame variables and e for synchronously

rotating frame variables.
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Fig3.6- Equivalent circuit of an induction machine in the stationary frame

Table 3.2-Induction Machine Equations in Stationary Reference Frame

Sator qdO voltage equations:
Vias = PWias + Ii%gs
Vs = prsds + rsi Sds (339)

— s ;
VOs - pl'IJ os + rsl 0Os

Rotor qd0 voltage equations:
V'Sqr = pl.IJ'Sqr + (_Wr)l.IJ'Sdr + rr'ilsqr

Vi = pl.IJ'Sdr + (Wr)lp'sqr + rr'ilsdr (340)
1 ] "
Vor = leJOr + Ielor
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Table 3.2- (continued) Induction Machine Equations in Stationary Reference

Frame
where
W] [L,+L, O 0 L, 0 07[i%]
l.IJSds 0 Ly +L, 0 0 L, 0 ||i%s
0 0 L 0 0 0 (i
l'IJOS - Is ’ Os (3.41)
LIJSqr Lm 0 0 Llr + Lm 0 0 iSQr
Wsar 0 L., 0 0 Ly +L, 0 lis,
W, 0 0 0 0 0 Lo iy
Torque Equations:
P . .
Tem =g§(|.|]'5qr|'sdr _LlJ'Sdr|’Sqr) Nm
P . .
= gE(LIJSdsl qu - Lllsqsl Sds) Nm (342)

:gELm(l'sdHqu_|’Squsd5) Nm

The equivalent induction machine circuit and induction machine equations in the
stationary reference frame are given above in Table 3.2 and Fig.3.6. In Fig3.7, 3-
phase AC quantities are smulated in both stationary frame and synchronously

rotating frame.

g-axis

Fig.3.7- Equivalent circuit of an induction machine in the synchronously rotating
frame
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Fig.3.7- (continued) Equivalent cct of an induction machine in the synchronously

rotating frame

Table3.3- Induction Machine Equations in Synchronously Rotating Reference

Frame

where

Sator qdO voltage equations:
Veqs = pl‘IJeqs + Wel‘IJedS + rsl eqs
Ve = py Cos — Wel.IJeqs + rsi Cas (443)

VOs = quOs + rsi Os

Rotor qd0 voltage equations:
V'eqr = pLIJ'eqr + (We _Wr)l-IJ'edr + rr'i'eqr
V' = pW e — (W, =W )P + 10" (4.44)

o ] H
VOr - pl'lJOr + I’rIOr

Y| [L,+L, O 0 L, o o7[i%
o 0 L,+L, 0 0O L. 0%
oo |_| O 0 L. 0 0 0 i | 50
e L. 0 0 L,+L, 0 0|
D 0 L, 0 0 L,+L, 0 |l
o, | L O o o0 o0 0 L.,




Table3.3-(continued) Induction Machine Equations in Synchronously Rotating

Reference Frame

Torque Equations:

3P, e .16 e re
Tm=§§(¢ ol S =P %)  Nm

3P , .

= —— (W asi ®gs — P sl “as) Nm (3.46)
22
3P e e e e

ZEELmO arl [¢] =1 qr| ds) Nm

J-phase to 2-phase

0 In Stationary Frame and Synchronously Ratating Frame

_2|:| 1 1 1 1 1 1 1 1 1
2|:| T T T T T T T T T

ia [phase]

=
(o)

20 1 1 1 1 1 1 1 1 1
]
2|:| T T T T T T T T T

s
]

_2|:| 1 1 1 1 1 1 1 1 1
1] 1 2 3 4 5 6 [ g 3 10
2|:| T T T T T T T T T
_“EJ-m
1 1 1 1 1 1 1 1 1
1] 1 2 3 4 5 6 7 g 3 10
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Fig.3.8- A simulation of 3-phase AC quantities converted to both stationary frame
(igsrigs) @nd synchronously rotating frame(ige,de)
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3.6 Smulation of the Induction Motor in Stationary Frame

Using the stationary frame equations (3.39)-(3.42) induction motor is
simulated in a stationary reference frame and used in the development of field
orientation control techniques and state estimation techniques. Applying the
appropriate voltages to the motor model either those obtained by using feedback
information or direct open-loop voltage, one can observe the torque-speed responses
and current-flux waveforms. Using this information, different alternative control
techniques may be tested and developed.

In this model, three-phase voltages applied to the input are converted into
two-phase stationary reference frame voltages. Once d-q phase voltages obtained,
using the equations in Table 3.2 associated flux and current are calculated and then
applied to electromechanical and mechanica torque equations to obtain torque-speed
responses. Based on the stationary reference frame model Fig.3.9 shows the stator
voltage, the stator current, the torque and the speed waveforms at no-load for a 1-hp
motor. Torgue vs speed curve obtained from the same model is shown in Fig.3.10 for
no-load condition.

Mo-load response of ind. motor model
200 T T T

T T
= 0
I
=
_EDD 1 1 1 1 1
0 0.2 0.4 06 g 1 1.2
T T T T T
200F .
L o
o
=20 -
1 1 L L L
a 0.z 0.4 0.6 0.a 1 e
1.5 T T T T T
SR
I
5 05 b
D 1 1 ] ] ]
i} 0.2 0.4 06 (£33 1 1.2
20 T T T T T
E 10 MN‘UW i
E 0
(ui}
|_ _1':' 1 1 L L L
0 0.2 0.4 06 0.a 1 1.2

t (sec)

Fig.3.9- No-Load Response of Stationary Frame Induction Motor Model

35



ﬂ Torgue - speed response of the model
15

)

=10}

tarque (Mm

]

0 0.z DS'?JEEd I:FILI)DE 0.3 1

Fig.3.10- Open-loop torque-speed curve of the induction motor model at no-load

Induction machine model being non-linear it is needed for some cases to be
linearized at many different operating points to make use of linear control techniques.
Especiadly, the linear computation techniques based on the state-space model needs
the use of linearized model of the induction machine at instantaneous operating points
to define A,B,C,D matrices. Desired operating points may be found by using trim
function in MATLAB. After that, linmod function is used to determine the A,B,C,D
matrices of the small-signal model of the non-linear system about the chosen steady-
state operating point. Furthermore, ss2tf command is used to determine the transfer
function of the system at the chosen operating point whose instantaneous state-space
matrices are calculated [39]. After calculating these steps one may conduct study on
the stability analysis of the model.

For the induction machine model stability analysis, two-phase stationary
frame voltages and applied mechanical load are considered as inputs. Two-phase
stationary frame currents, electromechanical torque and rotor speed are considered as
outputs of the system in state space representation of the model. In Fig.3.11 changing
input3 (applied load) from zero to twice the rated torque, shift of the poles is
observed. It is confirmed that poles of the transfer function of (AW,/ATmecn) are al on
the left hand side of the real-axis. For a detailed stability analysis other transfer
functions of the different output-input combinations may be investigated in the
operational range. In addition to pole path, the stability analysis may be enriched
using rlocus command to arrange the gains of the system; those do not exceed the
stability limits using real machine parameters. Fig.3.12 and Fig.3.13 are the root locus

examples of two different state transfer functions of the motor.
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In addition to such a stability analysis, one may also investigate the step responses of
the desired (output-input) transfer functions (see Fig.3.14-3.15).
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Fig.3.14-Step response of w; (pu) to one volt change in Vgse
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Using the three different speed frames (arbitrary, stationary, synchronous)
discussed in sections above oriented equivalent circuit models for air-gap flux, stator
flux and rotor flux may also be derived. These models, however, are not considered
here but left for future works.

3.7 Smulations of FOC developed in Stationary Reference Frame

State observers used in this thesis use stationary frame models for the sake of
simplicity of the overall algorithm. Also in the field-oriented control simulations
stationary axis dqg model of a 20-hp induction motor is used. The simulation is
implemented using MATLAB/Simulink. This simulation is implemented to be
familiar with indirect field-oriented control and observe the variables at every stage of
the control. Also one can observe how well the flux amplitude remains constant when
the motor is loaded and the electromechanical torque is smooth. Related dq currents
in the simulation may give significant clues about the field oriented control principle
to abeginner.

In this simulation, reference dq currents are obtained according to the
reference load torque and speed waveform. They are compared with the actual motor
currents and the errors are input to PI controllers to obtain reference voltages. After
this point smulations of Space Vector PWM and FOC are implemented separately
due to very long ssimulation time of PWM part. Instead, the motor is fed with the first
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harmonic of the PWM voltage to save time and simplify the simulation. The

simulation results are given below:
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Fig 3.16- Applied mechanical torque, rotor speed and produced electromagnetic

torque

Fig. 3.16 showstheload torque, the rotor speed and the produced el ectromechanical

torque. In thefirst 0.5 sec., the motor produces electromechanical torque to overcome

the effect of theinertia. In the no-load time interval, Toy, iScloseto zero. As can be

seen from F.g.3.16 very smooth torque is obtained with field-oriented control.
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Fig.3.17- Synchronous frame dq axis currents
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In Fig.3.17 synchronous frame currents; torque producing current component, i, and
constant flux producing currents are shown. Note from Fig.3.17 that i is proportional
to the torque produced by the machine both during acceleration (see Fig 3.16) and at
loaded regions. For constant flux operation, d-axis current, ig remains constant
yielding a smooth flux in order to prevent torque oscillations. Fig.3.18 shows the
stator phase voltage and the current. Note that the phase current increases
proportionally to the load requirement. In Fig.3.19 dq stationary axis fluxes are
shown. The magnitude of each flux component remains the same after the transient
state. The rotor-flux is obtained as the square root of the sum of the squares of dqg axis
fluxes. Constant rotor-flux is vital for field-oriented control in controlling the torque
perfectly. As in the case of DC motors, once constant flux is obtained, one can
control the produced torque easily by controlling the torque producing current

component, i, which isindependent of the flux.
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Fig. 3.18- Phase-A stator voltage and current
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Fig.3.21- Four quadrant speed reversal and phase voltage

“dwnr' »mﬂm m,f -;\m wwww/\

Fig.3.22- Four quadrant speed reversal and phase current

Fig.3.20 shows referred rotor currents. At no load case the rotor currents converge to
zero due to unity slip. In Fig.3.21 and 3.22 four-quadrant speed reversal is given with
phase voltage and current variations. The frequency and the magnitude of both the
stator voltage and the stator current are controlled by FOC during the speed reversa
operation.



Fig.3.23- Four-quadrant speed reversal and produced torque due to inertia

Fig.3.24- Four-quadrant speed reversal and rotor flux wave-form

In Fig.3.23 four-quadrant speed reversal waveform is given with produced torgue.
Since the operation is simulated at no-load, the torque produced due to the demand by
the motor inertia is quite smooth because of the constant flux shown in Fig3.24. In
Fig.3.24 we observe that the speed change does not affect the constant flux condition
and thisillustrates the satisfactory result of rotor field orientation.



CHAPTER 4

PULSEWIDTH MODULATION with SPACE VECTOR THEORY

4.1 Inverters

Three phase inverters, supplying voltages and currents of adjustable
frequency and magnitude to the stator, are an important element of adjustable speed
drive systems employing induction motors. Inverters with semiconductor power
switches are d.c. to a.c. static power converters. Depending on the type of d.c. source
supplying the inverter, they can be classified as voltage source inverters (VSl) or
current source inverters (CSl). In practice, the d.c. source is usualy a rectifier,
typically of the three phase bridge configuration, with d.c. link connected between
the rectifier and the inverter. The d.c. link is a simple inductive, capacitive, or
inductive-capacitive low-pass filter. Since neither the voltage across a capacitor nor
the current through an inductor can change instantaneously. A capacitive-output d.c.
link is used for a VS| and an inductive-output link is employed in CSl.

VSIs can be either voltage or current controlled. In a voltage-controlled
inverter, it is the frequency and magnitude of the fundamental of the output voltage
that is adjusted. Feed-forward voltage control is employed, since the inverter voltage
is dependent only on the supply voltage and the states of the inverter switches, and ,
therefore, accurately predictable. Current controlled VSIs require sensors of the
output currents which provide the necessary control feedback.

The type of semiconductor power switch used in an inverter depends on the
volt-ampere rating of the inverter, as well as on other operating and economic
considerations, such as switching frequency or cost of the system. Taking into
account the transient- and steady-state requirements, we have used 1200V, 40A
IGBT switches. With appropriate heat sink, we can rise to 20 KHz, however at 10
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KHz, switching losses and conduction losses become equal [40], moreover, complex
mathematical algorithms require much time. Thus 10 KHz is selected as the

switching frequency in our algorithms.

4.1.2 Voltage Sour ce Inverter (VSl)

A diagram of the power circuit of a three phase VSl is shown in the
Fig.4.1. The circuit has bridge topology with three branches (phases), each consisting
of two power switches and two freewheeling diodes. In the case illustrated and
implemented in thisthesis, the inverter is supplied from an uncontrolled, diode-based
rectifier, viad.c. link which contains an LC filter in the inverted configuration. While
this circuit represents a standard arrangement, it allows only positive power flow
from the supply system to the load via typically three-phase power line. Negative
power flow, which occurs when the load feeds the recovered power back to the
supply, is not possible since the resulting negative d.c. component of the current in
the d.c. link can not pass through the rectifier diodes. Therefore, in drive systems
where the VSI-fed motor may not operate as a generator, more complex supply
system must be used. These involve either a braking resistance connected across the
d.c. link or replacement of the uncontrolled rectifier by a dual converter. As a future
work, the inverter may be supported with braking resistance connected across the d.c.
link via free wheeling diode and a transistor. When the power is returned by the
motor, it is dissipated in the braking resistor which is called dynamic braking. The
circuit diagram of three-phase VS used in this project is shown in Fig.4.1.

F 3 L F 3 J_ F 3 F 3 T
B I I (8 ™Jc|
5 |R T
F 3 L X X X
T -
RECTIFIER INVERTER

Fig.4.1- Circuit diagram of three phase VS|

Because of the constraints that the input lines must never be shorted and the
output current must always be continuous, a voltage source inverter can assume only
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eight distinct operational topologies. They are shown in Fig.4.2 and Fig.4.3. Six out
of these eight topol ogies produce a non-zero output voltage and are known as non-
zero switching states and the remaining two topol ogies produce zero output and are

known as zero switching state.

NEala

A B C

Fig.4.2- Three phase inverter with switching states
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Fig.4.3- Eight switching state topologies of a voltage source inverter



4.2 VVoltage Space Vectors

Space vector modulation for three leg VS is based on the representation of the three
phase quantities as vectors in two-dimensional (a-p) plane. Considering the first

switching state in Fig.4.4, line-to-line voltages are given by

LT
alals

Fig.4.4- First switching state —V1 (pnn)

|
!

Vab=Vs

Vbc=0

Vca=-Vs
This can be represented in (a-B) plane as shown in Fig.4.5 where Vab, Vbc and Vca
are the three line voltage vectors displaced by 120° in space. The effective voltage
vector generated by this topology is represented as V, (pnn) in Fig.4.5. Here (pnn)
refers to the three leg /phases a,b,c being either connected to the positive dc rail (p)
or to the negative dc rail (n). For the first switching state V,, phase a is connected to

positive dc rail and phases b and ¢ are connected to negative dc rail.

A Vbe
Vb= Vs
Vbc=0
- -y
V1(pnn)
/ .
Vca :

Fig.4.5- Representation of topology 1 in (a-B) plane
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Similar to the V,, six non-zero voltage vectors can be shown asin Fig.4.6. The tips of
these vectors form a regular hexagon. We define the area enclosed by two adjacent

vectors, within the hexagon, as a sector.

Fig.4.6- Non-zero voltage vectorsin (a-B) plane

The last two topologies of Fig.4.3 are zero state vectors. The output line
voltages in these topologies are zero.

Vab=0

Vbc=0

Vca=0

These are represented as vectors which have zero magnitude and hence are
referred as zero switching state vectors. They are represented with dot at the origin
instead of vectors as shown in Fig.4.7.

Fig.4.7- Representation of the zero voltage vectorsin (o-p) plane
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4.3 Space Vector Modulation

In the literature there exist a number of PWM algorithms [41, 42]. The
performance criteria of these algorithms are basically:

1-Current harmonics

2-Harmonic spectrum

3-Torque harmonics

4-Switching frequency

5-Dynamic performance

6-Polarity consistency rule
The well-known feed-forward PWM schemes are:

a-Carrier based PWM

b-Carrierless PWM

c-Over-modulation

d-Optimized feedforward PWM

In this thesis, we have implemented one of the well-known carrier based
PWM technique, SYM and proved its high performance with respect to other
techniques (e.g. Sinusoidal Modulation) [43]. Now let us look at the basics of SVM.

The desired three phase voltages at the output of the inverter could be
represented by an equivalent vector V rotating in the counter clockwise direction as
shown in Fig.4.8. The magnitude of this vector is related to the instantaneous
magnitude of the output voltage (see Fig.4.9.) and the period this vector takes to
complete one revolution is the same as the fundamental time period of the output

voltage.

‘;VbC

Fig.4.8- Output voltage vector (V) in (a-p) plane
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Fig.4.9- Output line voltages in the time domain

Let us consider the situation when the desired line-to-line output voltage

vector V isin sector 1 as shown in Fig.4.10. This vector could be synthesized by the
pulse width modulation (PWM) of the adjacent SSV’'s V; (pnn) and V, (ppn), the

duty cycle of each being d; and d,, respectively, and the zero vector (V; (nnn) /

Vg(ppp)) of duty cycle dy :
diV,+ dpV, =V =mV.€e°
di +dy +dg =T

where, 0 < m < 0.866, is the modulation index.

~. V2(ppn)
Segtor 1
y o l/ 1(pnn)
d

Fig.4.10- Synthesis o the required output voltage vector in sector 1

(4.1)
(4.2)

While determining the duty cycles d;, d, and dy in SVM techniques, the only

difference is the choice of zero vectors and the sequence in which the vectors are

applied within the switching cycles. One is free about selecting the given alternatives

below in his SYM algorithm:
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1-Choice of the zero vector —using V; (ppp), Ve (nnn) or both,

2-Sequencing of the vectors

3-Solitting of the duty cycles of the vectors without introducing additional

commutations.

Here four different SYM schemes are given roughly according to their
repeating duty-cycle distribution:

a-Theright aligned sequence (do/2, d, dp, do/2)

b-Symmetric sequence (do/4, th/2, do/2, do/2, do/2, di/2, do/4)

c-Alternating Zero Vector Sequence (dy, dz,do, d2,d1,do)

d-Highest Current Not-Switched Sequence (d;, dp, do)
Among these SVM techniques the commonly preferred symmetric sequence, which
has the lowest THD, has been implemented in this study [44,45]. Switching sequence
isgiveninFig.4.11.

ppn:pnninnn:

AR pnn ppnT ppp :ppnipnninnninnnipnnippni npp

phaaeA p : : : : : E E : : : i : :
T S B e . N
phase B p e LB F F B OE S
1 T 1 1 | s e B \ |
] 1 1 ! 1 I ! 1 I | i I I 1 i
T S T T T e
phase G p E E : | E | E E E : : E E E
n e Do e S £
1 1 1 T T T T 1 T |
i d 2 A2 A2 1d21d 0 d 2Dl g2 2 2 1 dyd )
I Ts | Ts |

Fig.4.11- Phase gating signalsin Sym. Seq. SVM

4.4 SVPWM Application to the Static Power Bridge and | mplementation Using
DSP Platform

In the case of AC drive applications, sinusoidal voltage sources are not used
as explained before. Instead, they are replaced by 6 power IGBTs that act as on/off
switches to the rectified DC bus voltage. The aim is to create sinusoidal current in
the coils to generate rotating field. Owing to the inductive nature of the phases, a
pseudo-sinusoidal current is created by modulating the duty-cycle of the power
switches. The switches (IGBT) shown in the Fig.4.12 are activated by signals (a, b,
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c) and their complement values. Eight different combinations are available with this

three-phase VSl including two zero states.

]
Vdci2 L a b c
: i/ 0/ /

Vdc/2

af EE’{ e‘jT/

Fig.4.12- Power Bridge

It is possible to express each phase-to-neutral voltage for every switching
combination of IGBTs aslisted in Table 4.1.

Table 4.1. Power Bridge Output Voltages (Van, Ven, Ven)

A | B | C Van Ven Ven

ol oo 0 0 0

0| o0 1 | -vde/3 | -vdc/3 | 2vdc/3

0 | 2 | 0 | -vdc/3 | 2vdc/3 | -vdc/3

0 | 1 1 | -2vdc/3 | Vdc/3 | Vdc/3

1 | 0 | 0 | 2vde/3 | -Vde/3 | -Vdc/3

110 1 | Vvdc/3 | 2vdc/3 | Vdc/3

1 1 | 0 | vde/3 | Vvdc/3 | 2vdc/3

1 1 1 0 0 0

In field-oriented control algorithm, the control variables are expressed in rotating
frame. The current vector ¢« that directly controls the torque is transformed into a
voltage vector by the inverse Park transform. This voltage reference is expressed in
the (a-B) frame. Using this transformation three-phase voltages (Van, Ven, Ven) and
the reference voltage vector are projected in the (a-p) frame. The expression of the

three phase voltages in the (a-p) frame are given by general Clarke transformation

equation:
vV 1 —E —E Van
=|-2 2 2y (4.3)
Vg | 3|, V3 _N3| "
0 — —— |V
2 2 CN



Since only 8 combinations are possible for the power switches, Vg, ,Vg Can
also take finite number of values in the (o-p) frame (Table 4.2) according to the

IGBT command signals (a, b, c).

Table 4.2. Stator Voltagesin (a-f) frame and related Voltage Vector

A B C Va VB Vectors
0 0 0 0 0 VO
0 0 1 -Vdc/3 -Vdc/\3 V1
0 1 0 -vdc/3 Vvdc/N3 V2
0 1 1 -2vdc/3 0 V3
1 0 0 2Vdc/3 0 V4
1 0 1 Vdc/3 -vdc/N3 V5
1 1 0 Vdc/3 vdc/N3 V6
1 1 1 0 0 V7

The eight voltage vectors re-defined by the combination of the switches are

represented in Fig.4.13. Now, given areference voltage (coming from theinverse

V(010) V(110)
1
5 3
V3(011) < »V/,(100) O
4 2
6
V,(001) V5(101)

Fig.4.13 -Voltage Vectors
Park transform), the following step is used to approximate this reference voltage by
the above defined eight vectors. The method used in approximating the desired stator
reference voltage with only eight possible states of switchesisto combine adjacent
vectors of the reference voltage and modulate the time of application of each
adjacent vector. In Fig.4.14, the reference voltage V.« iS in the third sector and the
application time of each adjacent vector is given by:

T=T,+Ts+T,

T,o T.o
Vau =2V + 2V,

S

(4.4)
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p
V6(110)
Vsﬁref i Voef
VeTe/T
60° V4(100)
V,TJT X o

Fig. 4.14 - Projection of the reference Voltage Vector

The determination of the amount of times T, and Tgis given by simple projections:
T
Vg = ?6“V6||COS(3OO)

Vsorref = %"\74” *+X (45)
_ Vg
" tg(60°)

Finally, with the (a-p) component values of the vectors given in the Table 4.2, the
amount of times of application of each adjacent vector is:

T

Vo (3vmref ~ V3V g )

Ta= (4.6)

T
T.=4/3—V
6 VdC PBref

The rest of the period spent in applying the null-vector. For every sector,
commutation duration is calculated. The amount of times of vector application can
all berelated to the following variables:

X= \/§VsBref
V3 3
Y :7\/5&9\‘ +Evsaref
. 3 3 4.7)
Z= 7V3Bref _Evscxref
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In the previous example for sector 3, T, = -Z and T, = X. Extending this logic, one
can easily calculate the sector number belonging to the related reference voltage

vector. The following basic algorithm helps to determine the sector systematically.

IfX>0thenA=1 elseA=0
IfY> OthenB=1 else B=0
IfZ>0thenC=1 €eseC=0
Sector = A+2B+4C

Application durations of the sector boundary vectors are tabul ated as;

Sector

1 =2 t=Y
2 =Y t=-X
3 t1=-Z t,= X
4. t1=-X th=Z
5 1= X t=-Y
6 t1=-Y t,=-Z
Saturations

If (tz+ t;) > PWMPRD then
Tisat = (tj_/ 1+ tz)* PWMPRD
ot = (tz/ i+ tz)* PWMPRD

The third step is to compute the three necessary duty cycles as;
_ PWMPRD -t, -t,

The last step isto assign the right duty cycle to the right motor phase (in other
words, to the right CMPRXx) according to the sector(see Fig.4.16). Table 4.3 depicts
this determination.

Table 4.3- Assigned duty cycles to the PWM outputs

1 2 3 4 5 6

CMPR1 tbon taon taon tcon tbon tcon
CMPR2 taon tcon tbon tbon tcon taon
CMPR3 teon thon teon taon taon thon
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CMPR1 teon

CMPR2 thon
CMPR3 taon
Pyt 1
Py 3
FiRaS

Fig.4.15- Sector 3 PWM Patterns and Duty Cycles (case shown in Fig.4.14)

4.5 Event Manager Configuration of DSP for SVPWM

TMS320F/C2XX has specific peripherals in order to handle space vector
module easily and optimally. Timer registers, compare registers, PWM outputs and
PWM interrupts and programmable timer-ADC synchronization helps us for easy
implementation. However, athough these tools make design easy they are not user
friendly for a beginner and rather complicated.

Timer is the base time of the PWM interrupts generation and overall control
algorithm is synchronized with timerl, PWM underflow interrupt. During the
excessively long time specifications for timer underflow the algorithm is run in an
infinite loop. For the next period again timerl underflow interrupt is extracted from
this infinite loop. By this way PWM outputs and the overall control algorithm run
synchronoudly. As an aternative, one may write an interface program for visualizing
the software states without changing program instead of an infinite loop. Timerl is
configured in up-down counting mode to generate the symmetrical PWM patterns.
The timer 1 control register TLCON is programmed in order to get a 50ns resolution:
the pre-scalar clock of the timer is set to 1 giving the highest possible resolution.
Two consecutive writes to TICON are required to ensure the synchronization of the
GP timerswhen T1CON [6] is used to enable GP timer 2 or 3:

1) Configure all other bits with TLICON [6] set to 0.

2) Enable GP timer 1 and, thus, GP timer 2 or GP timers 2 and 3, by setting
T1CON]I6] to 1. Otherwise the PWM outputs cannot be observed.
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Configuration of T1CON is given below:

spl k #PWVPRD, T1PER ;Set PWMinterrupt period
spl k #0, TLCNT
spl k #0A800h, T1CON ;lgnore Emul ati on suspend

; Up/ Down count node( nmust)

;x/'1 prescal ar(optional)

; Use own TENABLE

;Disable Tiner(for the first | oading)
;I nternal C ock Source(nust)

; Rel oad Conpare Regi ster when T1CNT=0
(rmust)

; Disabl e Tiner Conpare operation

The compare registers must be continuously reloaded with calculated duty cycle
values (taon, thons teon)-

spl k #0207h, COMCON ;Disable for the first |oading
; Rel oad Full Conpare when T1CNT=0( nust)
; Di sabl e Space Vector
; Rel oad Ful |l Conpare Action when T1CNT=0
; Enabl e Full Conpare CQutputs
(rust)
; Di sabl e Sinpl e Conpare Qutputs(SC not
used)
;Select GP tinerl as time base(nust)
; Full Conpare Units in PWM Mode(nust)
spl k #8207h, COMCON ; enabl e conpare operation

Two consecutive writes to COMCON are required to ensure the proper operation of
full compare unitsin the PWM mode:

1) Enable PWM mode without enabling compare operation.

2) Enable compare operation by setting COMCONJ15] to 1 without changing
any other bits.
The output of the Compare operation are not directly sent to the Output Logic but are
previously transferred through the PWM Deadband on-chip circuit. Depending on
the power bridge pre-driver used, the control register DBTCON has to be
progranmmed. The dead-band unit is designed to assure that no overlap occurs
between the turn-on periods of the upper and lower devices that are controlled by the

two compare/PWM outputs associated with each full compare unit (see Fig.4.16).
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Fig.4.16- Dead time band
This assures that no overlap will occur under any condition. Although IGBT gate

driver card provides sufficient dead time, we aso added software dead time for
reliability. However, at very low speed range effect of dead time bands at the output
voltage becomes remarkable and must be compensated.

Bitsin the full compare action control register (ACTR) control the action that
takes place on each of the six compare output pins (PWMx/CMPx, x = 1-6) on a
compare event. The polarity of the PWM pins is chosen in the Full Compare Action
Control Register (ACTR) asfollow:

| dp #DP_EV
spl k #0666h, ACTR ;Bits 15-12 not used, no space vector
; PM\M conpare actions
; PAWB/ PWMB - Active Low Active High
; PWWB/ PWWE - Active Low Active High
; PAML/ PWWR - Active Low Active High

4.6 Smulation and Experimental Results of SYPWM
The SVPWM algorithm implemented here by DSP is smulated before
experimental worksto verify itsresults. In the first smulation (Fig.4.17), SVPWM

=
sactort
Out1 ——f
"
Ot ——f—1 S e
[ PR taon
i Outd ——f— ——P{In2 thon
v o teon
t1.t2
Outsd |—Je—1 duty cyeles
Inz el
it XN caleulation i S e
wheta Chatdi er—i
look-up table Multiport
waltage referenges Cuniteh
Ini
sector [zectar]

L lin2

sector determination

Fig4.17-SVPWM Algorithm Simulation
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algorithm is simulated step-by-step and all the software variables in the agorithm are
compared with the experimental DSP program outputs. It is shown that both of the
results are the same, and correct.

In Fig.4.18. duty cycles of two PWM switches are shown ( tawn, toonteon)-IN
Fig.4.19 sector numbers of the rotating reference voltage vector is given. A careful
reader will notice that the order of the sectorsisthe same asin Fig.4.13 of avector

Fig.4.18- Simulated waveforms of duty cycles, ( taon, thon,tcon )

Fig.4.19- Sector numbers of voltage vector

rotating in the direction of counterclockwise. In Fig.4.20 durations of the to boundary
sector vectors are shown. In Fig.4.21 projection vectors of the reference voltage
vector on (ab c) plane are shown in time domain (see Fig.4.8).
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Fig.4.21- The projections of the Va, Vb and V¢ of the reference
voltage vector in the (ab c) plane-(X, Y, 2)

In the second simulation, a sraightforward SVPWM agorithm is
implemented ignoring optimal conditions for practical applications. In this
simulation one can observe line-to-line voltages in the form of frequent pulses and
the sampled signal (reference voltage) for varying modulation constants (see
Fig.4.22-2.24)
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Fig.4.23- SVPWM output with the signal sampled (m=0.4)
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Fig.4.24- SVPWM output with the signal sampled (m=0.6)-Zoomed

The experimental outputs confirm the theoretical and simulation outputs.
Given two reference voltage vectors associated with the reference currents and
torque requirement SYPWM software parameters are observed and compared with
the simulated ones. Fig.4.25 shows duty cycle of one of the PWM switches. The duty
cyclesisfigured out by DAC outputs of the DSP processor.

Ny TS

Fig.4.25- Duty cycle of PWM1



Fig.4.26- Low-pass filtered form of PWM1 pulses

A SVPWM designer must check the correctness of the six PWM outputs generated
by this SVPWM module. A smple low—passfilter RC circuit may be used to filter
out the high frequency components. The R and C values (or the time constant) are
chosen for a desired cut—off frequency (fc) using the following equation:

Time constant = RC = 1/2xf.
For example, R = 1.8 k. and C = 100 nF, givesfc = 884.2 Hz. This cut—off frequency
has to be lower than the PWM frequency. This low—pass filter is connected to the
PWM pins of the x24x/x240xEVM, the filtered version of the PWM signals are
monitored by oscilloscope. The waveform shown on the oscilloscope should be the
same as the one shown in Fig.4.25. In Fig.4.27 the sector number of the rotating

reference voltage vector is shown (see Fig.4.19 simulation output).

Fig.4.27-Sector number of the reference voltage

65



| | | A
A H'*| : i \ | 45
gt = I | -_ - — — f |III - .
I 1, A A RO L L' T 1
d ) i} Y| il | ekl JREED:
jex ! [ L' | ot oo BEeE
| / 4 \ g | (06 B Bt
I Vol ! 9| |
i | | % 7
o N il I 1T |
i |
:u. | 1l | 5 | 7 { | T
i D | il z ! || I B
1: T 1 [ :, | |. ! LI ._-
- ! I | 7 | i
| | ! | {
e ; T 1 1
| 1 | i
| % i
_i+.. e —— I| 1 i
3l | T4 ! }
i | e fi L
(e i I
i Ul )

Fig.4.28- Duration of two boundary vectors (t3,t,)

Fig.4.28 is the experimenta confirmation of simulation shown in Fig.4.20, duration
of two boundary vector. Fig.4.29 is the experimental result of projection vectors in

abc plain (X,Y in time domain- see Fig.4.21)
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Fig.4.29- Projection vectors in abc plain (X,Y in time domain)
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Fig.4.30- Typica phase current of an induction motor driven by SVPWM under
heavy load conditions.
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CHAPTER 5

KALMAN FILTER

5.1 Sensorless Control

In controlling AC machine drives speed transducers such as tacho-
generators, resolvers, or digital encoders are used to obtain speed information. Using
these speed sensors has some disadvantages

* They are usually expensive,

» The speed sensor and the corresponding wires will take up space,

* In defective and aggressive environments, the speed sensor might be the

weakest part of the system

Especially the last item degrades the system’ s reliability and reduces the advantage of
an induction motor drive system. This has led to a great many speed sensorless vector
control methods [46]. On the other hand, avoiding sensor means use of additional
algorithms and added computational complexity that requires high-speed processors
for real time applications. As digital signal processors have become cheaper, and their
performance greater, it has become possible to use them for controlling electrical
drives as a cost effective solution. Some relatively new fully digitized methods, used
for speed sensorless field-oriented control, utilize this enhanced processing capacity
[47]-[49].

Usually sensorless control is defined as a control scheme where no mechanical
parameters like, speed and torque, are measured. Traditional vector control systems
use the method of flux and dlip estimations based on measurements of the phase

currents and DC link voltage of the inverter but, this has a large error in speed
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estimation particularly in the low-speed range. MRAS (model reference adaptive
system) techniques are also used to estimate the speed of an induction motor [19]-
[21]. These also have a speed error in low-speed range and settle to an incorrect
steady-state value. In recent years, non-linear observers are used to estimate induction
motor parameters and states [27-28], [31-32, 50].

5.2 Observers

All states are not available for feedback in many cases and one needs
to estimate unavailable state variables. Estimation of unmeasurable state variables is
commonly called observation. A device (or a computer program) that estimates or
observes the states is called a state-observer or simply an observer. If the state-
observer observes al state variables of the system, regardless of whether some state
variables are available for direct measurement, it is called a full-order state-observer.
An observer that estimates fewer than the dimension of the state-vector is called
reduced-order state-observer or simply a reduced-order observer. If the order of the
reduced-order state-observer is the minimum possible, the observer is caled
minimum-order state-observer.

Basically, there are two forms of the implementation of an estimator as open-
loop and closed-loop. The difference between these two is a correction term,
involving the estimation error, used to adjust the response of the estimator. A closed-
loop estimator is referred to as an observer.

In open-loop estimators, especially at low speeds, parameter deviations have a
significant influence on the performance of the drive both in steady state and transient
-state. However, it is possible to improve the robustness against parameter mismatch
and also signal noise by using closed loop observers

An observer can be classified according to the type of representation used for
the plant to be observed. If the plant is deterministic, then the observer is a
deterministic observer; otherwise it is a stochastic observer. The most commonly used
observers are Luenberger and Kalman types [2]. The Luenberger observer (LO) is of
the deterministic type, and the Kalman Filter (KF) is of the stochastic type. The basic
Kaman filter is only applicable to linear stochastic systems, and for non-linear
systems the extended Kalman filter (EKF) can be used, which can provide estimates
of the states of a system or of both the states and parameters. The EKF is a recursive

filter (based on the knowledge of statistics of both the state and noise created by
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measurement and system modelling), which can be applied to non-linear time varying
stochastic systems. The basic Luenberger observer is applicable to a linear, time-
invariant deterministic system. The extended Luenberger observer (ELO) is
applicable to non-linear time varying deterministic system. In summary it can be seen
that both EKF and ELO are non-linear estimators and the EKF is applicable to
stochastic systems and ELO is applicable to deterministic systems. The simple
algorithm and the ease of tuning of the ELO may give some advantages over the
conventional EKF. However, EKF being insensitive to parameter changes and used
for stochastic systems (measurement and modeling noises taken into consideration) it
is, therefore, commonly preferred in field-oriented control applications.

Various types of speed observers are discussed in literature, which can be used
in high performance induction motor drives such as full-order adaptive state observer.
In the full-order adaptive state observer the rotor speed is considered as a parameter,
but in ELO and EKF the rotor speed is considered as state. When the appropriate
observers are used in high-performance speed sensorless torque-controlled induction
motor drives, stable operation can be obtained over a wide-speed range, including
very low speeds[26-31], [51-54].

5.2.1 General Theory on Observers

An observer can be used to estimate states which cannot be measured, or
where the measurements are corrupted by noise. If a system can be described in
discretetime as:

x(k +1) = Ax(k) + Bu(k)

y(k)  =Cx(k) (5.1)
and the system is observable, i.e. the observability matrix, M,, has full rank 1, the
states can be estimated by ( 5.2) where

CF

CF?
M, =| .

cF
X(k +1) = AX(k) + Bu(k)

R(k +1) = AX(K) + Bu(K) + L (y(k +1) - CX(k +1)) (5.2)
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y(k)

ulk) | Observer y(k+1)

Fig.5.1 —Block diagram of an observer

Fig.5.1 shows the block diagram of the observer which is described by (5.2). The
output vector, y, is used to calculate the current estimate of the state vector, x. The
error of the observer is defined by:

e(k) =x(k) —x(k)
e(k +1) (A —LCA) e(k) (5.3)

where L isthe observer gain
5.3 Kalman Filter

When applied to a physical system, the observer described in section 5.2, will
be under the influence of two noise sources:
1. Process hoise - i.e. thermic noise in aresistor, which is a part of the system.
2. Measurement noise - i.e. quantization noise.
Considering these two noise sources (5.1) can be rewritten as:
x(k + 1) = Ax(k) + Bu(k) + Gyv(k)
y(k)  =Cx(Kk) +w(k) (5.4)

where v(K) is the process noise and w(k) is the measurement noise.

71



In the following, v(k) and w(k) will be regarded as zero mean, uncorrelated
white noise sequences with covariances, V1(k) and Vy(k). The objective of the
Kaman algorithm is to determine a gain matrix, L, which minimizes the mean square
of the error, e. This can be achieved with the algorithm described in Table 5.1, where:

(k) 2 E{x(k) | (1), y(2)...y() }
Qk +1)2 E{e(k +1). e (k +1)} (5.5)

State estimate time update:
R(kk-1) =A(k-2)&(k-1]k-1) +B(k-1)u(k-1) (5.6)

Covariance Time update:

Qk) =Ak-1)Q(k-1) AT(k-1)+B(k-1)V,(k-1)B (k -1) (5.7)
Kaman Gain Matrix:
L (k)= Q(k) ¢ (k) [c(k) (k) C7(k)+ v, (k)] (58)

State estimate measurement update:

x(k1k) =x(k|k-1)+L(Kk)[y(k)-clk)x(k|k-1)] (5.9)

Table 5.1-Discrete Kalman Filter

If anything but xkept constant, the covariance matrix will converge towards the
solution to the discrete Riccati equation:

Qlk)=Ak)Q(k)AT(k)+G, (k)V,(k)G,"(k)-L'(k)ck)Q(k)aT(k)  (5.10)
where

L'(k) = A(k) Q(K) CT (k) [C(K) Q) CT (k) + V, ()] (5.11)
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Since the variables in Riccati eguation (5.10) are matrices, it is rather
complicated to solve symbolically. There exist two special functions to solve
algebraic Riccati equations. The function care( ) in Matlab can solve continuous-time
algebraic Riccati equations and the function dare( ) can solve discrete-time algebraic
Riccati equations whose general equation [55]:

ETXE=ATXA-(ATXB+S)(B'™XB+R) (ATXB+9*+Q

G=(B'XB+R)! (BTXA +9")

This general form is applied to the Kalman filter representation by redefining the
elementsin Riccati equation as:

A=AT

B=C'

Q=G,V:GV'

R=V,

E=l

S=0
The stationary covariance matrix, Q, and the stationary gain matrix, L’ can be found
by substituting:

Q=X

L’=B'
Thisisused in the system in order to get a starting guess of the parameter.

Note:

The reason for using L’ rather than L is that the equation corresponds to the closed

discrete Kalman filter, displayed on Fig.5.2. However they will converge towards the
same result.
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y(k)

Kaman Filter
V (k) »  ACAT+GV,GT, |<7
+v Q(k+1) Q)
u(k)
A
| L' (k)
»  AQCT (CQCT+Vy)?
Y | | 2 (k)
L
A

Ve

yH(k+1)

c |

Fig.5.2 —Block Diagram of Kalman Filter
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5.4 Extended Kalman Filter

An Extended Kalman Filter is a recursive optimum state-observer that can be
used for the state and parameter estimation of a non-linear dynamic system in real
time by using noisy monitored signals that are distributed by random noise. This
assumes that the measurement noise and system noise are uncorrelated. The noise
sources take account of measurement and modeling inaccuracies. In the first stage of
the calculations, the states are predicted by using a mathematical model (which
contain previous estimates) and in the second stage; the predicted states are
continuously corrected by using a feedback correction scheme. This scheme makes
use of actual measured states, by adding a term to the predicted states (which is
obtained in the first stage). The additional term contains the weighted difference of
measured and estimated output signals. Based on the deviation from the estimated
value, the EKF provides an optimum output value at the next input instant. In an
induction motor drive the EKF can be used for the real-time estimation of the rotor
speed, but it can also be used for state and parameter estimation. For this purpose the
stator voltages and currents are measured (or the stator voltages are reconstructed
from DC link voltage and the inverter switching signals) and, for example, the speed
of the machine can be obtained by the EKF quickly and precisely [56].

5.4.1 Application of the Extended Kalman Filter

In the present section the Extended Kalman Filter (EKF) is used for the
estimation of the rotor speed of an induction motor. The EKF is suitable for use in
high-performance induction motor drives, and it can provide accurate speed-estimates
in awide speed range including very low speeds as well [27-31], [51-54].

The main design steps for a speed sensorless induction motor drive
implementation using the discretized EKF algorithm are asfollows:

» Selection of the time-domain induction machine model,

» Discretization of the induction machine model,

» Determination of the noise and state covariance matrices,

* Implementation of the discretized EKF agorithm; tuning.
For the purpose of using an EKF for the estimation of the rotor speed of an induction
machine , it is possible to use various machine models. For example, it is possible to

use the equations expressed in the rotor flux-oriented reference frame, or in stator
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flux-oriented reference frame. In order to avoid extra calculations and some non-
linear transformations, stationary reference frame is preferred [48]. The main
advantages of using the model in stationary reference frame are:

* Reduced computation time,

* Smaler sampling time,

» Higher accuracy,

* More stable behavior.

Thus, we have chosen stationary reference frame in our simulation and experimental
implementation.

5.4.2 Motor Model for EKF

The model for induction motor developed in stationary reference frame and
used in the previous studies[2], [28] is given below:

[(Ke L,;Rr LW, ]
s KL LK, LKL s 1
i o -Ke _LoW LR ol |l 0
lgs K. L. K, LZrK| lgs 1 01 V3
il L 1 vy | *|0 of|
de| °F - 0 -—  -w, 0] [T K Vs
VYar Tr L Tr 1 VYor 00
W, 0 T—m W, _? 0 W, 00
r r
0o o0 0 o o
(5.12)
I3
iS
[ 1 00 0 O *
s | = W3 (5.13)
IZS 01000 o )
S
ar
LW
where

K _(R ,1-0)_(1,61-0 R +R(L L)
Ke lob, or, ) \T. T ) L

S r S r S

L, Ls, L, are rotor, stator and main inductances

T, Ts are rotor and stator time constants
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This model has a disadvantage; its order is higher. This will be a drawback
when the EKF algorithm has to be implemented in real-time. One great advantage of
this model, however, is that it does not need speed measurement, so neither the flux
speed nor the rotor speed has to be known. The other is that, the flux model
mentioned in Chapter 1 can be omitted, since this model also estimates the flux, and
so the angle of the flux and any other parameter can be directly calculated.

It should be noted that in (5.12) it has been assumed that the rotor-speed
derivative is negligible, dw,/dt=0. Although the last row of the A [5x5] matrix in
(5.12) corresponds to infinite inertia in reality it is not and the required correction is
accomplished by the Kalman filter (by the system noise compensation, which also
takes account of the computational inaccuracies ) [48]. If the load-torque is not
known, the change of w, cannot be found from the remaining states and control
signals. This problem can be overcome by introducing the mechanical speed as a
parameter rather than a state [21]. wr is assumed to be constant during the state
estimate time update computation but it is included in covariance time update
computation. The speed will, therefore, be estimated in the state estimate
measurement update step. Furthermore, it should be noted that the effects of the
saturation in magnetic paths of the machine have been neglected in the model. This
assumption is justifiable. It can be shown that the EKF is not sensitive to changesin
inductances, since changes in the stator parameters are being compensated by EKF.
The application of (5.12) to the EKF will give not only the rotor speed, but also the
rotor flux-linkage components (and consequently the angle and modulus of the rotor
flux-linkage space-vector will also be known). This is useful for high performance
field-oriented drive implementations. It is important to emphasize that the rotor speed
has been considered as a state variable and the system matrix A is non-linear and it
contains the speed, A=A (X). The compact form of (5.12) and (5.13) are:

dx
o AxrBu (5.14)
y =Cx (5.15)

where:
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_& 0 LanFQr L. w, 0
K. L°K, L. K, _ _
KR I—m\Nr LmRr l O
0 --= - 5 0 01
KL LrKL I-rKI
A= B=|/0 0
L_m 0 —i —Wr O
T, T, 00 (5.16)
0 L_m w, _i 0 10 0]
Tf Tf
i 0 0 0 0 O_
1 0000
and C=
01000

S

x=[igs i W& W5 w,]" is the state vector, u is the input vector,

u=[Vg Val", A isthe system matrix, and C is the output matrix.

5.4.3 Discretized augmented machine model
The motor equations (5.14) and (5.15) are to be discretized for the digital
implementation of EKF as:

x(k +1) = A x(k)+B,u(k) (5.17)

y(k) = Cyx(k) (5.18)

Aq and By matrices in the (5.17) are discretized system and input matrices,
respectively. They are:

(AT

A, = exp[AT]= 1 +AT + (5.19)

ABT? (5.20)

B, == BT +

where T is the sampling time. Note that the discrete output matrix C4=C isdefined in
(5.16). When the last termsin (5.19) and (5.20) are ignored, then very short sampling-
times, they require, are attainable to have a stable and accurate discretized model.
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However, a better approximation is obtained with the given second-order series

expansion at (5.19) and (5.20). In genera to achieve an adequate accuracy, the

sampling-time should be appreciably smaller than the characteristic time-constants of
the machine. The final choice for this should be based on obtaining adequate
execution time of the full EKF algorithm and also satisfactory accuracy and stability.

The second-order technique obviously increases the computationa time. If the
second-order terms are neglected in (5.19) and (5.20) then the discrete form of (5.14)

and (5.15) become:
x(k +1) = A x(k)+B,u(k)

y(k) = Cdx(k)

where
Ad:eAT:|+AT
.
Bq =IeA<de =BT
0
Cq=C
1-TEe o 7haRe plaWo
K, 2K, LK,
0 1-The _gbaW LR,
K, LK, LK,
A = L 1
¢7| TIm 0 1-T=  -Tw, O
r Tr
L
0 Tom Tw,  1-T— 0
Tr r
0 0 0 0o 1]
o
01
10000
B,=|0 0 and C, =
01000
00
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x() =[5 00 1K) W50 WK w,K)] (5.28)

u(k) =Va ) Va®)]T (5.29)

By considering the system noise v(k)( v isthe noise vector of states), being
zero-mean white-Gaussian and independent of x(k) with a covariance matrix Q, the

system model becomes:

x(k +1) = Adx(k)+ Bdu(k)+ v(k) (5.30)

By considering a zero-mean white-Gaussian measurement noise, w(k) (noise
in the measured stator currents) which is independent of y(k) and v(k) with a

covariance matrix R, the output equation becomes :
y(k) = Cx(k)+w(k) (5.31)
5.4.4 Implementation of the Discretized EKF Algorithm

5.4.4.1 Deter mination of the noise and state covariance matrices

To be more specific, the goal of the Kalman filter is to obtain unmeasurable
states (i.e. covariance matrices Q, R, P of the system noise vector, measurement noise
vector, and system state vector (x) respectively). In general, by means of noise inputs,
it is possible to take computational inaccuracies, modeling errors, and errors in
measurements into account in modeling the system. The filter estimation (X) is
obtained from the predicted values of the states (x) and this is corrected recursively
by using a correction term, which is product of the Kalman gain (L) and the deviation
of the estimated measurement output vector and the actual output vector (y — ). The
Kaman gain is chosen to result in the best possible estimated states.

Thus filtering algorithm contains basically two main stages, a prediction stage
and a filtering stage. During the prediction stage, the next predicted values of the
states x(k +1) are obtained by using a mathematical model (state variable equations)
and also the previous values of the estimated states. Furthermore, the predicted-state
covariance matrix (P) is also obtained before the new measurements are made and for
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this purpose the mathematical model and also the covariance matrix of the system (Q)
are used. In the second stage which is the filtering stage, the next estimated
states, X(k +1), are obtained from the predicted estimates x(k +1) by adding a
correction term L(y — y) to the predicted value. This correction term is a weighted
difference between the actua output vector (y) and the predicted output vector (),

where L is the Kalman gain. Thus the predicted state-estimate (and aso covariance
matrix) is corrected through a feedback correction scheme that makes use of actual
measured quantities. The Kalman gain is chosen to minimize the estimation error
variance of the states to be estimated. The computations are realized by using
recursive relations.

The algorithm is computationally intensive, and the accuracy also depends on
the model parameters used. A critical part of the design is to use correct initial values
for the various covariance matrices. These can be obtained by considering the
stochastic properties of the corresponding noises. Since these are usualy not known,
in most cases they are used as weight matrices, but it should be noted that sometimes
simple qualitative rules can be set up for obtaining the covariance in the noise vectors.
With advancesin DSP technology, it is possible to implement an EKF conveniently in
real time[48,49].

The system noise covariance matrix (Q) is [5x5], and the measurement noise
covariance matrix (R) is[2x2] matrix, so in general this would require the knowledge
of 29 elements. However, by assuming that the noise signals are not correlated, both
Q and R are diagonal, and only 5 elements must be known in Q and 2 elementsin R.
However, the parameters in a— and 3— axes are the same, which means that the first
two elements of the diagonal are equal (q11=g22), the third and fourth elementsin the
diagonal of Q are equa (g33=044), so Q=diag (q11,911,933,g33,055) contains only 3
elements which have to be known. Similarly, the two diagonal elements in R are
equa (rll=r22), thus R=diag (rl1, rl11). It follows that in tota only 4 noise
covariance elements needs to be known.
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[Qis, 0 0 0 0
0 Qi os 0 0 RL 0
Q= 0 0 Qui 0 0 R=l" " & (5.32)
0 0 0 Qi O ®
0 0 0 0 Qw,|

Starting values of the state vector xo and the starting values of the noise covariance
matrices Qo and Ry are set together with the starting value of the state covariance
matrix Po, where P is the covariance matrix of the state vector. The starting state
covariance matrix can be considered as diagona matrix, where al elements are equal.
The initia values of the matrices reflect the degree of knowledge of the initial states:
the higher their value, the less accurate is any available information on the initia
states. Thus the new measurement data will be more heavily weighted and the
covariance speed of the estimation process will increase. However, divergence
problem or large oscillations of the state estimates around the true value may occur
when too high initial covariance values are chosen. A suitable selection allows us to
obtain satisfactory speed convergence, and avoid divergence problems or unwanted
oscillations.

The accuracy of the state estimation is affected by the amount of information
that the stochastic filter can extract from its mathematical model and the measurement
data processing. Some of the estimated variables, especialy unmeasured ones, may
indirectly and weakly be linked to the measurement data, so only poor information is
available to the EKF. After deciding how to initialize the covariance matrices, the
next step is prediction of the state vector.

1-Prediction of the state vector

Prediction of the state vector at sampling time (k+1) from the input u (k), state

vector at previous sampling time, Xk by using Aqand By is obtained from

Xiae = Ag Xy +Bg u(k) (5.33)
Xieape £ F(K+LK, X, U(K)) (5:34)

where
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1S

= [i ZS} (5.36)

o
The notation Xyaq MEANS that it is a predicted value at the (k+1)-th instant, and it is
based on measurements up to k-th instant. In the following step of the recursive EKF

computation, covariance matrix of prediction is computed.

2-Prediction covariance computation

The prediction covariance is updated by:

Peak =MP,MT+Q  where = g—i (5.37)
X = Xk
with
1-tKe g AT L T
L I-rKL I—rKL I—rKL
0 1-TRe _gbeWe ghaRe g ba e
aF KL LrKL LrKL LrKL
= Lm 1 s 5.38
aX TT— O 1-T— Tw TLIqu ( )
L 1
0 TS Tw,  1-T= Ty
-I-r r T, lIJdr
0 0 0 0 1
oh [1 000 0 539
x |01 000 '
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In (5.38) there are 17 elements which are constant and 8 elements which are variable.
Thus, in real time applications products involving the speed and the flux-linkages
have to be computed. Next step is the computation of the Kalman filter gain matrix .

3-Kalman Gain Computation
The Kalman filter gain (correction matrix) is computed as;

Ly =Py NT NPy NT+R] where N =22 (5.40)
X ~
X = Xik-1

4-State Vector Estimation
The predicted state-vector is added to the innovation term multiplied by Kalman gain
to compute state-estimation vector. The state-vector estimation (filtering) at time (k)
is determined as:

Xk :Xk|k—l+Lk(yk _glk) (5.41)
where
V. =C, Xilk-1 (5.42)

5-Estimation Covariance Computation
The last step is estimation covariance computation as,

oh
Pk|k = Pk|k—l -Ly a_X x=xk|k-1 Pk|k—1 (5.43)

after all steps executed, set k=k+1 and start from the step-1 to continue the

computation recursively.

The EKF described here can be used for either steady-state or transient
conditions of the induction machine for the estimation of the rotor speed. The speed
estimation scheme requires the monitored stator voltages and stator currents. Instead
of using monitored stator voltages, the stator voltage can also be reconstructed by
using DC link voltage and inverter switching states, but especially at low speedsit is



necessary to have appropriate dead-time compensation and also the voltage drops

across the inverter switches must be considered.

The tuning of the EKF involves an iterative modification of the machine
parameters and covariances in order to yield the best estimate of the states. Changing
the covariance matrices Q and R affect both the transient- and the steady-state
operation of the filter. Also in the implementation of the EKF different Q and R
matrices may be tried to detect the optimum cases which increase performance of the
EKF. For constant Q and R values either steady-state or transient conditions have
poor performance. If high accuracy is required for both conditions then an algorithm
that switches to different covariance values at different operating points may be added
to the main EKF algorithm (Noise Level Adjustment). This is also studied for both
transient- and steady-state conditions and perfect results are obtained by this way. It
should be noted about the following qualitative tuning rules:

1-) If Rislarge then L issmall and transient performance is faster.

2-) If Qislargethen L islarge and transient performance is sower [2].

However, if Qistoo large, or if Ristoo small instability may occur

5.5 State Estimation Simulationswith EKF

In this part, the state estimation performance of EKF is simulated. The
simulation is implemented with Matlab/Simulink. In this simulation input voltages
and measured currents in stationary reference frame are produced by FOC simulation
which was implemented in Chapter 2. It is quite difficult to implement all matrix
operations and overall computation using only Simulink. Thus, EKF algorithm is
developed as a S-function and than inserted to Simulink in the form of S-function
block. S-functions (system-functions) provide a powerful mechanism for extending
the capabilities of Simulink. S-functions use a special calling syntax that enables you
to interact with Simulink’s equation solvers. This interaction is very similar to the
interaction that takes place between the solvers and built-in Simulink blocks. The
form of an S-function is very general and can accommodate continuous, discrete, and
hybrid systems. As a result, nearly al Simulink models can be described as S

functions.
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The most common use of S-functionsisin creating custom Simulink blocks. Y ou can
use S-functions for avariety of applications, including:

*Adding new general-purpose blocks to Simulink,

sIncorporating existing C code into a smulation,

*Describing a system as a mathematical set of equations,

sUsing graphical animations.
An advantage of using S-functions is that one can build a general purpose block that
can be used many times in a model, varying parameters with each instance of the
block [22]. The simulink model and S-function codeis given in Appendix B.

In the smulation parameters of a 1-hp motor are used. Base excitation

frequency is 60 Hz. The observable states in this model as mentioned in (5.28) are:
{0k i) wk) Wik w,(k) }.InFig.5.3 speed reversa of the motor

Time(sec)
Fig.5.3 — High Speed, No-Load, Four Quadrant Speed Estimation with EKF
(in (P/2)* [rad/sec])

at no-load is given with reference speed The estimated speed (jittery) and the
reference speed (linear) are plotted together. Measurement and state covariances are

chosen so that both the transient and steady state speed errors are optimized. One may
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choose different covariances and obtain almost zero steady-state speed error with a

poor transient speed estimation as shown in Fig.5.5 or vice versa.
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Fig.5.4 — (Fig.5.3-Zoomed at steady state) High Speed, No-Load, Four Quadrant
Speed Estimation with EKF at Steady State (in (P/2)* [rad/sec])
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Fig.5.5- High Speed, No-Load, Speed Estimation with EKF — Steady State
Performance Optimized (in (P/2)* [rad/sec])

In the case of Fig.5.5 simulation, state covariance is decreased; the algorithm begins

to behave such that the state space model gives more accurate estimates compared to
measured values so it assigns less importance to the measurements. This causes a

decrease in Kalman gain which reduces the correction speed of the currents. In the
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extra time used for current correction the algorithm finds opportunity to decrease the
steady-state error.

Time(sec)
Fig.5.6 — Low Speed, No-Load, Four Quadrant Speed Estimation with EKF
(in (P/2)* [rad/sec])
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Fig.5.7 — (Fig.5.6-Zoomed) Low Speed, No-Load, Speed Estimation with EKF at
Steady State to Transient State (in (P/2)* [rad/sec])
Low speed estimation performance of the EKF is also quite satisfactory and close to
reference speed as shown in Fig (5.6)-(5.7).
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Fig.5.8- High Speed, Full-Load, Speed Estimation with EKF
(in (P/2)* [rad/sec])
In Fig.5.8 rated mechanical load is applied to the motor between 0.75-1.5 sec. to
verify the performance of EKF under loaded conditions. As shown above EKF works
properly even under fully loaded case. One may decrease steady-state error to very
low levels with appropriate state covariances optimized for steady state.
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Fig.5.9- High Speed, No-Load, Speed Estimation using EKF with Adjustable

Noise Level (in (P/2)* [rad/sec])
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In Fig.5.9 different from Fig.5.3 both the steady state and transient state errors are
minimized individually with adjustable noise level technique (ANLT). In ANLT,
different covariances are assigned for certain ranges of time both at steady state and
transient-state by a basic switching logic speed-error is minimized separately in each

range.
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Fig.5.10- Estimated Statesin (5.28) Respectively at No Load

In Fig 5.10 al the states estimated by EKF are given together. The amplitude of the
stator currents increases at transient states due to inertia of the motor and decrease to
very low value at steady state as shown in Fig. 5.10 and 5.11. Note that, when the
speed of the motor is close to zero, the frequency of the currents and fluxes decrease
and become dc. Thisrangeis very problematic in induction motor FOC control due to
extremely low frequency. The estimated speed waveform of EKF dightly deviates
because of this reason. At low speeds performance of EKF is being affected
negatively due to added negative effects of some other factors such as inaccurate
parameter values, presence of voltage drops on the switches which are not accounted
in the model, etc., as well. In Fig.5.12 dg-axis rotor fluxes and rotor flux magnitude
are shown in enlarged form. The constant amplitude flux and smooth flux magnitude
is vital for FOC as mentioned in Chapter 2. This demand is provided by EKF

estimates as long as proper FOC technique is applied to the system.
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Fig.5.11- State | and Il (dg-axis Stator Currents )
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injected measurement current noise in pu

Time(sec)
Fig.5.13- Injected noise to the stator currentsin pu
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Fig.5.14- Estimated rotor speed with measured noisy current
(in (P/2)* [rad/sec])

In Fig. 5.13 the injected noise to the stator currents is shown. The noise is zero mean,
white and Gaussian. The aim of the current injection is to observe the low pass filter
characteristics of EKF. As shown in Fig. 5.14, the estimated speed is not affected too
much from the injected noise. The speed estimation accuracy may be increased by
increasing the measurement noise covariance under noisy conditions thus the system

model will have more importance.
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5.6 Unscented Kalman Filter
Unscented Kalman filter (UKF) is a novel estimation tool introduced by Julier and

Uhlmann [34-35] to replace EKF in nonlinear filtering problems. As well-known,
EKF is a smple solution derived by direct linearization of the state equation for
extending the famous (linear) Kalman filter into nonlinear filtering area. Although it
is straightforward and ssmple, EKF has well-known drawbackg36]. These drawbacks
include:

1. Ingtability due to linearization and erroneous parameters.

2. Costly calculation of Jacobian matrices.
3. Biasedness of its estimates.
4

Lack of analytical methods for suitable selection of model covariances.

UKF is proposed in order to overcome the first three of these disadvantages. The main
advantage of UKF isthat it does not need linearization in the computation of the state
predictions and covariances. Dueto this, its covariance and Kalman gain estimates are
more accurate. This accurate gain, at the end, leads to better sate estimates. In this
study, UKF is introduced into the problem of speed and flux estimation of an
induction motor. General simulation results are given and a brief comparison is made
between speed estimation performances of UKF and EKF.

The filtering problem involved in this thesis is to find the best (in the sense of
minimum mean square error (MMSE)) linear estimate of the state vector x, of the
induction machine which evolves according to the discrete-time nonlinear state
transition equation

Xps =T (XU ) +w, (5.44)
where f(.,) is the induction machine dynamics, x,is the state of the induction
machine at sampling instant k, u, is the known input to the induction machine at
timek and w K is the additive white process noise term representing modeling errors.
Also, it is assumed that we have a set of noisy measurements z, which are related to
the state vector of the induction machine by the linear relationship;

Y =Cx, +Vv, (5.45)
where C is the properly sized observation matrix and v, is the white measurement

noise related with the measuring device used. The additive white-noise vectors
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w,and v, are Gaussian and uncorrelated from each other with zero mean and
covariances Qand R, respectively.

The state of the system is assumed to be unknown, and therefore, the aim of
the estimation processisto find a MM SE estimate of the state X, which is given by

A

R =Efx, 1Y¥] (5.46)

A
where Y*={y,,y,..... v, }and E{x |y} denotes the expected value of the quantity x,
given the informationy . Also, traditionally, one calculates the error estimates given

by the covariance matrix B, defined as

A
Pk|k:E{[Xk =X I [X _Xk|k]T |Yk} (5.47)
These direct definitions being too difficult to calculate, recursive forms are adopted

for both the state and covariance estimates. The recursive update equations for them
aregiven as,

Ko = X LV (5.48)
Peakon = Pk ~ LianPaa ke (5.49)
where the vectors X, (State Prediction), v,,, (Innovation) and the matrices L.,
(Kaman Gain), P, (State Prediction Covariance), and P/, (Innovation

Covariance) are dependent on the quantities X,, and B, with the following

equations.
R =L (X0, [ Y¥} (5.50)
2 o o T vk
Preoare =E{ [Xior = Koo Xt = Ko ] 1Y} (5.51)
2k+ij = CS\( k+1)k (552)
A ~
Uiir = Yo ~ Ve (5.53)
PkU+:uk = CPk+:IJkCT + R (554)
Ky = P;}fﬂk (F’kUJerk)_l (5.55)
Pek = Pk+:ukCT (5.56)

The quantities X,,, and P, , which are called state prediction and prediction
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covariance of the state, respectively. They are vital for the overall filter performance.
(5.50) and (5.51) do not specify how these quantities are calculated. EKF assumes
that errors in the state estimates are small enough to approximate (5.50) and (5.51) to

their first order Taylor series. As aresult, X,y and P, are caculated in EKF as
follows;

Ko = F R uy) (5.57)

Po =0f Py Of," +Q (5.58)

where [f . denotes the Jacobian matrix of the function f with respect to the state x .

This linearization in EKF frequently yields wrong results in the estimates of the
covariance and thus the state. UKF solves the prediction problem by sampling the
distribution of the state in a deterministic manner and then transforming each of the
samples using the nonlinear state transition equation.

The n-dimensional random variable x, with mean X, and covariance P, is

approximated by 2n+1 weighted samples or sigma points selected by the algorithm.

Xo(K1K) =R W =K/(n+K) (5.59)

X, (K1K) =Ry +(/T+ )P +Q),

. (5.60)
W, =1/(2(n +K))

A
Xisn (KTK) =X A_(\/(n"'K)(Pmk +Q)); (5.61)
W,,, =1/(2(n +K))
for i=1...,n where k00O isafreerea number such that n+k #0, (,/(n+/()(F>ka +Q),
isthe i" column of the matrix, square root of (n+k)(P, +Q), and W, isthe weight

associated with the i™ point. Given these set of samples, the prediction processisas;
1. Each sigmapoint istransformed through the process dynamics f ;
X, (K+1|K) =f(x; (k|K),u,) (5.62)
2. The state prediction is computed as;

2n
X i =ZWiXi (k+1]k) (5.63)
i=0
3. The prediction covariance is calculated as,
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2n
Pk+:uk = ZWi [Xi (k +1| k) _)A(k+]4k] '[Xi (k +1| k) _)A(kmk]T (564)
i=0

The equations (5.63) and (5.64) replace (5.50) and (5.51). The other UKF operations
are the same as (5.52) to (5.56). Note that, operations in the new set of equations
composed by (5.63), (5.64), (5.52) - (5.56) together with measurement updates given
in (5.48) and (5.49) use only standard vector and matrix operations and need no
approximations for both derivative and Jacobian. Also, the order of calculation is the
same as that of EKF. In the next section, a detailed induction machine model used in

the implementation of UKF is given.

5.6.1 Simulation Results

A number of ssimulations were carried out to verify the performance of the state
estimation, particularly of the speed estimation with UKF. In Fig.5.15 — Fig.5.21, the
state estimation performance of UKF is simulated and in Fig.s 5.22, 5.23, accuracies
obtained from EKF and UKF are compared for the speed estimation. Fig.5.15 shows
the actual state variables of the motor; stator currents, rotor fluxes and rotor speed at
no-load in a high speed reversal scheme. Fig.5.16 shows corresponding estimated
state variables with UKF under the same conditions. There are almost no differences
between the actual and the estimated variables.
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Fig.5.15- Induction motor actual states at no load four quadrant high speed reversal

(a-b) d-q axis stator currents, (c-d) d-q axis rotor fluxes, (€) rotor speed.

2000 ! ! !
0 02 04 06

Fig. 5.16. Induction motor estimated states with UKF at no load four quadrant high
speed reversal (a-b) estimated d-q axis stator currents, (c-d) estimated d-q axis rotor
fluxes, (€) estimated rotor speed.
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Fig.5.17 and Fig.5.18 illustrates magnified estimated speed waveforms at no-load in
four quadrant high speed and low speed reversal schemes respectively. Both the high
speed and low speed estimated waveforms confirm that UKF's performance is quite
good in speed estimation for all quadrants without causing instability.
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Fig. 5.17. Induction motor estimated speed at no-load four quadrant high speed
reversal (in rpm).

Estimated speed (ipm)

Fig. 5.18. Induction motor estimated speed at no-load four quadrant low speed

reversal (in rpm)
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Fig. 5.19- Induction motor estimated states at %100 rated torque and speed (a-b)
estimated d-q axis stator currents, (c-d) estimated d-g axis rotor fluxes, (€) estimated
rotor speed (load torque applied between 0.75s-1.5s)

In Fig.5.19, estimated state variables of the induction motor are shown under %100
rated load torque and %100 rated speed conditions. Note that mechanical load is
applied to the motor between only 0.75s and 1.5s. In addition to high performance at
no-load, UKF gives quite satisfactory results under full-load condition. In Fig.5.20,
and Fig.5.21, actual and estimated speed characteristics are given on top of each other
for %100 and %10 rated torque and speed case. In the transient part of the waveforms,
there appears a difference between the estimated and actual values which is the result
of the fact that, in induction motor model, the speed is considered as a constant
parameter and corrected only in the measurement updates of the UKF. In simulation
tests, we also noticed that there usually exists a small steady-state error between the
estimated and actual speed values but that seemsto be at negligible levels.
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Fig. 5.20- Induction motor estimated speed at %100 rated torque and speed (load
torque applied between 0.75s-1.5s)

imated speed (ipm)

1
Time (5)

Fig. 5.21- Induction motor estimated speed at %10 rated torque and speed (load
torque applied between 0.75s-1.5s).

In Fig.5.22 and 5.23, the speed estimation performances of UKF and EKF with
identical parameters are compared at %100 rated torque and speed. Simulations of
Fig.5.22 and 5.23 were carried out for different covariance values. Covariance values
were selected so that the steady state performance in Fig.5.22 and the transient
performance in Fig.5.23 is optimized. It is observed from the figures that, although
the performances of the EKF and UKF are close to each other, UKF reduces the
transient- and steady-state speed estimation errors by up to 10 rpm under rated

conditions.
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Fig. 5.22- (b) Induction motor estimated speed optimized for steady state
performance at %100 rated torque and speed using EKF and UKF. (a) graphicsin (b)
zoomed at the mechanical loading initiation. (load torque applied between 0.75s-1.5s)

Fig. 5.23- (b) Induction motor estimated speed optimized for transient performance at
%100 rated torque and speed using EKF and UKF. (a) graphicsin (b) zoomed at the
mechanical loading initiation. (load torque applied between 0.75s-1.5s)

It has been shown that UKF is as good as EKF at least in state observation,
and it yields even dightly better speed estimation performance than EKF. This result
encourages further study in the areato obtain better state estimation performances for
nonlinear systems to overcome the well-known defects of EKF and other traditional

nonlinear filtering techniques.
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5.6.2 Experimental Results
In addition to computer simulations of the discussed estimators, EKF and UKF, the
expected results are also confirmed with the experimental results. While obtaining the
experimental results, the real time stator voltages and currents are processed in Matlab
with the associated EKF and UKF programs.

Fig.5.24 shows estimations of states I&I1 (dq axis stator currents) made by
EKF and the actual states |& 11 measured from the experimental setup. It may easily
be noticed that the estimated states are quite close to the measured ones.

Time (sec)
Fig. 5.24- The estimated states | and |1 (upper one_ dg axis stator currents) by EKF

and the measured states &1 (lower one)

Time (sec)
Fig. 5.25- The estimated states || and |11 by EKF (lower ones_dq axis rotor fluxes)

and the magnitude of the rotor flux (upper one)
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Fig.5.25 shows the estimated dq axis rotor fluxes in stationary reference frame. The
magnitude of the rotor flux justifies that the estimated dg components of the rotor flux
do not involve dc offset and orthogonal to each other.

In order to examine the rotor speed (state V) estimation performance of EKF
experimentally under varying speed conditions, a trapezoidal speed reference
command is embedded into the DSP code. As shown in Fig5.26, EKF rotor speed
estimation successfully tracks the trapezoidal path.

Time (sec)

Fig.5.26- Rotor speed tracking performance of EKF obtained experimentally

The same states of the induction motor model estimated by EKF are also estimated by
UKF. Fig.5.27 shows egtimations of states I1&I1 (dg axis stator currents) made by
UKF and the actual states |&Il1 measured from the experimental setup. One may
easily notice that the estimated states are quite close to the measured ones. Fig.5.28
shows the estimated dq axis rotor fluxes in stationary reference frame by UKF. The
magnitude of the rotor flux justifies that the estimated dg components of the rotor flux
are estimated accurately.
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Time (sec)
Fig. 5.27- The estimated states | and |1 (upper one_ dq axis stator currents) by EKF

and the measured states | and |1 (lower one)

Fig. 5.28- The estimated states Il and 111 by UKF (lower one_dq axis rotor fluxes)
and the magnitude of the rotor flux (upper one)
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In order to compare both types of the observers, EKF and UKF, the covariance
matrices regarding to both types have been initialized with the same entries under the
same operating conditions. The estimated rotor speed waveforms, when plotted
together as shown in Fig.5.29, confirm that the estimation accuracy of UKF is
superior over EKF as claimed before when discussing the simulation results related to
both observer design techniques. The simulation results were shown in Fig.5.22 and
Fig5.23.

Fig.5.29. Rotor speed waveforms obtained experimentally by UKF (darker)
and EKF (lighter) under the same experimental conditions (measured speed 314
rad/sec)

As expected from simulations in the Fig.5.22 and 5.23, the speed estimation accuracy
of UKF is better than EKF under the same experimental conditions. The measured
speed from the motor shaft is 314 rad/sec. The mean of the state estimation error in
UKF is 2.65 rad/sec at steady state, and that in EKF is 5.8 rad/sec. This result shows
that the estimates of EKF have serious bias problems compared to UKF. As discussed
earlier, the derivative free agorithm of UKF without a linearity approximation
contributes its estimates positively. Furthermore, the noise sampling feature of UKF is
more realistic approach instead of assuming the noise directly as Gaussian. This
property also makes its estimation accuracy better than EKF.
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CHAPTER 6

MODEL REFERENCE ADAPTIVE SYSTEMS

6.1 Adaptive Control

Adaptive control may be defined in many ways. A possible definition of
adaptive control is “a system that adapts itself to changes in the process’. Another
definition, that is often used but probably too vague to be useful, is“asystem which is
designed from an adaptive point of view”. A more useful one is “a system that
consists of a primary feedback that takes care of process signal variations and a
secondary feedback that deals with process state changes. In this definition, the
primary feedback is used as in non-adaptive control, and the secondary feedback
makes the system adaptive. From this definition it is clear that process state variations
give rise to adaptation of the system. The aim of reacting to state changesisto attempt
to maintain a high system performance, even if the process states are unknown or
varying [57]. In the literature there exist several adaptive control techniques. In this
thesis Model Reference Adaptive System is applied to induction motor drive as a state

observer.

6.2 Model Reference Adaptive Systems

Model Reference Adaptive System (MRAS) is one of the most popular
adaptive control method used in motor control applications for tracking and observing
system parameters and states [19-21],[15,18,22-25,58-64]. There exist a number of
different model reference adaptive control techniques such as parallel model, series
model, direct model and indirect model etc. MRAS used in this thesis is parallel
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model MRAS that compares both the outputs of a reference model and adaptive
model, and processes the error between these two according to the appropriate
adaptive laws that do not deteriorate the stability requirements of the applied system.
A generdlized parallel MRAS scheme is shown in Fig.6.1 where the primary
controller is used to obtain suitable closed-loop behavior, as in non-adaptive control
schemes. However, because the process parameters are unknown or may vary with
time, a fixed parameter setting for the primary controller, such that the closed-loop
behavior is acceptable under all circumstances, cannot be found. In the MRAS
technique, the desired process response to a command signal is specified by means of
a parametrically defined reference model. An adaptation mechanism keeps track of
the process output y, and the model output y, and calculates a suitable parameter
setting such that difference between these outputs tends to zero. In addition to process
output Y, the process xp, if available, and the process input u or the reference signal

may be used by adaptation mechanism.

.| Reference Model - Ym
r Parameteff Adapu ve <
— >
/ Laws |«
| Primay U | Process .
Controller Yo

Fig.6.1- General parallel MRAS scheme

An important issue in MRAS is the design of adaptive laws. The first
examples of adaptive law designs made use of sensitivity models, and later the
stability theory of Lyapunov, and Popov’s hyperstability theory, served as standard
design methods, yielding a guaranteed stable adaptive system. (see Appendix A)
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6.3 Introduction to MRAS practicein motor control applications

In a MRAS system, some state variables, X4 ,Xq (€.9. back em.f components
(Emd » €mq ) reactive power components (Qmd Gmg) , rotor flux components (Wi , ¥rq)
etc.) of the induction machine, which can be obtained as sensed variables such as
stator voltage and currents, are estimated in reference model. They are then compared

with state-variables X, andX ,estimated by using adaptive model. The difference

between these state-variables is then used in adaptation mechanism, which outputs the
estimated value of the rotor speed (w;) and adjusts the adaptive model until
satisfactory performance is achieved. Such a scheme is shown in Fig.6.2 where
compact space-vector notation is used. However, Fig.6.3 corresponds to an actual
implementation, and here components of the space vector are shown in detail.

U, —————» Reference X +
i . Model
s Ll
> Adaptive X
q Model
y
\/AVr Adaptation
Mechanism
Fig.6.2- Generalized Model Reference Adaptive System
u -

—=ZsD

Ug ——> X, €q

i ——>  Reference 4’@—
ESD Model i - @Eq
= X

vy

> X, v=[egg,]"
¢ Adaptive
g Model
Xq
Adaptation
\ivr Mechanism

Fig.6.3- MRAS based speed estimator scheme using space vector
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The appropriate adaptation mechanism can be derived by using Popov's
criterion of hyperstability. This result in a stable and quick response system, where
the differences between the state variables of the reference model and adaptive model
are manipulated into speed tuning signal (&), which is then input to a Pl-type of
controller that outputs the estimated rotor speed. Two of the schemes will be

discussed in the following sections: reactive power and back e.m.f errors are used as

speed tuning signals. In these expressions i_s andU, denote the stator voltage and
stator current space vectors respectively in the stationary frame €, denotes the back

emf space vector also in stationary reference frame as A€, =€, —&,,. The symbol *

denotes the quantities estimated by the adaptive model. In addition to these classical
MRAS schemes, artificia intelligence techniques assisted MRAS speed estimators are
also discussed in the literature. They contain neither any mathematical adaptive
model, nor any adaptation mechanism incorporated into the tuning of appropriate
artificial intelligence based network (which can be a neura network, a fuzzy-neural
network, etc.) [23-24, 60].

To improve the performance of the observers described in this section, various
practical techniques are also discussed which avoid use of pure integrators. Pure
integrators lead drift and initial condition problems in digital applications, so recent
speed sensorless algorithms tend to avoid pure integrators. Most of the traditional
vector control algorithms use low-pass filters instead of pure integrators, athough
they also cause serious problems at low speed range. Recent MRAS agorithms
mentioned in this thesis avoid both pure integrators and low-pass filters. Reactive
power scheme described below is robust to both stator and rotor resistance variations,
and can even be applied at very low speeds (but not zero speed). Both of the observers
(reactive power and back emf schemes) described below use monitored stator currents
and stator voltages. In a voltage-source inverted-fed drive, however, it is not
necessary to monitor the dc link voltage and the stator voltages since the latter can be

reconstructed by using the inverter switching states.
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6.4.Application of Popov’s hyper stability theorem and integral inequality

This part contains a short description of the selection of the appropriate
adaptation mechanism, proves why there is a Pl controller in the scheme described in
MRAS schemes used in this thesis, and also shows the form of speed tuning signal to
be used.

In general, a model referenced adaptive speed estimator system can be
represented by an equivalent non-linear feedback system which comprises a feed-
forward time-invariant linear subsystem as well as a feedback non-linear time-varying

subsystem. Thisisshownin Fig.6. 4.

Linear time invariant
feedforward subsystem

Non-linear time variant
feedback subsystem

Fig.6.4- Equivalent non-linear feedback system

In Fig.6.4 the input to the linear time-invariant system is u (which contains the
stator voltage and currents), its output is v, which is the speed-tuning signal v

=[sd,sq]T. The output of the non-linear time invariant system isw, and u = -w. The

rotor speed estimation algorithm (adaptation mechanism) is chosen according to
Popov’ s hyperstability theory, whereby the transfer function matrix of the linear time
invariant system must be strictly positive real and the non-linear time-varying
feedback system satisfies Popov’'s integral inequality, according to which

.[vadt >0 in the time interval [0, t;] (see appendix B). Thus to obtain the

adaptation mechanism, first the transfer function F(s) of the linear time-invariant
feed-forward subsystem has to be obtained. It can be shown by lengthy calculations
that in both of the schemes described in the following part thisis strictly positive real.
A possible proof uses the state-variable form of the error equation, dv/dt = Av-w,
which is obtained by subtracting the state variable equations of the adjustable model
from the state-variable equations of the reference model (where A isthe state matrix).
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The feed-forward path transfer matrix of the linear time-invariant subsystem

shown in Fig.6.4 is F(s) = [sI-A] ,where | is an identity matrix. It follows from the
derivation of the error state equation that w =[w, —w ][-X, x,]" (where X, andX,
are estimated by adaptive model), thus w is substituted into Popov’s integral
inequality, jvadtzo, it can be shown that this inequality can be satisfied by
letting W, = (K, +K,/p)e. In this equation 1/p represents an integrator and ¢ is the
appropriate speed-tuning signal. In genera, the state variables in the reference and
adaptive models are x4,x,andX,X,,, respectively. Speed tuning signal is Im(XX"),
where the asterisk denotes the complex conjugate. Speed-tuning signals are obtained
from Im(e,, émD) and Im(q_, amm) where e, and g, represent back emf and reactive

power, respectively. It can be seen that when a specific state-variable is used (on the
outputs of the reference and adaptive models), then a corresponding speed tuning
signal of a specific form is obtained by Popov’sintegral inequality. From the previous
discussions it is noted that when the estimated rotor-speed with the adaptive model
changes in such a way that the difference between the output of the reference model
and the adaptive model is zero, then the estimated rotor speed is equal to the actual
rotor speed. The error signal actuates the rotor-speed identification algorithm, which
makes this error converge asymptotically to zero. The physical reason for the
integrator (in Pl controller) is that this ensures that the error converges asymptotically
to zero.

In recent years several MRAS schemes are studied for vector control of ac
drives without speed measuring sensors. Most of these schemes have low speed
problems due to the low-pass filters or pure integrators. These schemes obtain speed
tuning signal form state variables, X4 ,Xq (€.9. active power components (pq pg) , rotor
flux components (Wrq , ¥rq), torque components (tey,tey ), voltage components (Vq,Vq)
etc.). In addition to these schemes, recently proposed schemes using back emf and
reactive power enhanced the performance of the MRAS solutions excluding pure
integrators in their algorithms [26]. Also reactive power MRAS model is truly robust
to stator resistance changes. The details of these schemes will be given in the next
section.
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6.5 Back emf MRAS Scheme

In this MRAS scheme the back emf (&) is used as speed tuning signal. When
the back emf is used then the problems associated with the pure integrators in the
reference model disappear, since in this case the reference model does not contain any

integrator. Equations for an induction motor in the stationary frame can be expressed

as:
. dig
VS :RSIS+GLSE+em (61)
dim . . .
— =W Uip——Im+=—I
it L L (6.2)

where w; is a vector whose magnitude w; is rotor electrical angular velocity, and
whose direction is determined according to right hand system of coordinates as shown

in Fig.6.5“ 0" denotes the cross product of vectors respectively.

W r
q
R
i S
W, d
O

D>

Fig.6.5- Coordinates in stationary reference frame
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From (6.1) and (6.2), e, and structure of MRAS can be derived as follows:

i 6.3
mzvs—(Rgs+oL$95J (63
dt
em:|_'md'_m (6.9
dt
o . 1. 1.
_Lm(wr |:“m_-l-_rlm-l--l-_rlsJ (65)

If we rewrite the equations above for the direct and quadrature-axis back emf in the

following form:

emdszdlmd :L_mdlprd
dt L, dt
. di
=V, —(Rsld$+0L$d—:"j 6.6)
e — dl mq _L_mdqu
™o odt L, dt
di
=Vm—(Rg$+oL§G?J (6.7)

If we use the counterelectromotive force (emf) vector e, instead of rotor flux vector
which was used in the previous MRAS schemes [8] for speed identification, then a
new MRAS system is obtained. Fig.5.6 illustrates the new structure of the new MRAS
for speed estimation. Two independent observers are configured to estimate the
components of the counter-EMF vector, one based on (6.6) and the other based on
(6.5) and (6.7). The observer based on (6.6) can be regarded as a reference model of
the induction motor since (6.6) does not involve the quantity w; , and the one based on
(6.5) and (6.7) can be regarded as adjustable model because (6.5) and (6.7) do involve
w;. The error between the outputs of the two observers is then used to drive a suitable

adaptation mechanism which generates the estimate w, for the adjustable model.
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Reference Model

U » +
S Equation (5.6) Cn > €
Ig >
e,
» Equation (5.7)
A
A
» Equation (5.5) Adaptation
Mechanism
A
Adjustable Model W,

Fig.6.6- Structure of the MRAS system for speed estimation

When the scheme shown in Fig. 6.5 is employed in a speed-sensorless vector
controlled drive, since the reference model does not contain pure integration a
satisfactory performance can be obtained even at low speeds if an accurate value of
the stator resistance is used. However, the stator resistance varies with temperature,
and this affects the stability performance of the speed observer, especiadly at low
speeds. A MRAS scheme which is intensive to stator resistance variation can be
obtained by using such a speed-tuning signal, which is obtained from a quantity which
does not contain the stator resistance. Thisis discussed later. On the other hand, some
of the applications use parameter estimation or parameter tracking algorithms to
compensate the error caused by parameter deviation. Thus, in literature there exist
several on-line parameter estimation algorithms at real time. Parameter deviation
effects on MRAS algorithms will also be discussed in thisthesis.

6.5.1 Adaptation Mechanisms and Stability of MRAS

It is important to ensure that the system will be stable and the estimated
quantity will converge to the actual value for the adaptation mechanism of MRAS
algorithms. In general w; is a variable; thus the models are linear time-varying
systems. For the purpose of deriving an adaptation mechanism, however, it is valid to
initialy treat w;, as a constant parameter of the models. By differentiating both sides of
(6.7), we get
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€ _w e Lo 4Lmdi 6.8
dt T T T dt (68)
Here, letting e = e, —€,, , and subtracting (6.8) for the adjustable model from (6.8)

for the reference model, we obtain the following state error equation:

E:WrDs—i.s—(vA\/r—Wr)Dém (6.9)
dt T,
=Ae-W
where
1
A=l It =-Z1+wJ,

1

w, - r
T

Since W, is produced by adaptation mechanism, (6.9) describes a nonlinear feedback
system as shown in Fig.6.7. Hyperstability requires that the linear time-invariant
forward—path transfer matrix be grictly positive and real, and that the nonlinear
feedback including the adaptation mechanism satisfies Popov's criterion for
hyperstability.
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Linear Block

0 + + €
4,(>7 >
_ A + '[
W [ |
LA ]
Mol ~ VAVr Adaptation
® | + K Mechanism |
Non-linear time varying block
Fig.6.7- Equivalent nonlinear feedback system of MRAS
Popov’s criterion requires that
by
[eewdt=-y; foralt,20 (6.10)
0
where yZ isareal positive constant and « is dot product. Here, letting
N K.
W, =(Kp+—'j ©.09) (611
Y
and substituting for W in inequality (6.10), (6.10) becomes
t, t,
[ eewdt=[ee{(W, -w,) 08, }dt (6.12)
0 0

:T(Smém)O(Wr —(Kp +%)(ém DS)J dt

0

2
2~Yo
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Using the following well known inequality:

td 1.,
{af(t)[ﬁ(t)dtZ—Ef (0) (6.13)

it can be shown that inequality (6.12) is satisfied.

6.6. Reactive Power MRAS Scheme

In the previous part, back emf is used as tuning signal and the performance of
the MRAS is proved to be perfect in the simulation. Since the reference model does
not require pure integration, this system can achieve good performance even at low
speeds, as long as the value of stator resistor is known precisely. The stator resistance,
however, varies with the temperature of the stator. The stator resistance thermal
variations affect the performance and stability of MRAS speed estimator, especially at
low speeds as shown later in this thesis. Therefore, a speed identification system with
low sensitivity to the stator resistance variations is necessary for applications of low-
speed drives. Here, another approach to speed identification which is completely
robust to stator resistance variations is proposed. This scheme can be represented in
two different ways whose basics are the same.

First let us define a new quantity g, as the cross product of the counter EMF
vector ey, and the stator current vector is. That is,

A
dp :iS [l e, (6.14)
Om iS a vector, whose direction is shown in Fig.4, and whose magnitude g, represents

the instantaneous reactive power maintaining the magnetizing current. Substituting
the (6.6) and (6.7) for enin (6.14) noting that i [1i, = 0 ,we have

Gy =1 m(v ol ﬂ} (6.15)
dt
L2 (. . 1. .
=_m . + =i O 6.16

Using (6.15) and (6.16) as the reference model and the adjustable model, respectively.
An MRAS system can be drawn asin Fig.6.7, where proportional and integral (PI)
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operations are utilized as the adaptation mechanism. From (6.15) and (6.16), it is
evident that the speed estimation system of Fig.6.8 is completely robust to the stator
resistance, besides requiring no integral calculation.

Reference Model
T » +
l_fs Equation (5.15) I > &
I >
an
» Equation (5.16)
A
y
»  Equation (5.5) Adaptation
Mechanism
A
Adjustable Mode Wr

Fig.6.8- System structure of rotor speed observer using the tuning signal Im (A€, i)

The information required for this module is stator voltage and stator current
components in the d-q stationary reference frame. Two sets of equations are
developed to compute reactive power of the induction motor in the reference and
adaptive models. The reference model does not involve the rotor speed while the
adaptive model needs the estimated rotor speed to adjust the computed reactive power
to that computed from the reference model. Notice that the representation of complex
number is defined for the stator voltages and currents in the stationary reference frame

.8,V = Vg +jvg and iy =iy +jig,
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6.6.1 Reference M odel Continuous Time Representation

The back emf of the induction motor can be expressed in the stationary frame as

follows:
€y = II___T dlgtrd =vy -Riyg —crLsd(ij—:d 6.17)
8., = LL_ W 2y, -Ri -0, n (6.18)
8, e, + e, (6.19)

The reactive power of the induction motor can be computed from cross product of

stator currents and back emf vectors as foll ows:

q. =ixe =ix|v.-Ri-oL, 3| =7 xv, -T.xaL, %= (620
dt at
o E
where . igxis =igisy —iggisg =0 and o =1-—M_ (leakage coefficient) Asaresult
r=s

the reactive power shown in (6.20) can further be derived as

dig . di
d_?_l‘“d_?J (6.22)

On =igVg ~1gVy —crLS(iSd

6.6.2 Adaptive M odel Continuous Time Representation

The estimated back emf computed in the adaptive model can be expressed as

follows:
~ L2m dlm L2m ~ (6.22)
md_L_d_td_L_( rWrImq_Imd+|Sd)
~ L2m di mg L2m n . (6.23)
mq _L_rT_L_r(_Trermd _Imq +|sq)
€, =8 + 80 (6.24)
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L, . . o .
where T, = R' is the rotor time constant, ima,imq are computed from the following

r

equations:
d|d,;d wrimq _Tiimd + Iy (625)
di, o 1. 1.
dtq =—W,|md—_|_—|mq+?| (6.26)

r

Once the estimated back emf computed by (6.22)-(6.26), the estimated reactive power

can be computed as follows:

= i@ (6.27)

m sdemq _Isqemd

oD

:st

Qo

m

Then, the Pl controller tunes the estimated rotor speed such that the reactive power
generated by adaptive model matches that generated by reference model. The speed
tuning signal is the error of reactive power that can be expressed as follows:
£ =1,(8,~8,) =0, -4, (629)
When this observer is used in a vector-controlled drive, it is possible to obtain
satisfactory performance even at very low speeds. The observer can track the actual
rotor speed with a bandwidth that is only limited by noise, so the PI controller gains
should be as large as possible. The scheme is insensitive to stator resistance
variations. The parameter T, has a negligible influence on the operation of both of the
overal MRAS vector control systems. If the MRAS successfully maintains nearly
zero error, and if the same value of T,is used in the MRAS adjustable models and in

the function block for calculating wyip, then we have the following relations:
w, =W, and Twg, = 'T'rv‘vs,ip where variables without “/" are actual values, and
ones with “~" represent the corresponding values used in the MRAS vector control

systems. Thus, if T, #T,, then wy, #Wg,, but w,=W,, which is used for

orienting the stator current vector. Therefore, complete field-orientation can be
achieved even if the value of T, is quite wrong. The error in the value of T,, however,
produces an error in the speed feedback, thus affecting the accuracy of the speed

control asfollows:
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" T
€ =W, —W, =(1‘f_:jwdip (6.29)

This also holds for the previous MRAS scheme. However, the accuracy of the speed
estimation system discussed depends on the transient stator inductance and also
referred magnetizing inductance. The latter quantity is not too problematic, since it
does not change with temperature. Furthermore, deviations of T, from its correct value
produces a steady-state error in the estimated speed and this error become significant
at low speeds.

6.6.3 Discrete time representation for microcontroller implementation

For implementation on DSP based system, the differential equations need to be
transformed to difference equations. Due to high sampling frequency compared to
bandwidth of the system, the simple approximation of numerical integration, such as
forward, backward, or trapezoida rules, can be adopted [65]. Consequently, the
reactive power equations in both references an adaptive model are discretized as
descibed in the next section.

6.6.3.1 Reference M odel
According to (5.21) reference model reactive power isgiven as:

On = igVyg ~ 14V —oLs(isdd(;—:q—isqd;—;dJ

Using backward approximation:

O (K) =i (K)Vg (K) =g (K)vg (k) = (6.30)
() =igk=1) i (K) =iy (k1)
oL{usd(k) = ()2 j

And this equation can be further ssimplified as:

U (K) =i (K)Vgq (K) =i (K)Vg (k) = (6.31)

OIT_S (a0 (k= Di () =1y (K)i g (k - D))

where T is the sampling time.
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6.6.3.2 Adaptive M odel

According to (6.27), reactive power in adaptive model is derived as :

= Isdemq —l1 sqemd

b

=i x

Qp

m m

whose discrete-time representation is:
O (K) =i (K)Eyq (K) =i ()& (K) (6.32)

In order to compute €, (k) andé,, (k) consider their continuous time representations

_m md — =m (_ A —i +i
e, Lr_—dt __Lr( T W g =T Isd) (6.33)
. |_2m di, L2m P
emq - L_d_tq:_(— Irermd_Imq IIS:])

which have the discrete-time representations as;

L2
L,

r

8,0 (K) = =™ (= T, (K)i g (K) =i (K) +i 5 (K)) (6:34)

2

B () = T2 (= T, (1 () = 1 (K) #1.(K))

r

and i ,4(K),i ,, (K) can be solved by using trapezoidal integration method which yields
continuous time representation

di 4 . 1. :
—md = W= (6.35)
dt r'mq Tr md -I-r <
g _ Wi =i +—i
dt T TR
and discrete-time representation ,
i (K)=i (k=12 —T—z\ivz(k)+1—l+ T -
md md 2 r -I-r Tr
(6.36)

. ~ T? . T T2
| g (K —1)Wr(k){T —_I_—J + |Sd(k){_l_—r - ZTJ_

igq(k)ka)LH .



i (K) :imq(k—l){—T—zz\ivf(k)+1—Tl+(le ]_

r

g (K —1)\7vr(k){T _'_I'r_z} + isq(k){l L } -

S T?
T (KW, (k){Z—TJ (6.37)

6.6.4 Per unit, discrete time repr esentation

For the sake of generality, the per unit concept is used in all equations.
However, for the smplicity the same variables are also used in the per unit
representations.

6.6.4.1 Reference M odel

Dividing (6.30) by base power of Vylp, then its per unit representation is as follows:

U (K) =5 (K)o (K) =1 (K)V 3 (K) = (6.38)
Ky i (K = D (K) =i 5 (K)i gy (k — 1)

Rearranging (6.38) to have the onein (6.39);

U (K) =i (K) (Vg (K) =K (K =1)) =i (K) (Vi (K) + Ki g (k =2))pu (6.39)

where K, = oLl

, Vp isbase voltage, and Iy, is base current.
b

6.6.4.2 Adaptive M odel

Dividing (6.34) by base voltage V, then yields

8 (K) = K, (= KW (K)i g (K) =i g (K) +i g (K)) pu (6.40)

B (K) = K (= K g (K)i g (K) =i 0 (K) +i (K)) pu
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L2 | L w . .
where K, = jl‘j\t} ,K;=T.w, =——% and w, = 21, is base electrica angular
b

rer r

velocity. Similarly, dividing (6.36) and (6.37) by base current I, , then yields

i (K) =i g (K =D|- K W2 (k) +K g |-
g (K =D, (K)K g +i g (KK, =i (K)W, (K)K

g () = g (k =D~ K W2 (k) + K |-

i (K =DW, (K)K g +ig (K)K; =g (K)W, (K)K g (6.41)

where

2T2 2
K4_WbT’K5_1_l+l ’K6=Wb T—T—’K7_—l+l

2 T T T, T \T,

2
and KS:WbT
2

6.7 Smulation of the MRAS Schemes

In this thesis both the back emf and the reactive power schemes are studied in
detail. In addition to the studies related with the theoretical base of the models, the
simulations of the models are implemented to confirm the theoretical results using
Matlab — Simulink. In these simulations the voltage and current outputs of induction
machine model are used as the inputs of MRAS schemes. Two independent observers
are configured to estimate the components of back emf and reactive power. The
observer that does not involve rotor speed is called reference model, and the other
observer including rotor speed is called adaptive or adjustable model. The error
between the outputs of the two observers is then used to derive a suitable adaptation
mechanism which generates the estimated speed for the adaptive model as shown in
Fig.6.9 and Fig. 6.10. In Fig.6.9 the adaptive model is configured based on (6.3)-(6.5)
and similarly the reference model is configured according to equations (6.6)-(6.7). In
Fig.6.10 the adaptive model is configured according to (6.15) and the reference model
is configured according to (6.16).
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Fig .6.9- The Simulink model of back emf MRAS scheme
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Fig.6.10- The Smulink model of reactive power MRAS scheme
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Fig. 6.11- Four-quadrant speed reversal of 5 hp induction motor using reactive
power MRAS scheme at no_|load up to rated speed (@) estimated speed, produced

torque due to inertia (J), g-axis stator current (b) estimated speed, speed error
(difference between the actual and estimated speed)

(b)
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20 hp ind. motor four quadrant speed tracking

500 . .
8
g 0
g -500 : ;
0 1 2 3
10 . .
€
g O I
g
_-“j 1 1
0 1 2 3
a0 . .
g
_5D 1 1
0 1 2 3
Time(sec)
@
20 hp ind. motor four quadrant speed tracking
400 . .

300

200

100

estimated speed (r/sec)
=

100

200

300

-400

Fig. 6.12- Four-quadrant speed reversal of 20 hp induction motor using
reactive power MRAS scheme at no_load up to rated speed (a) estimated speed,
produced torque due to inertia (J), g-axis stator current (b) estimated speed, speed
error (difference between the actual and estimated speed)
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Fig.6.13- 5hp induction motor speed est. (al) %100 rated torque - %100 rated speed
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note: load torque applied between 0.75sto 1.5s inall figures
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5 hpind. motor speed estimation %100 rated torque %100 rated speed
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Fig.6.14- 5hp induction motor estimated speed speed using reactive power MRAS
scheme, applied torque and stator g-axis current (a)%2100 rated torque, %100 rated
speed (b)%010 rated torque, %100 rated speed (c)%10 rated torque , %10 rated speed

note: load torque applied between 0.75s —1.5s
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20 hp ind. motor speed estimation %100 rated torque %100 rated
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Fig.6.15- 20 hp induction motor estimated speed using reactive power MRAS scheme,
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note: load torque applied between 0.75s —1.5s
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Speed estimation using back emf MRAS scheme
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Fig.6.16- A typical estimated speed using back emf MRAS scheme (a) 20hp ind.
motor %100 rated torque %100 rated speed (b) 5hp ind. motor %100 rated torque
%100 rated speed
note: load torque applied between 0.75s-1.5s

Fig.6.11 and Fig.6.12 show simulation results for four-quadrant speed tracking
performance of the reactive power MRAS scheme with 20 hp and 5 hp induction
motors. The simulations here are implemented under no-load conditions. Fig.6.11 (a)
and Fig.6.12 (a) includes estimated speed in rad/sec, generated el ectromagnetic torque
during acceleration and deceleration due to inertia term (J) in nm., and stator q axis

current in amp.

132



In Fig.6.11 (b) and Fig.6.12 (b), more accurate speed estimation and speed
error (difference between the actual speed and estimated speed) are shown. No-load
performance of the speed observer is very high as seen in these figures even at very
low speed range. Since there does not exist any immediate transient speed change due
to mechanical loading, speed outputs obtained in the simulation are very smooth with
negligible speed errors.

In Fig.6.13, speed estimations of 5 hp and 20 hp induction motors are
simulated under varying-load conditions. In Fig.6.13 (al) and (a2) %100 rated torque
is applied at %100 rated speed, in Fig. 6.13 (b1) and (b2) %10 rated torqueis applied
at %100 rated speed and in Fig.6.13 (c1) and (c2) %10 rated torque is applied at %10
rated speed. Heavy loading causes higher transient speed errors due to high
instantaneous speed changes where light-loading speed errors are much smaller for
both %100 rated speed and %10 rated speed conditions in percentage. In al of the
situations transient speed tracking at starting and at steady-state, the speed estimation
performances are quite high.

In Fig.6.14 and 6.15 the generated electromagnetic torque and g axis stator
current are shown with estimated speed for both 5 hp and 20 hp induction motors at
the same loading conditions given above. Fig.6.16 shows typical speed estimations for
both of the motors under full-load condition. They are observed using back emf
MRAS scheme. The speed observation performances of two MRAS schemes are
amost the same except low-speed range, the near zero speed. The back emf scheme
becomes highly dependent on the PID parameters particularly at low speed range,
therefore, there may exist even instability problems which is never seen in reactive
power scheme. So, reactive power scheme is superior to back emf scheme not only in
immunity against the parameter deviation (stator resistance), but also in very low
speed performance as well. Furthermore, transient speed changes in back emf scheme
have higher overshoot when compared to reactive power scheme. Therefore, reactive
power scheme is much better than all other MRAS schemes including pure integral

and back emf scheme, thus, recommended for speed observation in ac drives.
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6.8 Experimental Results

A state estimator made by using MRAS has been tested experimentaly as
well. The experimental data; the real time stator voltages and currents are obtained
from the setup is processed by Matlab in the host computer where the associated
MRAS program is running. The outputs of the processing are displayed in Figs.6.17,
6.18. Gains of Pl can be changed to improve the settling time, overshoot, rise-time,
etc of the speed waveform while the system is going through the transient-state. The
steady-state accuracy of MRAS meet the expectations and quite successful. Also, Fig.
6.18 shows the speed tracking performance of the back emf MRAS scheme. It is seen
that this tracking performance of the speed estimator seems to be quite satisfactory.

Fig.6.17 —Rotor speed estimated by MRAS experimentally at no-load by back emf
scheme (measured ss. speed: 314 rad/sec)

Fig. 6.18- Speed tracking of the back emf MRAS scheme.
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The simulations and experimental works show the great promise of the studied
MRAS schemes. However, due to equipment limitations these methods are not tested
over a wide speed and torque ranges. Further, the experimental work is required to

implement these techniques in the entire torque speed range of the induction motor.
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CHAPTER 7

FLUX AND SPEED OBSERVERS FOR SENSORL ESS
DIRECT FIELD ORIENTATION

In this chapter, observers configured for direct field-orientation (DFO) are
investigated. The field orientation is implemented in two ways as discussed in
Chapter 2; Direct Field-Orientation and Indirect Field-Orientation. The basic
difference of these methods underlies in the manner of detecting the synchronous
speed. In IFO, the dip-angle is computed and added to the rotor speed to find the
synchronous speed. Therefore, one must calculate the slip-angle and estimate the rotor
angle. In the current model employed in the IFO, d g-axes stator currents and precise
rotor time-constant are needed to find slip angle (or slip speed). Afterwards, adding
these two angles will give the synchronous angle (see chapter 2 for detail). In the
literature, a number of the algorithms are proposed to calculate the rotor angle (or
rotor speed). Thus, previously proposed observers (designed by using MRAS and/or
EKF techniques) are employed in IFO due to their rotor-speed estimation property.
On the other hand, in DFO, the synchronous speed is computed from the ratio of dg-
axes fluxes. Therefore, one must estimate the fluxes if sensorless control without hall-
effect sensor is required. Flux estimator used in this chapter can compute both the
synchronous speed and the rotor speed. Since the induction motor model applied to
EKF in Chapter 5 estimates the rotor fluxes, it can also be applied to DFO.
Furthermore, MRAS algorithm explained in Chapter 6 may be added to flux-observer
used in a DFO for speed control. The different combinations of these observers can be

implemented in both field-orientation methods.
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7.1. Flux Observer

The flux observer module defined in this chapter is used for computing dg-
stationary-axis fluxes and rotor-flux angle. The inputs of the observer are dg-
stationary-axis currents and voltages. The logic underlying this flux observer is
basically an advanced voltage model approach [66] in which integration of the back-
emf is calculated with a different method. The well-known disadvantages of this
model are parameter dependency (i.e. Rs) at low-speed and drifting off of the integral
of the sensed variables. These problems are compensated with a closed-loop in this
flux observer. Basically, the fluxes obtained by current model are compared with
those obtained by the voltage model then the error is fed to a PID block to obtain
compensating voltages those are added to sensed stator voltages. There exist several
algorithms in the literature which correct the voltage model with reference to the
current model, or the current model with reference to the voltage model according the
range in which one of these models is superior to other. In this flux observer, the
voltage model is corrected by the current model through a basic PI block. In the end,
the stator fluxes are used to obtain rotor fluxes and rotor flux angle. The overall

observer structure is given below:

Continuous Time:
The rotor flux dynamics developed by current model in synchronously rotating
reference frame (w=w,) can be shown as:
dyg _ Ly

_mij® — = w® +(w_ —-w el (71)
dt Tr ds Tr llJ dr ( e r )lJJ qr

que;'i L m ;e 1 e e

d—tq:?lqs_.l__rwq;’ +(We_Wr)qu;' (72)
where, superscript (i) represents current model dynamics and (€) represents
synchronous frame. we is synchronous speed and w; is the electrical rotor speed in
rad/sec.

In rotor field-orientation, the main goal is to align the rotor-flux vector to the d-axis

stator current, thus g- axis rotor-flux is regarded to be zero. That is:

W' =g and g =0
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Thus, (7.1) and (7.2) can be smplified to:

dq)syri :L_mie,i _ime,i (73)
aa T, T
Wg =0 (7.4)

Then the rotor flux-linkages are transformed into the stationary reference frame by the

inverse park transformation:
l-IJZrI = Lpg}i COS(ewr) - Lp:ri Sin(elpr) = LlJz’ri Cos(elpr) (7.5)

W3 =S sn(e,,) + WS sin(8,,) =Yg sin(,,) 76)

where 6, is the rotor-flux angle superscript (s) represents the stationary reference

frame. The stator fluxes are obtained from (7.5) and (7.6) as:

s, S s LSLr_LZm .5 Lm si 77
Vo =Hdo Tl :[L—)Id ' L War (7.7)
oL - LL, -L% )s L Ln o
LIJZ; :LSIZS+Lm|(S]r :{%]IZ + Lm LIJZ,rI (78)

where L, L, the stator and rotor self-inductance, respectively, and L, refers to the

magnetizing inductance. The same quantities will be obtained with voltage model as,

Py = ,[(U‘S’S —i*R. - ucomp,ds)dt (7.9)

ds' ‘s

W3 = (U3~ %R, = Ugpppe (7.10)

gs gs' ‘s

where Rg is the stator resistance and parenthesis in the integration is back emf with
compensated voltages. The superscript (v) indicates that the equations are developed
by considering the voltage model. After calculating the stator fluxes with voltage
model in (7.9) and (7.10), they are compared with the stator fluxes calculated by
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current model in (7.7) and (7.8). Then the error is fed to a Pl block to obtain
compensated voltages.

Unompas = Ko (WY —W3) + K, [ (W3 - w3 dt (7.11)
Uoms =K (U5 ~W5) +K, (05 —w) (112)

Once the stator fluxes obtained, rotor-flux vector is reconstructed in stationary frame
by using (7.13) and (7.14) :

S,V LSLT_LZITI 1S Lr BAY

W =_( L JIdS+L Was (7.13)
S,V — LSLT _LZI'T'I 1S Lr EAY

wy = B i g (.14

Then the rotor-flux angle based on the voltage model is calculated as:

6, =tan™ llJ_:rv
Wy (7.15)
7.2. Open-L oop Speed Estimator

The open-loop speed estimator employed in this FOC structure is a well-
known method based on stationary reference frame. The disadvantage of this method
is the parameter sensitivity as in the case of all open-loop estimators [67]. However,
the structure of this algorithm is quite easy when compared to the advanced
estimation techniques. The mathematical base of the estimator is given below that can
easily be extracted from induction machine equations.

WS =L,i% + L0 (7.16)
ljJ:r = L,i.f|r + Lmi:S (7.17)
The rotor currents can be expressed as.

s 1 s s
o = L_(l'pdr - Lmlds) (718)
(7.19)

=g L)
' 138



The rotor voltages can be expressed as.

0=RJ;+WM@+9%i (7.20)
s,
0=R iy ~w,u + (7.2

where R; isthe rotor resistance. Substituting (7.18) and (7.19) into (7.20) and (7.21),

rotor currents are extracted from the rotor flux dynamics as:

dyg, 1. Lbas s (7.22)
= + l . —W
dt Tr l-IJdr -I-r ds erqr
dws
LIqu = _iw:r + tn |c515 +WrLIJ3r (7.23)

dat T, T,

Since we know the rotor fluxes from the previous flux estimation module, one can

calculate the rotor flux magnitude and angle:

wi=ywe F +(ws ) (729

0, = tan‘{m—er (7.25)

dr

Then the synchronous speed, we, can be calculated by the derivative of (7.25) as.

qu dq"(slf _LIJs dLIJ?ir
P (T AT TR (7.26)

Coodt (W)’ Wwn)*

Then, (7.22) and (7.23) are substituted into (7.26)

do 1L
— yro_ m SiS _14SiS
e — dt =w, + (qu) T_r(l'pdrlqs l-I'qulds) (727)
. ~ _
Wygiip
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Finally, rotor speed is calculated as:

1 Lm S ;S S ;S
w, =w, - F?)T_r(wdrlqs —wquds) (7.28)

7.3. Experimental Results

The performance of the flux estimator and open-loop speed estimator are
tested in our experimental setup. It is shown that both estimators work properly. The
experimental results follow the same sequence with the equations to have ease in
tracing the outputs state step by step.

The stator currents and voltages are quite close to a pure sinusoidal waveform
due to highly precise approximation of SVPWM. Thus, the outputs of the flux
estimator are expected to be sufficiently close to sinusoidal and the magnitude of the
flux is smooth enough for torque control operations. In Fig.7.1, typical input stator
current and stator voltage waveforms are given those are obtained during the

experiments.
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areshown in Fig.7.2.

The dg-axes rotor fluxesin stationary frame obtained from current model ((7.5), (7.6))

Fig.7.2- dg-axesrotor fluxes

500my * @B 500mV A" "M10.0ms " A

Chi £ 2.64V

in stationary frame obtained

from current model

The dg-axes stator fluxes in stationary frame obtained from the current model rotor
flux estimates (( 7.7),(7.8)) are shownin Fig.7.3

i 500mv  [®EF] 500mV

Fig.7.3- dg-axis stator fluxes

MT0.0ms A Chi & 2.64V

in stationary frame obtained

from the current model
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The dg-axes stator fluxes in stationary frame obtained from the voltage model
((7.9),(7.10)) considering the compensating voltage are shown in Fig.7.4. The back
emfs with added compensating voltages ((7.9),(7.10)) are shownin Fig.7.5.

Fig7.4-The dg-axes stator fluxesin stationary frame obtained
from the voltage model

Fig.7.5- Back emfs with added compensating voltages
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Finally, the outputs of the flux observer module, dg-axes stationary frame rotor fluxes
reconstructed by the voltage model ((7.13),(7.14)), are shown in Fig.7.6 and the

magnitude of the thisrotor flux is shownin Fig.7.7.

Fig.7.6 - dg-axes stationary frame rotor fluxes reconstructed
by the voltage model

Fig.7.7. g-axis stationary frame rotor flux reconstructed by voltage
model with rotor-flux magnitude
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The smooth flux magnitude in Fig.7.7 guarantees a fast and constant torque response

as in the case of dc motors. Another output of the flux estimator module, rotor-flux

angle (7.15),

isshownin Fig.7.8.

The rest of the figures illustrate the estimated speed that is the output of open-loop

BB T.00 Vv

Fig.7.8- Rotor-flux angle based on the voltage model

speed estimator and the associated reference speed.

M 4.005 A Ch

| £ 20.0mv

Fig.7.9- Reference speed (upper one) and estimated speed (lower one)

(trapezoid limits are 0.27 pu to 0.4 pu)
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Fig.7.10- Reference speed (upper one) and estimated speed (lower one)
(trapezoid limits are 0.4 pu to 0.5 pu)
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CHAPTER 8

THE HARDWARE & SOFTWARE

In this chapter, the hardware configuration of experimental setup and the
software organization will be summarized. The hardware configuration of the project
is basically the combination of an asynchronous motor, a motor drive and a
microprocessor. The software of the project involves assembly code of the FOC and

state observers in modular strategy.

8.1 Hardware Overview

8.1.1 The Motor

The experimental setup of this thesisis as shown in Fig.8.1. While testing the
setup, different motor sizes are used, but in the actua experimental stage 3kW
squirrel cage induction motor (Siemens make) is used. In order to obtain motor
parameters, classical no-load and locked-rotor tests are carried out on the motor. To
get a rough starting guess of the parameters used in the FOC algorithm, steady-state
model of the induction motor is employed as shown in Fig.8.2. In the rea time
applications, motor drives are expected to obtain motor parameters at the beginning
with injected signals and on-line estimation of the parameters are embedded to FOC
algorithm. These methods are skipped in this work and considered as future work. In
this thesis, different from on-line parameter estimation, closed-loop observers (e.g.
EKF) are expected to compensate the parameter deviation effects regarding the

parameter errors as system noise.
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Fig.8.1 — Overall hardware configuration of the experimental setup

| Rs Xis R, Xlr
— MA__ YL AMA__N
|t |
+ I2

Vi Re § Xom R (1-5)%/'

Fig.8.2 - Approximate per Phase Equivalent Circuit for
an Induction Machine

Rs in the equivalent circuit of Fig.8.2 is obtained by dc-test, R. and X, are determined
by no-load and the rest of the parameters are determined by locked-rotor test. The
stator resistance of each stator winding can be measured independently by applying a

dc-current to one phase as shown in Fig. 8.3.
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Incluction Motor

Fig.8.3 — Diagram of dc measurement

The stator resistance is measured on the motor terminals by applying a current
through a resistor and measuring the corresponding voltage, or without a resistor
applying low-level dc voltage. To obtain a more accurate measurement result, one
must get several numbers of measured data and take the average of these data for each
phase.

The leakage-reactances x;s, Xir and the rotor resistance are determined when
the motor speed is set to zero, i.e. s=1. Since the magnetizing branch elements are
large enough compared to the rest of the equivalent components, these are neglected
in this test. It is further assumed that leakage reactances are equal to each other
according to IEEE test standards. Since stator resistance is measured and leakage
reactances are assumed to be equal, rotor resistance can easily be calculated from the
measured data. The measurements are done around the rated current of the motor and
than the average of the measurements are computed to obtain more approximate
parameters.

When the motor is running without load, the slip will be close to zero. Thus,
the variable dlip resistance will be very large. Therefore, in the no-load test one may
consider the magnetizing branch as the approximate circuit of the motor model. The
no-load data are measured around the rated voltage, and magnetizing branch elements
are calculated around the rated voltage of the motor. The calculated motor parameters
and ratings of the motor are given in Table-8.1
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Table 8.1- Motor Parameters

Rs (stator resistance) [2,0 ohm
Rr  (refererred rotor resistance)|1,78 ohm
Rc 522 ohm
Xm (magnetizing reactance) |65,25 ohm
XIs,XlIr (leakage reactances) 2,68 ohm
LsLr (stator & rotor induc.) [0,215H
LisLIr (leakage induc.) [0,0085 H
Lm (magnetizing induc.) [0,207 H
Tr (rotor time const.) 0,12

8.1.2. The Motor Drive

The drive circuit used here has been developed in another work [40] but

modified to suit to the requirements of this work. The drive mainly includes a

rectifier, dc-link circuit and an inverter. The rectifier used in this drive is Semikron-

SK D28 that consists of six uncontrolled diodes. The rated current of the rectifier is 28
A and the rated operating voltage is 1300 V. During the tests, the three-phase voltage

is supplied over an autotransformer to the rectifier.

In the dc-link circuit, the rectified voltage is a smooth dc filtered by dc-link

capacitors. The filter is made of two 1000uF capacitors connected in series. In

addition to them a resistor of 1W, 0.41 Mohm is connected across each capacitor to

balance the voltage on them. The dc link voltage is supplied to the capacitors through

arelay system as shown in the Fig. 8.4.

relay \

(-]

3
1

ol I |

0l — RZ T 0.4ihd

1000y -

000U CF =

R3 T 0.41ht

Fig.8.4 —Dc_link Circuit
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At the beginning, the capacitors are charged to a certain level through a 15 W resistor
to prevent the inrush current at starting. When the capacitors are charged to
predefined level, the relay disconnects the resistor. One can change the relay on-off
voltage level by adjusting the controlling potentiometer on the interface card.
Furthermore, by adding a manual switch, on-off state of the relay can be controlled
manually by this switch. As a future work at this point, a dynamic braking circuit
(freewheeling path controlled by a switch) may be added to avoid from over-charging
the capacitors while the motor is slowing down rapidly.

The inverter on the drive is Semikron_Semitrans IGBT module (SKM 40 GD
123 D). The rated value of V¢ in this IGBT package is 1200V and I is 40/30 A
depending on the case temperature. The switching rise time of the IGBT switches is
55 ns and the switching fall time of the switches is 40 ns. This package may be used
for applications at switching frequencies above 15 kHz. IGBTs in this module are
triggered by a gate drive card, Semikron six IGBT driver (SKHI 60 H4). The gate
drive card provides short-circuit protection for all six IGBTs in the full bridge. Short
circuit protection scheme is based on the collector-emitter voltage of the devices. It
switches off all IGBTs at once and gives an alarm in case a fault is detected. In our
setup, these error outputs of the gate-drive card are used for fast hardware interrupt.
The interlock circuit blocks simultaneous turning on of IGBTs of the same arm. One
IGBT cannot be turned on before the gate charge of the other IGBT is completely
removed.

The output of the inverter is connected to the motor through current sensorsto
acquire information about currents in real-time. Overall diagram of the inverter is
shown in Fig.8.5.
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Fig.8.5 Inverter Circuit

8.1.3 The DSP

In order to run the real-time control agorithm and create PWM signals, Texas
Instruments (T1) TMS320 processor is used in this work. Texas Instruments
TMS320 family consists of fixed-point, floating-point, multiprocessor digital signal
processors (DSPs). TM S320 DSPs have an architecture designed specifically for real-
time signal processing. The F/C240 is a member of the ’C2000 DSP platform, and is
optimized for control applications. The ' C24x series of DSP controllers combine this
real -time processing capability with controller peripherals to create a suitable solution
for vast majority of control system applications. The following characteristics make
the TM S320 family a suitable choice for a wide range of processing applications:

* Flexibleinstruction set,

* Inherent operational flexibility,

» High-speed performance,

* Innovative parallel architecture,

* Cost effectiveness.
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TMS320F240 version of thisfamily isthe one used in this application. It uses a 16-bit
word length along with 32-bit registers for storing intermediate results, and has two
hardware shifters available to scale numbers independent of the CPU.

The ' C24x DSP controllers take advantage of an existing set of peripheral
functions which includes:

o Timers,

» Serial communications ports (SCI, SPI),

» Anaog-to-digital converters (ADC),

* Event manager,

» System protection, such as low-voltage detection and watchdog timers.

To function as a system manager, a DSP must have robust on-chip I/0O and
other peripherals. The event manager of the 240 is application-optimized peripheral
unit, coupled with the high-performance DSP core, enables the use of advanced
control techniques for high-precision and high-efficiency full variable-speed control
of motors. Included in the event manager are specia pulse-width modulation (PWM)
generation functions, such as a programmable dead-band function and a space vector
PWM state machine for 3-phase motors that provides quite a high efficiency in the
switching of power transistors. Three independent up/down timers, each with it’s own
compare register, support the generation of asymmetric (non-centered) as well as
symmetric (centered) PWM waveforms.

8.1.4 Interface Card

In order to convey information back and forth between the power stage and
DSP an interface card has been designed. Moreover, suitable signal amplification,
signal filtering and hardware protection properties are added to this interface card (see
Appendix C).

The dc-link voltage is sensed with a voltage sensor (LV25_P) on the interface
card. The insulation property of the voltage sensor is quite sufficient to protect the
digital circuit and low voltage analog circuit from high voltage part. The dc-link

voltage value is sensed to re-build the phase voltages in the control software with the
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information of duty cycles of the IGBTs. This sensor is not necessary for the closed-
loop FOC algorithms unless the precise voltage information is required. Since the
reference voltage values obtained from feedback information and used as input of
SVPWM can be considered as actual dg-voltages. Especially, at low speed range, the
voltage drops on the switches become significant and the reference voltages do not
reflect the actual voltage values due to this voltage drop. In this case one must embed
a voltage drop compensation module to the control algorithm or use a voltage sensor.
Another aim of the voltage sensor is to sense the overcharge on the dc-link capacitors.
If the voltage level exceeds the predefined limit that is determined by the user, a
comparator gives an error signal. This error signal is used for immediate hardware
interrupt and all the IGBTs are set to off-state. Finally, to discard the power
resistance, the aim of which is to prevent the in-rush current at starting, the voltage
level information is needed to operate the relay across this resistance. The voltage
sensor aso provides this voltage information whether it exceeds the adjusted voltage
level or not. If this mechanism is employed then the relay will operate automatically
after the start command in a very short time.

The other sensed variables are stator currents using current-sensor on the
interface card. For this purpose LTS 25-NP current transducers are used. These
sensors are capable of sensing AC, DC and mixed current waveforms. The sensor has
multi-range current sensing options depending on the pin connections. The sensors
use hall-effect phenomena to sense the current. They have excellent accuracy and
very good linearity in the operating range. The output of these sensors is between
0-5V and unipolar. Since the ADCs on the DSP board cannot sense the negative
voltage and requires signal between 0-5V, our current sensors eliminate extra
hardware, and software modules due to its mentioned properties. Normally, one must
add offset to the AC current signals to compensate the negative parts and then
subtract this amount in the software. Furthermore, the current signals must be
normalized between the 0-5V range using amplifiers before the ADCs. All of these

procedures cause extra uncertainty that affects the accuracy of the sensed information.

In case of noisy phase currents, optional low-pass filters are placed on the
interface card with 1kHz cut-off frequency. However, at high frequency range above
50Hz these filters may cause serious phase lagging problem. The outputs of the

current transducers are also used to provide over-current protection. After determining
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the over-current limit, the potentiometers in the protection circuit are set to this
critical limit. In case of over-current problems a comparator gives error signal to set
the IGBTsinto off-state.

In addition, the PWM signals generated by DSP are amplified to make them
compatible with the gate drive card inputs. For this purpose, six PWM signals are
adjusted to 15V individually without any other change. Finaly, all the errors, gate
drive card errors, over-voltage error, over-current error, and an external error are OR
gated. The single error output is assigned to control PWM-OFF circuit to set the all
IGBTsto off-state in case of any fault.

The pictures of the interface card, DSP and inverter are given below.

Fig.8.6- Experimenta setup (Interface card, DSP and inverter)
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Fig. 8.7- Interface card

8.2 Software Overview

In this part genera software flowchart will be explained. Furthermore,
software modules and specific fixed-point numerical methods will be anayzed. The
experimental outputs of the each module will be monitored to show that the modules

run properly.

8.2.1 Software Organization

Overal agorithm of this project may be divided into two: initialization and
the run time module as shown in Fig.8.8. The initidization module defines and
initializes the software variables, constants and specific registers. Moreover, some of
the look-up tables employed in the algorithm may also be addressed in this part.
Initialized registers in the initialization module are watchdog timer registers, event
manager registers, auxiliary register addressing, serial communication registers, clock
registers. Some of these registers may be redefined in the specific modules if the
modular algorithm is used. Among the registers above initialization of the serial
communication registers is optional. The software constants and uninitialized
software variables may be defined in this part or in the initialization of the each

module.
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The code of the DSP TMS320 consists of many sections. The smallest unit of

Fig.8.8- Software Flowchart

an object file is called a section. A section is a block of code or data that will
ultimately occupy contiguous space in the memory map. Each section of an object-file
is separate and distinct. Object files always contain three default sections:

text section usually contains executable code.

.data section usually containsinitialized data.

bsssection  usually reserves space for uninitialized variables.
In addition, the assembler and linker allow you to create, name, and link named
sections that are used like the data, .text, and .bss sections.
There are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections are
initialized; named sections created with the .sect assembler directive are aso
initialized.
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Uninitialized sections reserve space in the memory map for uninitialized data.
The .bss section is uninitialized; named sections created with the .usect assembler
directive are aso uninitialized. In the initialization of the main code both of these
sections may be used. Uninitialized sections reserve space in TMS320 memory; they
are usually allocated into RAM. These sections have no actual contents in the object
file; they ssimply reserve memory. A program can use this space at runtime for
creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler
directives. The .bss directive reserves space in the .bss section. The .usect directive
reserves space in a specific uninitialized named section. Each time you invoke the .bss
directive, the assembler reserves more space in the .bss section. Each time you invoke
the .usect directive, the assembler reserves more space in the specified named section.
While developing the code in modular strategy, one may name the variables
according to the modules they are used. This helps to the code developer to classify
his variables in certain clusters. Initialized sections contain executable code or
initialized data. The contents of these sections are stored in the object file and placed
in TM S320 memory when the program is loaded.

The initialization of the algorithm may involve both of the sections. The run-
time module does not involve uninitialized section unless it is necessary. One may
need to put .text section to the initialization of the algorithm to set the variables to
zero or predefined constants. The initialization of the code will be called once at the
beginning of the program. Thus the starting address of the initialization must be
defined clearly and the code processing must start from this point. For this purpose
DSP code has a specific addressing indicator. The symbol _c _intO is defined as the
program entry point and the execution starts from this point. One must add necessary
options to linker command if this automatic entry point is used.

Run time code is mainly composed in the .text section. Run time code may be
generated either in the form of modules or one block of extended code. The
modularity technique is preferred to debug the code in an easy way. Furthermore, the
modules may be tested individually before building up the main code. In motor
control applications in which the PWM technique is employed, the run time modules
including overall control algorithms, real-time variable sensing, and final switching
commands are synchronized with the sampling period as shown in Fig.8.9. In

addition, synchronization of the PWM period is important for current sensing
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accuracy. To get the current samples at the end of the PWM pulses will eliminate the
switching frequency harmonic noise. Thisfact is out of the scope so the details will be
sKipped.

TICNT Sampling Period T = 2* PWMPRD PWM Underflow
A P . Interrupt
A A
Algorithm Time Waiting Time Algorithm Time

Fig.8.9- Overall FOC Algorithm Timing

The run-time code will be executed before 2* PWMPRD and then the program enters
in an infinite loop. The program will leave the loop with PWM underflow interrupt
that is active when the timerl counter is zero. By following the timerl counter which
is programmed to continuous up down counting with a period of 2*PWMPRD, the
main code is synchronized with the PWM pulses. One may develop a user interface
code instead of infinite loop and communicate with the program adjust some of the

coefficients such as PID and assign the DAC outputs to different software variables.

8.2.2 Base Values and PU model

Since the TMS320F240 is afixed point DSP, PU (per unit) model of the motor
is used to increase the accuracy and simplify the overall system. In a fixed point
system, 16 bit words are assigned to variables and some of the bits are used for
integer part of the number and some for floating part. To increase the accuracy, one
must reserve as many bits as possible to floating part. This is aso possible with PU
system. If the PU parameters and variables are properly chosen, the integer part will
expected to be at most +1 and the number of the bits reserved for the floating part

will be maximized.
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While choosing the PU values, one may select ratings of the motor or multiple
of the nomina values as base depending on the operating conditions. One must be
careful about the transient regions, since the amount of the states may exceed the
unity in transient state. Thus, the multiple of the nomina values may be adjusted
according to the transient state peak valuesto limit the base values. However, this will
give harm to the accuracy of the steady state computations. Due to this reason, while
testing the performance of the observers, we run the system under light load
conditions. The base quantities are calculated as shown below:

l, =K *1,
Ve =K *V,
w, =21,
8.1)
Vv (
P, =—>
Wy,

where I, Vy, are the maximum values of the phase nominal current and
voltage; wy, is the electrical nominal rotor flux speed; vy, is the base flux and subscript
nis expresses the nominal quantities of the same variable. The real time quantities are
implemented in to the control thanks to the PU quantities, which are defined as

follows:
I
i=—
Ib
-V
V= A (8.2
g
Y=-*
Py

8.2.3 Fixed-Point Arithmetic
In binary format, a number can be represented in signed magnitude, where the |eft-
most bit represents the sign and the remaining bits represent the magnitude. Two’'s
complement is an aternative form of representation used in most processors,
including the TMS320. The representation of a positive number is the same in two’'s
complement and in signed magnitude. Thus the first bit gives idea whether the

number represented in signed magnitude is positive or negative.
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In fixed-point operations Qx format is used to represent the floating numbers.
For example, in Q1 format, first bit is assigned for sign and three bits are assigned to
represent the integer part and the rest of the 16 bitsis assigned for floating part of the
number. In Qss, one hit is assigned for sign and the rest is assigned for floating part.
Thus one can represent the number in the range of -1 to 1 excluding these to integers.
So if the variables are normalized in a proper way those never exceed unity, Qs
format provides the best accuracy. If one uses numbers greater than unity then, the Qx
format must be rearranged to represent those numbers. For example, using Q12 format
the numbers between the —7.999 to +7.999 with a less accuracy in the floating part
since the floating part may be represented with fewer numbers when compared to the
Qi5 format. The resolution of the Q5 format is 0.0000305 (1/2%°) where Q., format is
0.000244 (1/2"). If the selected base values are in nominal values, than drive control
quantities will not be greater than four times the nominal values (for the most part). In
this case one may use Q2 format. On the other hand, if the value of the variables are
guaranteed to be less than unity by choosing proper base quantities, Q;5 format is

preferred . The generalized representation of Q is given below:

Z=-b, *2 +Db, *2" +. . by+b *2"+b ,*27+. .+b,, *27¢ (83)
where k represent the number of bits representing floating part and b is the binary
(0,1) quantities. Here are some examplesto clarify the concept:
pi=3.14159265= 0011.0010 0100 0011 in Q2 format (3243H)
=011.00100 1000 0111 in Q3 format (6486H)
0.0045 = 0000. 0000 0001 0010 in Q,, format
=0.000 0000 1001 0110 in Q5 format
The summation of the numbers in Qx format is the same as binary system
summation. However, the multiplication has some tricks. In the multiplication of the
Q« format, the result is in the form of: Q.*Qm = Qnm. Since the multiplication
operation is done in the 32 bit accumulator, Q..m may exceed to Qs without any

problem.
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For example, Q12* Q2= Q24

4 12 4 12
AR e e
msb Isb msb Isb
4 12 12
L] P LT accumutator o
4 12
S T LT T fccumutator i

After the multiplication Q4 is stored to the accumulator as shown in accumulator_|.
The right bits of the shaded part is neglected in accumulator_|. Before storing to a 16-
bit microprocessor word, the number in the accumulator must be left shifted asin the
case of accumulator_Il and than the high word in the accumulator must be stored the
associated word. In the multiplication of Qx format n and m above may be any
number between 0-15. However, 16-bit result must be aligned to either high or low
word of the accumulator in the form of any Qs format. The SXM must be set if any

of the numbersin Qx format is negative.

8.24 FOC Software Modules

In the literature severa vector control structures are proposed in which
recently developed algorithms and modules can be adjusted. One of the classical
sensorless closed-loop field-orientation structure block diagrams are shown in
Fig.8.10. Although the maor components of these structures remain the same, the
difference underlies in some specific modules only. In this thesis we concentrated on
the observer block to estimate either rotor-speed or rotor-flux. In this section, basic
modules are defined and associated theoretical background is explained.
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Fig.8.10 Speed Sensorless FOC of Induction Motor — System Block
Diagram Showing Software Modules

Software M odules:

1-PID_REG

pid_ref- Q15

pid_fdb-Q15

—>

—>»

PID
Module

L > pid_out

Description: It tunes the error signal with integral and proportional coefficients. The

discretization of differential equation is implemented by backward approximation.
There exist three PID regulators in the FOC structure.

Inputs:

1-reference_speed, sensed speed (Q15)

2-reference id, sensed id (Q15)
3-reference iq, sensed iq (Q15)

Outputs:
1-id_ref (Q15)

2-Ipark_D (Q15)
3-Ipark_Q (Q15)
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Background: pid_out(k)= pid_out(k-1) + (Kp+Ki T) ek) — (Kp) e(k-1)
where
e: error between the inputs
Kp, Ki: proportional and integral coefficients respectively

T: sampling time

2- ADC
a,b phase cur. 7%» 7%. a,b,c phase currents
ADC Module
dc_linkvol. —— - dc_link_vol.

Description: ADC is a driver module that converts analog inputs into digital
representations with programmable gains and offsets. In the study we also sensed the

dc_link voltage. Conversions are triggered by timer 1 underflow.

Inputs: ia, ib analog phase currents, analog dc_link_voltage (Q15)
Outputs: ia, ib digital phase currents, digital dc_link_voltage (Q15)
Background: ADC pins accept 0-5V only. Since the outputs of sensors on the
interface card are between 0-5V, the voltage and current values are sensed directly.

Phase currents are embedded to the software according to the formula below:
|_phaseA=1_phaseA_ADC* |_A_gain+1_A_offset

Since the sensed current values are unipolar, negative part is represented between O-

FFFF H and positive part is represented between O-7FFF H in hex. 0-5V dc_link

voltage is represented between O-7FFF H in hex. Due to Q15 conversion, XOR

operation causes offset about 200H. Thus one must take into account this offset.

3-CLARK TRANSFORMATION

|_phaseA —»| L » | clak D

| J)h aseB Clarke Module I_CI ark_Q
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Description: It converts balanced three phase quantities into balanced two phase
quadrature quantities.
Inputs: ia, ib digital phase currents (Q15)
Outputs: clark_D, clark_Q (Q15)
Background: clark_D =1_phaseA
clark_Q = (I_phaseA+2*|_phaseB)/ sgrt(3)

4-PARK TRANSFORMATION

|_clark_DQ 7%, » Pbark_D

Park Module
Theta > park_Q

Description: It converts vectors in balanced 2-phase orthogonal stationary system into
orthogonal rotating reference frame.
Inputs: clark_D, clark_Q (Q15)
Outputs: park_D, park_Q (Q15)
Background: park_D = clark_D*cos + clark_Q*sin
park_Q=-clark_D*sinf + clark_Q*cosh

5-CURRENT MODEL

Park D [/,
-0 Theta

Current Module ——»
Rotor spd.

—

Description: It estimates the rotor flux position based on three inputs. These are the
quadrature (isg) and direct (isd) axis components of the stator current in the
orthogonal reference frame (output of PARK transform) and the rotor mechanical
Speed.

Inputs. park_D, park_Q, speed (Q15)

Outputs: theta (Q15)

Background: Theoretical background is given in chapter 2.
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7-SVGEN

Va —» SVGEN Ta,Th,Tc
>

Vb — Module

Description: It calculates the appropriate duty ratios needed to generate a given stator
reference voltage using space vector PWM technique.

Inputs: Vq,vd (Q15)

Outputs: Ta,Th, Tc (Q15)

Background: Theoretical background is given in Chapter 4.

8-PWM DRIVE

Ta,Th,Tc 1-6 PWM compare

7%64» PWM DRV |—»
values

Module

Description: It uses the duty ratio information and calculates the compare values for
generating PWM outputs. The compare values are used in the full compare unit in
24x/24xx event manager (EV). Thisalso allows PWM period modulation.

Inputs: Ta, Th,Tc (Q15)

Outputs: PWM1-6 compare values (Q15)

Background: Theoretical background is given in Chapter 4.

9-STATE OBSERVER

Description: It gives speed, flux information from sensed current and voltage values
Inputs. id,iq,vVd,Vq (Q15)

Outputs: rotor speed, flux (Q15)

Background: Theoretical background is given in Chapters 5, 6, 7.

166



10-DAC

Description: This module sends any assigned software variable to DAC outputs. Since
DAC register format is 12-bit, in this module Q15 format is converted to equivalent
12-hit representation. This module allows monitoring four different software variables
at the same time.

Inputs: any four-software variable (Q15)

Outputs: 0-5V equivalent analog representation of the variables.

11-Voltage Calculation

Description: This software module calculates three phase voltages applied to the 3-ph
motor (i.e., induction or synchronous motor) using the conventional voltage-source
inverter. Three phase voltages can be reconstructed from the DC-bus voltage and
three switching functions of the upper power switching devices of the inverter. In
addition, this software module also includes the clarke transformation that converts

three phase voltages into two stationary dg-axis voltages.

Inputs: three switching functions, dc_link_voltage (Q15)
Outputs: 3-phase voltages and 2-phase voltages (Q15)
Background: Theoretical base of thismodule is partialy given in Chapter 4.
A complete state-observer performance test assembler codeis given in Appendix D.
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CHAPTER9

CONCLUSIONS and FUTURE WORKS

9.1 Conclusions

The focus of thesis has been the state estimation techniques for FOC of
induction machine. Different state estimators utilized to observe dg-axis stator and

rotor flux estimation, rotor speed, synchronous speed, rotor flux angle.

First, generalized dynamic mathematical model of the induction motor is
studied in different reference frames. Induction motor mathematical model devel oped
in stationary frame is investigated. Furthermore, analysis on this model is made
including stability analysis of the model, transfer function determination and step
response of the model. Next, using this motor model an indirect field orientation
control is ssimulated and studied to gain familiarity with FOC. In addition, SVPWM
algorithm used in the experiment is simulated and the results are confirmed

experimentally.

As an estimator, Kalman filtering technique investigated to observe dg-axis
rotor fluxes and rotor speed. For this purpose, appropriate mathematical model of
induction machine is studied and discretized for real-time applications. Severa
simulations are illustrated to examine the performance of EKF. In addition, a novel
Kaman filtering technique is introduced to observe the same states with the same

motor model. These two techniques are proved to be appropriate for induction motor
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state estimation with simulations and experimental results. A comparative approach is
made to determine the superior technique.

An adaptive state observer, MRAS is tested on two different schemes to
observe rotor speed. The stability analysis and continuous and discrete models of each
scheme are investigated. The high performance of these schemes is shown in
simulations and experimental results.

In addition, a flux observer with voltage model-current model combination is
implemented. The outputs of this observer were fed to a open-loop speed estimator.
Using these observers, dg-axis rotor-stator fluxes, rotor flux angle and rotor speed are
estimated satisfactorily in the experiments.

There exist a number of criteria to determine the observer used in the FOC of
induction motor in practice. If an observer, based on Kaman filter, is to be
implemented then the microprocessor used in the system must be fast enough and it
must have sufficiently large program memory. However, thisis not a strict requirement
for MRAS, since the computational burden of MRAS is relatively low compared to the
Kaman filter.

Furthermore, one must know the noise content of the experimental setup to
select the appropriate observer. If the sensed currents include high amount of
measurement noise, then using MRAS will not be adequate choice since the low pass
filter characteristics of the MRAS is worse than that of EKF. In addition, uncertainities
related to the parameter deviation can be modeled by the user in EKF. Whereas MRAS
IS expected to compensate these uncertainities by the aid of it's closed-loop structure.
Therefore, for the practical cases where the uncertainties are significant, EKF will
provide better state estimations.

Either the number of the states or the number of the parameters to be estimated
by the observer is another criterion to select the true observer. One can estimate the
whole state vector by using an observer based on EKF. MRAS, however, provides the
estimation of only one state or one parameter instantaneously. Therefore this criterion
depends on the requirements of FOC agorithms. One may use MRAS not as a state
observer but an online parameter tuning tool that tunes different state observers.
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In addition to criteria mentioned above, mathematical complexity and difficulty
of both the EKF and UKF are significant disadvantages when compared to the MRAS.
Because, the mathematics used in MRAS is not as complicated as in Kalman filtering
techniques. Thus, it is easier to analyze and deal with MRAS.

Finally, in this work it is shown that, instead of EKF using UKF will avoid
costly Jacobian matrix calculations and will give better results under the same

operating conditions.

9.2 Future Work

The simulations and experimental works show the great promise of the studied
methods in this thesis. However, due to equipment limitations these methods are not
tested over a wide speed and toque ranges. Further, the experimental work is required
to implement these techniques in the entire torque speed range of the induction motor.

Using the three different speed frames (arbitrary, stationary, synchronous)
discussed in Chapter 3, equivalent circuit models for air-gap flux, stator flux and rotor
flux may also be derived.

In addition to the implemented SVPWM agorithm in Chapter 4, over-
modulation techniques may also be implemented in order to utilize entire dc link
voltage.

A reduced-order motor model may be applied to the both EKF and UKF to
decrease the computational burden. Furthermore, these observers may be used for on-
line parameter estimation.

To solve the stability problems of MRAS, different methods may be used such
as gain scheduling. MRAS may also be reconfigured to estimate the parameters of the

motor in rea time.
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S-function M -file;

Appendix A

function [sys, x0] =kal mn(t, x, u, fl ag)
o%This sjfunction is used to sinulate a kalman filter in

% ield reference frane

gl obal
gl obal
gl obal
if flag ==

Rs=Rs_;
LI s=LIs_;
Rr=Rr_;
LIr=LIs_;
Xxm = xm_
LO= xm;

% he state noise
V_ix=(V_.ix )"2
V_iy=(V_.ix )"2
V_phi x=(V_phi x_)"2;
V_phi y=(V_phi x_)"2;
Vw=(V.w );

%l he out put noise
Wi x=(W.i x) *2;
Wiy=(W.ix)"2;

Ts=200e- 6;

Lr=LO+LIr;
Ls=LO+LI s;
Taur=Lr/Rr;
si gma=1-L0"2/ (Ls*Lr);

% lInitialization
%\Vbt or paraneters

Wnitia

condi tions

%Sanpling tine

%St at e space node

all=- (Rs/ (sigma*Ls)+(1-sigm)/ (sigma*Taur));
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for

Q all al3 al4 a31 a34 a33 bll al5 a25 a35 a45 b53;
d FaGnCmL WV V1 Ts B G/ wn ;
L11 L12 L21 L22 L31 L32 L41 L42 L51 L52 L

t he notor



al3=L0/ (si gma*Ls*Lr*Taur);
ald=L0/ (si gma*Ls*Lr);
a31=L0/ Taur;

a33=-1/ Taur;

b11=1/(si gma*Ls);
al5=L0/ (si gma*Ls*Lr);
a25=- L0/ (si gma*Ls*Lr);

A=[all W al3 al4*W
-\ all -al4*W al3
a3l 0 a33 (Ve-W)

0 a3l (W-We) a33];

B=[bll 0 ; 0 b1l ; 0 0; 0 0];
C=[1 000 010 0];

%D screte systemmatrices
F=eye(4, 4) +Ts* A,

G=B*Ts;
o%Ext ended node
%Jacobi an matri x
d_F12=[ al15*phi qr
a25* phi dr
- phi gr
phidr ];
%ot al Jacobian matri x
d FE[F d_F12
00O0O01];

GE[ G
0 0];

Cne[C [0;0]]

| 11
—_—

—ococoo<<

%rhe discrete Riccati equation

%BWQL,GRR=dare(d F ,Cm,V,W;
[QL,GRR=care(A ,C ,diag([V_ix V_iy V_phix V_phiy]),W;
Q[ Q zeros(4,1); zeros(1,5)];
Q5,5)=V_w;
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%Q=V

L=G
n=0; 9Count er
x0 =[0 0 0 0 0O];
sys =[0,5,5,5,0,0];
el seif flag==2%Jpdate
n=n+1;
U=[u(1);u(2)];
Y=[u(3);u(4)];
Ve=u(5);
%Ext ended A matri x

A=[all W& al3 ald*x(5) alb5*x(4)
-We all -al4*x(5) al3 a25*x(3)
a3l 0 a33 (We-x(5)) -x(4)

0 a3l (x(5)-wWe) a33 x(3)
0000 O0];

d_F=eye(5) +Ts*A;

%St ate vector tine update

X_1=[d_F(1:4,1:4)*x(1:4) ;x(5)]+Gry;
%_1=d_F*x+Grr U,

%Covari ance tine update
Q 1=d_F*Qd_F +V,

%<al man gai n update
L=Q 1*Cm *i nv(Cn* Q_1*Cmi +W ;

%St ate vector neasurenent update
X=X_1+L*(Y-Cnrx_1);
% Covari ance neasurenment update

EQI1-L*CnrQL;

%Jnconment to log innovation of
gai ns
% makes execution sl ower)
%.11(n)=L(1,1);
%.12(n)=L(1, 2);
%.21(n)=L(2,1);
%.22(n)=L(2, 2);
%.31(n)=L(3,1);
%.32(n)=L(3,2);
%.41(n)=L(4,1);
%.42(n)=L(4,2);
%.51(n)=L(5,1);
%.52(n)=L(5, 2);

SYyS=X;
elseif flag==
SYS=X;

el seif flag==9
save fina

sys =[];

end
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Appendix B

As with Lyapunov’s method, an adaptive law designed using hyperstability theory is
guaranteed to be stable. In the hyperstability approach the designer has to propose an
adaptive law, and with the aid of hyperstability theory one can check whether this law
gives a stable result. In general, a model reference adaptive speed estimator system
can be represented by an equivalent non-linear feedback system which comprises a
feed-forward time invariant linear subsystem and a feedback non-linear time varying
subsystem. The first part normally contains the reference model, and its output is the
error signal to be used in the adaptation. The second part contains the adaptive laws
and has an output W. Thisdivisionisillustrated in Fig.A .

Linear, time €
invariant block

Nonlinear,
time-varying
block

Fig A. Division of error equation into time invariant linear part and atime varying
nonlinear part
Usually, the input -W of the linear block equals the multiplication of the parameter
error O and the signal vector & used in the adaptation: -W=0"& . Hyperstability
theory guarantees an asymptotically stable system if both the linear and nonlinear

parts satisfy a positivity condition. A controllable, linear system with input u and

output y : % = Ax + BU

y=C"x
with a transfer function :

Y@ _

H(s) = 0

C'(s-A)*B
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is said to be positive real (PR) if Re[H(s)] equal or greater than zero. Hence the real
part of the transfer function can never become negative as long as the real part of sis
larger than or equal to zero. According to hyperstability theory the linear part H must
be strictly positive real (SPR) which means that the real part of H(jw) is larger than
zero for all W>0 thus Nyquist diagram of H(jw) must lie in the right half of the
complex plane, including the imaginary axis. This implies that the number of poles
and zerosin H(s) differs at most by 1, and the phase shift is never larger than 90°.

The nonlinear part must satisfy Popov’'s integral inequality, which states that a

positive constant y2 exists such that :

51
[eewdt=-y; foral t,20
0

This requirement is also denoted the passivity requirement. Observing nonlinear part
as an electrical network, the inequality can be shown to state that the amount of
energy output by the nonlinear system is never larger than the sum of the incoming
energy and the energy stored in the system. The energy in the system depends on the

external input of power and on the power generation in the system
% [stored energy]=[ext. power input] + [int. power generation]

Considering €, the input, as voltage and W as output, current, the external power
input equals € W. If the internal power generation is negative, the system is said to be
dissipative or strictly passive. If the internal power generation is less than or equal to
zero, the system is passive. Strict passivity is equivalent to SPR and asymptotic
stability. The main result using positivity and passivity concepts is that any parallel
combination of passive blocksis also passive. A feedback combination of two passive
blocks in which at least one is strictly passive. This is of great interest in
hyperstability theory, in which an SPR (and hence strictly passive) linear block is
connected to a passive nonlinear block in afeed back configuration. This combination

is strictly passive (and hence asymptotically stable).

179



APPENDIX C
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Appendix D

; Description: Code of nserver Test

LR Rk O R R R I R o o S Rk Ik I S R Rk O kR R R R R R
1

; SYSTEM OPTI ONS

EE Rk O R R R R A R R I R Rk Ik R R e Sk R R R R R I S R R
1

PW PERIOD .set 100 ; PWM period in uS (10KHz)
T1PER_ . set PWV_PERI OD* 10 ; *1000nS/ (2*50nS)

EE Rk O S R R R o R Ik S R R e S R SRR R R R S R R
1

.include "x24x_app. h"

.ref SYSINT

.ref RAMP_CGEN, RAMP_GEN INIT
.ref rnp_gain, rnp_offset, rnp_freq
.ref step_angl e_max
.ref rnp_out

.ref |1_PARK, |_PARK INIT
.ref ipark_D, ipark_Q theta_ip
.ref ipark_d, ipark_q

.ref DAC_VI EWDRV, DAC VIEWDRV_IN T
.ref DAC_I PTRO, DAC | PTRL, DAC_| PTR2, DAC_| PTR3

.ref SVGEN DQ SVGEN DQ INIT

.ref Ualfa, Ubeta
.ref Ta, Th, Tc
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.ref FC_PW DRV, FC PWM DRV_INIT
.ref Munc_cl, Munc_c2, Munc_c3, Munc_p
. ref n_peri od

.ref CLARKE, CLARKE_INT
.ref clark_a, clark b
.ref clark_d, clark_qg

.ref PARK, PARK_INIT
.ref park_d, park_qg, theta_p
.ref park_D, park_Q

.ref |LEG_DCBUS DRV, |LE&_DCBUS DRV INIT
.ref Ch_sel, Ineas_a gain, Inmeas_b _gain, Vdc_neas_gain

.ref Inmeas_a offset, Ineas b _offset, Vdc_neas_ offset
.ref Ineas_a, Inmeas_b, Ineas_c, Vdc_neas

.ref PHASE VOLTAGE CALC

.ref PHASE VOLTAGE CALC INIT
.ref Munc_V1l, Munc_V2

.ref Munc_V3, DC bus

.ref Vphase_A, Vphase_B, Vphase_C
.ref Vdirect, Vquadra

.ref OBSERVER, OBSERVER INIT
.ref obs_1, obs 2
.ref obs_3, obs 4

.ref TRAPEZO DAL_GEN, TRAPEZO DAL GEN INI'T
.ref trap_mn, trap_max, trap_dly_max
.ref trap_out

.ref PIDREG3 ID,PIDREGB IDINT
.ref id fdb,id ref
.ref ud_out,e d

.ref PIDREG3 IQPID REG IQINT

.ref iq_fdb,iq_ref
.ref ug_out,e q
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.sect "vectors"
.def _c_intO

RESET B _c.intO ;00
| NT1 B PHANTOM : 02
| NT2 B T1_PER OD | SR . 04

| NT3 B PHANTOM . 06
| NT4 B PHANTOM . 08
| NT5 B PHANTOM . 0A
| NT6 B PHANTOM . 0C

CALL SYSINT
CALL FC PWMDRV_INIT
CALL DAC VIEWDRV_INIT
CALL RAMP_GEN INI T

CALL | PARK INIT
CALL SVGEN DQ INIT
CALL | LEG2_DCBUS DRV_INIT

CALL CLARKE INIT
CALL PARK_INI T

CALL PHASE VOLTAGE_CALC INIT
CALL  ACl_FEINT

CALL  ACl_SEINIT

CALL  TRAPEZO DAL_GEN INIT
CALL PIDREG IQINT

CALL PID REG3_ID INIT

; Variables initialization
LDP  #n_period
SPLK #T1PER ,n_period; initialize the PW period to 10kHz

; System Interrupt Init.
; Event Manager
PO NT_EV
SPLK #0000001000000000b, I MRA ; Enabl e T1 Underfl ow I nt

SPLK #OFFFFh, | FRA ; Clear all Goup Ainterrupt flags
SPLK #OFFFFh, | FRB ; Clear all Goup Binterrupt flags
SPLK #O0FFFFh, | FRC ; Cear all Goup Cinterrupt flags
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PO NT_PQ)

SPLK #0000000001000010b, IMR ;En Int lvl 3,7 (T2 I SR

; 5432109876543210
SPLK #OFFFFh, 1FR ;Clear any pending Ints
El NT ; Enabl e gl obal Ints
PO NT_BO
MAI N ; Mai n system background | oop
M 1
NOP
NOP
NOP
CLRC XF
B MAI N

T1_PERI OD_| SR:
; Cont ext save regs
MAR *, ARl ; ARl is stack pointer

MAR  *+ ; ski p one position

SST #1, *+ ;save ST1

SST  #0, *+ ; save STO

SACH *+ ; save acc high

SACL * ; save acc | ow

PO NT_EV

SPLK #O0FFFFh, | FRA SETC XF

SETC SXM ; set sign extension node
CLRC OWM ; clear overfl ow npode
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; Current |eg nmeasurenent, |l eg2drv nodul e
LDP  #lnmeas_a_gain

SPLK #4000H, | neas_a_gain ; QL3-->2
SPLK #4000H, | reas_b_gain ; QL3-->2

SPLK #2000H, Vdc_neas_gai n
CALL | LEG2_DCBUS_DRV

LDP  #lneas_a
LACC Ineas_a,?2 ;4. 22anmp rns 6anp peak
SACL Ineas_a
LACC Ineas_b, 2
SACL Ineas_b
; Carke nodul e

LDP #clark_a
BLDD #l nmeas_a, clark_a
BLDD #l meas_b, clark_b
CALL CLARKE
; PARK nodul e
LDP #park_d
BLDD #clark_d, park_d
BLDD #cl ark_q, park_qg
BLDD #rnp_out,theta ip
CALL PARK

; Ranp generation nodul e

LDP #id_fdb
BLDD #park_D,id_fdb
SPLK  #trap_out,id_ref

CALL PID REG3_ID
LDP #iq_fdb

BLDD #park_Qiq_fdb
SPLK  #3500h,iq_ref
CALL PID REG_IQ

ldp #trap_nin

spl k #02500h,trap_mnin
spl k  #04000h, t rap_nax
splk #8,trap_dly_max

CALL TRAPEZO DAL_CGEN
; I nverse-Park nodul e
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LDP  #theta_ ip

BLDD #rnp_out,theta_ip
BLDD #ud_out,ipark D
spl k #uqg_out,ipark _Q

CALL I _PARK

; Space- Vector DQ nodul e
LDP #Ual f a
BLDD #ipark_d, Ualfa
BLDD #i park_q, Ubeta

CALL SVGEN DQ
;. PVWM driver
LDP  #Munc_cl
BLDD #Ta, Munc_cl
BLDD #Tb, Munc_c2
BLDD #Tc, Munc_c3
SPLK #07FFFh, M unc_p

CALL  FC_PWM DRV

LDP  #DC bus

BLDD #Ta, Munc_V1
BLDD #Tb, M unc_V2
BLDD #Tc, Munc_V3
BLDD #Vdc_neas, DC bus

CALL PHASE VOLTAGE_CALC

LDP #Vdi r ect
LACC WVdirect,1
SACL Vdirect
LACC Vquadra,1
SACL Vquadra

LDP  #obs_1

BLDD #WVdirect,obs 1
BLDD #Vquadra, obs_2
BLDD #clark_d, obs_3
BLDD #clark g, obs 4

CALL OBSERVER
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Rk b I R R R I Sk O R SRR o bk o S Rk I

* DAC_LI ST *

EE R I R I R I R R R S R R R R R R

LDP #DAC_| PTRO
SPLK #cl ark_d, DAC_| PTRO
LDP #DAC_| PTRL
SPLK #cl ark_q, DAC_| PTRL
LDP #DAC_| PTRO
SPLK #Vphase_A, DAC | PTR2
LDP #DAC | PTRL
SPLK #Vphase_B, DAC | PTR3
CALL DAC_VI EW DRV

; Context restore regs

END | SR:
PO NT_PQ0
MAR *, ARl ; make stack pointer active
LACL *- ;Restore Acc | ow
ADDH *- ; Restore Acc high
LST  #0, *- ;load STO
LST #1, *- ;load ST1
El NT
RET
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Appendix D

; Description: Code of nserver Test

LR Rk O R R R I R o o S Rk Ik I S R Rk O kR R R R R R
1

; SYSTEM OPTI ONS

EE Rk O R R R R A R R I R Rk Ik R R e Sk R R R R R I S R R
1

PW PERIOD .set 100 ; PWM period in uS (10KHz)
T1PER_ . set PWV_PERI OD* 10 ; *1000nS/ (2*50nS)

EE Rk O S R R R o R Ik S R R e S R SRR R R R S R R
1

.include "x24x_app. h"

.ref SYSINT

.ref RAMP_CGEN, RAMP_GEN INIT
.ref rnp_gain, rnp_offset, rnp_freq
.ref step_angl e_max
.ref rnp_out

.ref |1_PARK, |_PARK INIT
.ref ipark_D, ipark_Q theta_ip
.ref ipark_d, ipark_q

.ref DAC_VI EWDRV, DAC VIEWDRV_IN T
.ref DAC_I PTRO, DAC | PTRL, DAC_| PTR2, DAC_| PTR3

.ref SVGEN DQ SVGEN DQ INIT

.ref Ualfa, Ubeta
.ref Ta, Th, Tc
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.ref FC_PW DRV, FC PWM DRV_INIT
.ref Munc_cl, Munc_c2, Munc_c3, Munc_p
. ref n_peri od

.ref CLARKE, CLARKE_INT
.ref clark_a, clark b
.ref clark_d, clark_qg

.ref PARK, PARK_INIT
.ref park_d, park_qg, theta_p
.ref park_D, park_Q

.ref |LEG_DCBUS DRV, |LE&_DCBUS DRV INIT
.ref Ch_sel, Ineas_a gain, Inmeas_b _gain, Vdc_neas_gain

.ref Inmeas_a offset, Ineas b _offset, Vdc_neas_ offset
.ref Ineas_a, Inmeas_b, Ineas_c, Vdc_neas

.ref PHASE VOLTAGE CALC

.ref PHASE VOLTAGE CALC INIT
.ref Munc_V1l, Munc_V2

.ref Munc_V3, DC bus

.ref Vphase_A, Vphase_B, Vphase_C
.ref Vdirect, Vquadra

.ref OBSERVER, OBSERVER INIT
.ref obs_1, obs 2
.ref obs_3, obs 4

.ref TRAPEZO DAL_GEN, TRAPEZO DAL GEN INI'T
.ref trap_mn, trap_max, trap_dly_max
.ref trap_out

.ref PIDREG3 ID,PIDREGB IDINT
.ref id fdb,id ref
.ref ud_out,e d

.ref PIDREG3 IQPID REG IQINT

.ref iq_fdb,iq_ref
.ref ug_out,e q
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.sect "vectors"
.def _c_intO

RESET B _c.intO ;00
| NT1 B PHANTOM : 02
| NT2 B T1_PER OD | SR . 04

| NT3 B PHANTOM . 06
| NT4 B PHANTOM . 08
| NT5 B PHANTOM . 0A
| NT6 B PHANTOM . 0C

CALL SYSINT
CALL FC PWMDRV_INIT
CALL DAC VIEWDRV_INIT
CALL RAMP_GEN INI T

CALL | PARK INIT
CALL SVGEN DQ INIT
CALL | LEG2_DCBUS DRV_INIT

CALL CLARKE INIT
CALL PARK_INI T

CALL PHASE VOLTAGE_CALC INIT
CALL  ACl_FEINT

CALL  ACl_SEINIT

CALL  TRAPEZO DAL_GEN INIT
CALL PIDREG IQINT

CALL PID REG3_ID INIT

; Variables initialization
LDP  #n_period
SPLK #T1PER ,n_period; initialize the PW period to 10kHz

; System Interrupt Init.
; Event Manager
PO NT_EV
SPLK #0000001000000000b, I MRA ; Enabl e T1 Underfl ow I nt

SPLK #OFFFFh, | FRA ; Clear all Goup Ainterrupt flags
SPLK #OFFFFh, | FRB ; Clear all Goup Binterrupt flags
SPLK #O0FFFFh, | FRC ; Cear all Goup Cinterrupt flags
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PO NT_PQ)

SPLK #0000000001000010b, IMR ;En Int lvl 3,7 (T2 I SR

; 5432109876543210
SPLK #OFFFFh, 1FR ;Clear any pending Ints
El NT ; Enabl e gl obal Ints
PO NT_BO
MAI N ; Mai n system background | oop
M 1
NOP
NOP
NOP
CLRC XF
B MAI N

T1_PERI OD_| SR:
; Cont ext save regs
MAR *, ARl ; ARl is stack pointer

MAR  *+ ; ski p one position

SST #1, *+ ;save ST1

SST  #0, *+ ; save STO

SACH *+ ; save acc high

SACL * ; save acc | ow

PO NT_EV

SPLK #O0FFFFh, | FRA SETC XF

SETC SXM ; set sign extension node
CLRC OWM ; clear overfl ow npode
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; Current |eg nmeasurenent, |l eg2drv nodul e
LDP  #lnmeas_a_gain

SPLK #4000H, | neas_a_gain ; QL3-->2
SPLK #4000H, | reas_b_gain ; QL3-->2

SPLK #2000H, Vdc_neas_gai n
CALL | LEG2_DCBUS_DRV

LDP  #lneas_a
LACC Ineas_a,?2 ;4. 22anmp rns 6anp peak
SACL Ineas_a
LACC Ineas_b, 2
SACL Ineas_b
; Carke nodul e

LDP #clark_a
BLDD #l nmeas_a, clark_a
BLDD #l meas_b, clark_b
CALL CLARKE
; PARK nodul e
LDP #park_d
BLDD #clark_d, park_d
BLDD #cl ark_q, park_qg
BLDD #rnp_out,theta ip
CALL PARK

; Ranp generation nodul e

LDP #id_fdb
BLDD #park_D,id_fdb
SPLK  #trap_out,id_ref

CALL PID REG3_ID
LDP #iq_fdb

BLDD #park_Qiq_fdb
SPLK  #3500h,iq_ref
CALL PID REG_IQ

ldp #trap_nin

spl k #02500h,trap_mnin
spl k  #04000h, t rap_nax
splk #8,trap_dly_max

CALL TRAPEZO DAL_CGEN
; I nverse-Park nodul e
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LDP  #theta_ ip

BLDD #rnp_out,theta_ip
BLDD #ud_out,ipark D
spl k #uqg_out,ipark _Q

CALL I _PARK

; Space- Vector DQ nodul e
LDP #Ual f a
BLDD #ipark_d, Ualfa
BLDD #i park_q, Ubeta

CALL SVGEN DQ
;. PVWM driver
LDP  #Munc_cl
BLDD #Ta, Munc_cl
BLDD #Tb, Munc_c2
BLDD #Tc, Munc_c3
SPLK #07FFFh, M unc_p

CALL  FC_PWM DRV

LDP  #DC bus

BLDD #Ta, Munc_V1
BLDD #Tb, M unc_V2
BLDD #Tc, Munc_V3
BLDD #Vdc_neas, DC bus

CALL PHASE VOLTAGE_CALC

LDP #Vdi r ect
LACC WVdirect,1
SACL Vdirect
LACC Vquadra,1
SACL Vquadra

LDP  #obs_1

BLDD #WVdirect,obs 1
BLDD #Vquadra, obs_2
BLDD #clark_d, obs_3
BLDD #clark g, obs 4

CALL OBSERVER
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* DAC_LI ST *
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LDP #DAC_| PTRO
SPLK #cl ark_d, DAC_| PTRO
LDP #DAC_| PTRL
SPLK #cl ark_q, DAC_| PTRL
LDP #DAC_| PTRO
SPLK #Vphase_A, DAC | PTR2
LDP #DAC | PTRL
SPLK #Vphase_B, DAC | PTR3
CALL DAC_VI EW DRV

; Context restore regs

END | SR:
PO NT_PQ0
MAR *, ARl ; make stack pointer active
LACL *- ;Restore Acc | ow
ADDH *- ; Restore Acc high
LST  #0, *- ;load STO
LST #1, *- ;load ST1
El NT
RET
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