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Discrete event simulation is a widely used technique for decision support. The 

results of the simulation must be reliable for critical decision making problems. 

Therefore, much research has concentrated on the verification and validation of 

simulations. In this thesis, we apply a well-known dynamic verification 

technique, assertion checking method, as a validation technique. Our aim is to 

validate the particular runs of the simulation model, rather than the model itself.  

 

As a case study, the operations of a manufacturing cell have been simulated. The 

cell, which is METUCIM Laboratory at the Mechanical Engineering Department 

of METU, has a robot and a conveyor to carry the materials, and two machines to 
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manufacture the items, and a quality control to measure the correctness of the 

manufactured items. 

 

This simulation is monitored and checked by using the Monitoring and Checking 

(MaC) tool, a prototype developed at the University of Pennsylvania. The 

separation of low-level implementation details (pertaining to the code) from the 

high-level requirement specifications (pertaining to the simuland) helps keep 

monitoring and checking the simulations at an abstract level.  

 

Keywords : discrete event simulation, validation and verification, assertion 

checking, run-time monitoring, instrumentation. 
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Kesikli olayların benzetimleri, yaygın olarak kullanılan bir karar destekleme 

tekniğidir. Kritik problemler için bu benzetimlerden elde edilen sonuçların 

güvenilirliği önem taşır. Bu nedenle, sistem benzetimlerinin doğrulanması ve 

geçerlenmesi üzerinde birçok araştırma yapılmaktadır. Bu tezde, çok iyi bilinen 

bir dinamik doğrulama tekniği olan, önesürümlerin denetimi yöntemi, 

benzetimlerin geçerliliğini kanıtlama yönünde uygulanmaktadır. Amacımız 

modelin kendisinden ziyade o modelin koşturmalarını geçerlemektir.  
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Bir vaka çalışması olarak, Ortadoğu Teknik Üniversitesi Makine Mühendisliği 

Bölümü Bilgisayar Tümleşik Üretim Laboratuvarı'nın bir benzetimi yapılmıştır. 

Bu laboratuvarda biri robot olmak üzere iki tane taşıyıcı, parçaları işleyen iki 

makine ve bir tane de kalite kontrol bileşeni bulunmaktadır. 

 

Bu benzetimin izlenmesi ve kontrolü, Pensilvanya Üniversitesi’nde bu konuda 

geliştirilmiş bir ön ürünle yapılmaktadır. Bu çalışmada düşük-seviye olarak 

adlandırılan kod detayları, yüksek-seviye olarak adlandırılan sistem 

gereksinimlerinden ayrılmıştır. Bu da izlenme ve kontrolün soyut bir seviyede 

yapılmasını sağlamaktadır. 

 

Anahtar Kelimeler : kesikli olayların benzetimleri, doğrulama ve geçerleme, 

önesürüm denetimi, koşturma sırasında izleme, 

enstrümantasyon. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

Verification and validation (V&V) have a big role in the simulation world. 

Verification means building the model right, and validation means building the 

right model. There are lots of V&V techniques; these are categorized as 

informal, static, dynamic and formal techniques.  

 

 Validation includes verification as a concept, because if a model is validated 

this means that it is already verified, but, on the contrary, if a model is verified, 

this does not mean that it is the right model. Therefore, validation gains more 

importance if the results of the simulations are used to support some decisions. 

Validation makes the results of a simulation model more reliable.  

 

Assertion checking is one of the dynamic verification techniques. It is used as a 

verification method. In general, assertions are inserted into the code and in run-

time, they are checked to see if they are satisfied.  

 

In this thesis, we use the assertion checking method, which is one of the 

dynamic verification techniques, for validating the particular runs of a 

simulation model  according to a set of requirement specifications. In dynamic 

techniques, simulation model behaviour is evaluated at run-time. For this 

purpose, we have employed a framework, Monitoring and Checking (MaC) 



 2 
 

 

framework, which has been developed at the University of Pennsylvania, and 

its prototype, Java-Mac release 0.99. This tool serves run-time monitoring of 

the target programs and checks the program according to defined requirement 

specifications. 

 

Finally, to reach our aim, we had to simulate a system. We have chosen a real 

world system, METUCIM Lab in the Mechanical Engineering Department of 

METU, which is a single manufacturing cell supported by the computers. 

While analyzing the system, the validation requirements have been specified, 

and in the design phase, they have been changed from high-level to low-level. 

Then, this simulation has been checked against the specified validation 

requirements. For this purpose, different scenarios about METUCIM Lab have 

been created as if there are misconceptions about the real world. These 

scenarios have been run under the control of validation specifications, and from 

these runs, the results have been reported in this thesis. 

 

The remainder of this thesis is organized as follows: In Chapter 2, background 

information is presented. Firstly, the concept of V&V, and their techniques are 

discussed. Then, the assertion checking method, run-time monitoring and 

instrumentation are described. Lastly, the architecture and the languages of 

MaC are covered. 

 

In Chapter 3, the simulation model is introduced. For this purpose, firstly, the 

application domain, which is a manufacturing cell, is defined. Then, 

METUCIM Lab in the real world and the information about its model in the  

simulation world are described in detail.  

 

In Chapter 4, the validation study about this simulation is written. The 

validation requirements are given group by group, and the scenarios, which 



 3 
 

 

were created to capture these requirements, and the results are described. The 

related source (PEDL and MEDL) files are presented in the appendices. 

 

Chapter 5 is the conclusion and the discussion part of this thesis. In this 

chapter, the results of the validation studies are evaluated and discussed. 

Finally, some possible future work is suggested. 
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CHAPTER 2 
 

 

BACKGROUND 
 

 

 

2.1 Verification and Validation 

Verification and validation are the most important concepts in the simulation 

world. They increase the reliability of the results of simulations and the critical 

decisions can be taken based on these results. 

2.1.1 Basic Concepts 

“Simulation models are increasingly being used in problem solving and in 

decision-making. The developers and users of these models, the decision-

makers using information derived from the results of the models, and people 

affected by decisions based on such models are all rightly concerned with 

whether a model and its results are “correct.” This concern is addressed 

through model verification and validation.” [1] 

 

“Model validation is substantiating that the model, within its domain of 

applicability, behaves with satisfactory accuracy consistent with the modeling 

and simulation (M&S) objectives. Model validation deals with building the 

right model.” [2] 
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“Model verification is substantiating that the model is transformed from one 

form into another, as intended, with sufficient accuracy. Model verification 

deals with building the model right. The accuracy of transforming a problem 

formulation into a model specification or the accuracy of converting a model 

representation from micro flowchart form into an executable computer 

program is evaluated in model verification.” [2] 

 

Validation contains verification as a concept, because a validated system 

usually means that it is the right model, and built right. Therefore, such a 

system can also be expected that it is a verified model. However, a verified 

model cannot be said to be a right model, unless it captures all the specified 

requirements, which is so difficult to achieve. Also, from the meaning of 

verification, the priority is given to building the model right, verification deals 

with error-free implementation. In conclusion, if a validation condition (for 

example, the passengers must tie the safety belts before the airplane takes off) 

fails, it cannot be understood that the error is in the code or in the model. 

However, if the verification condition (for example, controlling the queue 

length while inserting a new element) fails, it is clear that there is something 

wrong with the code. [3] 

2.1.2 Why is Validation Important? 

The validation process increases the reliability of the model or the simulation 

of that model by reducing the risks. In some projects, simulations are used as a 

guide to the project development and management decision [6] . Therefore, in 

such projects, validation plays a critical role. Some examples for such projects 

are space searches and military works. Consequently, if a model is not 

validated, the results obtained from the simulation of this model are not 

reliable; but, if it is validated then it may be expected to behave like the real 

system modeled, and the decisions affecting the real system can be made with 

confidence based on the results of the simulation model [5] . 
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2.1.3 Special Challenges of Validation 

Validating models or simulations has several challenges. These can be stated as 

below item by item [7]: 

 

• Enough time and commitment must be obtained from the users to specify 

the validation requirements sufficiently and accurately. These requirements 

are stated often informally, incompletely and inconsistently. 

 

• Different ideas about the represented requirements must be reconciled into 

a single complete and consistent set of requirements. 

 

• Sufficient and accurate information describing the functionality and the 

performance of the modeled system must be obtained, especially if that 

system exists only conceptually. 

 

• Validating a conceptual model described entirely informally and perhaps 

incompletely leaves a considerable number of parameters missing for 

qualitative interpretation about the degree to which the model faithfully 

represents the simulated system. 

 

• Trying to balance project schedule and cost constraints against validation 

may result in a model or simulation with less validity than desired. 

 

• Justifying the investment required to support the extent of the validation 

process is necessary to assure sufficient model or simulation credibility for 

the user. 

 

• There is no general method for detecting incompleteness or inconsistency 

of requirement specifications. 
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2.1.4 V&V Techniques 

Over seventy-five V&V techniques and eighteen statistical techniques that can 

be used for model validation are described in [6]. Most of these techniques are 

derived from software engineering; the remaining are specific to the M&S 

field. The V&V techniques can be separated into four categories: informal, 

static, dynamic, and formal. 

 

Informal: 

These techniques heavily rely on human reasoning and subjectivity. However, 

this does not mean that there is a lack of formal techniques. In fact, these 

techniques must be employed under well-structured formal guidelines. If they 

are used properly, their results can be very reliable. 

 

Static: 

These techniques do not require the execution of the programs, since in 

general, mental execution is applied. For these techniques, the accuracy of the 

model design and the source code becomes more important, because the aim is 

to check the information about the structure of the model, modeling techniques 

used, data and control flows within the model, and syntactical accuracy [4]. For 

example, the simulation language compiler is itself a kind of static V&V tool. 

 

Dynamic: 

Dynamic V&V techniques require the model execution and evaluate the model 

according to the execution behaviour. For evaluating the model while 

executing, most of the dynamic techniques need the model to be instrumented, 

which means insertion of additional codes (probes or stubs) into the executable 

code of the model. By this way, such techniques collect necessary information 

during the model execution.  
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Formal: 

These techniques require that the correctness of the model must be proven by 

using the mathematical proof methods. The model development process must 

be well defined and structured for successful application of these techniques. 

Methods require the model development process to be well defined and 

structured. These techniques rather than the simpler methods can be applied to 

more complex problems. In fact, current formal proof correctness techniques 

cannot even be applied to a reasonable complex simulation; however, formal 

techniques can serve as the foundation for other V&V techniques.   
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Verification and Validation 

Informal 
Audit  
Desk Checking 
Face Validation 
Inspections 
Reviews 
Turing Test 

Static 
Cause-Effect Graphing
Control Analysis 
Calling Structure 
Concurrency Process 
Control Flow 
State Transition 
Data Analysis 
         Data Dependency
         Data Flow 
Fault/Failure Analysis 
Interface Analysis 
   Model Interface 
         User Interface 
Semantic Analysis 
Structural Analysis 
Symbolic Evaluation 
Syntax Analysis 
Traceability 
Assessment 

Formal 
Induction 
Inference 
Logical Deduction 
Inductive Assertions 
Lambda Calculus 
Predicate Calculus 
Predicate Transformation 
Proof of Correctness 

Dynamic 
Acceptance Testing 
Alpha Testing 
Assertion Checking 
Beta Testing 
Bottom-Up Testing 
Comparison Testing 
Compliance Testing 
        Authorization 
        Performance 
        Security 
        Standards 
Debugging  
Execution Testing 
        Monitoring 
         Profiling 
         Tracing 
Fault/Failure Insertion Testing 
Field Testing 
Functional (Black-Box) Testing 
Graphical Comparisons 
Interface Testing 
        Data 
        Model 
        User 
Object-Flow Testing 
Partition Testing 
Product Testing 
Regression Testing 
Sensivity Analysis 
Special Input Testing 
        Boundary Value 
        Equivalence Partitioning 
Extreme Input 
        Invalid Input 
        Real-Time Input 
        Self-Driven Input 
        Stress 
        Trace-Driven Input 
Statistical Techniques 
Structural (White-Box) 
        Branch 
        Condition 
        Data Flow 
        Loop 
        Path 
        Statement 
Submodel/Module Testing 
Symbolic Debugging 
Top-Down Testing 
Visualization/Animation 
 

 

Figure 2.1 Taxonomy of Verification and Validation Techniques [6] 
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2.2 Assertion Checking 

An assertion is a statement that must hold when a simulation model execution 

reaches that statement. It is a boolean expression decided to be true by the 

programmer. An assertion either evaluates to “true” when it is satisfied by the 

program state, to “false” otherwise [17]. 

 

Assertion checking is a dynamic verification technique in which assertions are 

placed in various parts of the software code to monitor its execution. The 

insertion of assertions into the user code, and the subsequent testing of such 

assertions at run-time is one of the most powerful techniques of verifying the 

software, although the additional codes make the runs slower. Even though, it 

is a verification technique, in this thesis, it is used for validation.  

2.2.1 Assessment of Assertion Checking 

There are some advantages and disadvantages of the assertion checking 

method; these are itemized below: 

 

Advantages of Assertion Checking 

1. It is a testing technique that will reveal defects early in the software 

development process. 

 

2. It quickly uncovers the misconceptions of the programmer 

concerning the model being implemented. 

 

3. Assertions can be monitored at run-time, making it a powerful 

debugging tool. 

 

4. Adding assertions to the program may find faults where black-box 

test cases are ineffective. 
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5. Assertions can also be used to document and implement 

specifications, thereby facilitating the software development. 

 

Disadvantages of Assertion Checking 

1. There is a run-time cost associated with checking assertions. One 

way of getting a round this is by making it possible to selectively 

disable assertion checking. This can be achieved by using 

conditional compiler directives. 

 

2. Leaving assertion checking in the code increases the size of object 

files. Despite this however, it is recommended that assertion 

checking remains enabled during development. 

2.3 Run-time Monitoring 

Run-time monitoring means evaluating code while it runs or scrutinizing the 

artifacts (event logs, etc) of running code. In this thesis, the first description is 

valid, the simulation runs are monitored, not the logs. It looks like debugging, 

but for this work, the meaning extracted from the values of the objects becomes 

valuable. For example, suppose that in a program execution, the value of the 

variable x is increased by 1 and the initial value of x is 0. If x is 0 or 1, this has 

the meaning of “x is less than 2”. If x is 2, this means that “x is equal to 2”. If x 

is 3 or 4, the meaning is that “x is greater than 2”. Therefore, the aim of the 

monitoring is to reach meaningful information, which is the validation 

assertions of the software, for this work. 

 

Benefits 

• Requires a relatively small incremental effort over traditional testing. 

• Combines the ease of testing with the power of formal methods. 

• Can locate error potential for problems that test engineers may not 

envision. 
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Challenges 

• Logic-based monitoring can add overhead to the normal execution of 

programs. 

• While detecting difficult to find errors, error pattern runtime analysis 

can  also detect problems that do not exist (false positives). 

 

The inherent limitation of the run-time monitoring is that it observes the 

current program execution, but cannot observe all possible runs. Therefore, we 

cannot directly address the issue of model validation. As indicated above, only 

the particular runs are checked because of this limitation. 

2.4 Instrumentation 

Program instrumentation means inserting additional code to an existing 

program and in such a way that collecting necessary information is possible 

while the program runs. These additional codes are inserted at the points of the 

statements, which are critical for monitoring. Finally, these instrumented code 

runs and monitoring is done by the help of those inserted codes. 

 

“An important characteristic is the abstraction level at which the program 

instrumentation is done. This abstraction level can be the hardware level, the 

library level, the source code level or the machine instruction level. It turns out 

that the only true viable instrumentation method is dynamic instrumentation: 

instrumentation code is added to the executable while it is running [9]. This 

way, also the dynamic linked libraries can be instrumented”. [8]  

2.5 Monitoring and Checking (MaC) Framework  

2.5.1 MaC Architecture 

The Monitoring and Checking (MaC) architecture has been developed at the 

University of Pennsylvania, with the aim of guaranteeing the correctness of a 

run of the target program according to a formal requirement specification [10]. 
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This is a general architecture, independent from any programming language. 

However, to demonstrate the effectiveness of this architecture, a prototype has 

been implemented for Java programs, which is called Java-MaC. This 

prototype has a feature of automatic instrumentation of Java byte-codes. Also, 

other run-time components to monitor and check the run of an instrumented 

program are generated automatically for easy deployment of Java-MaC. 

 

The structure of the MaC architecture is illustrated in Figure 2.2. The 

architecture has two main phases: static and run-time phase. In the static phase, 

the run-time components, namely a filter, an event recognizer and a run-time 

checker, are automatically generated from a target program and formal 

requirement specifications. In the run-time phase, necessary information is 

collected from the running program and checked against the given formal 

requirement specification [11]. 
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Static Phase 

 
Program 

Human 

Informal 
Requirement 
Specification 

Automatic 
Instrumentation 

Input 

 
Low-level 
Specification

High-level 
Specification 

Automatic 
Translation 

Automatic 
Translation 

 

Filter

 

Program 

 

Event 
Recognizer 

 

Run-time 
Checker 

Run-time Phase 

 

Figure 2.2 Overview of the MaC Architecture [11] 
 

 

 

2.5.1.1 Static Phase 

In this phase, there is a mapping between high-level events used in the high-

level requirement specification and low-level state information extracted from 

the instrumented target program during execution. These are related explicitly 

by means of a low-level specification, which describes how events at the high-

level requirement are defined in terms of monitored states of a target program. 

For example, in a simple manufacturing cell, the requirements may be 

expressed in terms of the condition system_capacity_exceeded. The target 

program, on the other hand, stores the count of items in the system in an 
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item_count. The low-level specification in this case defines the event 

system_capacity_exceeded as item_count > 14. 

 

To achieve the monitoring and checking, two components are created in this 

phase. One of them is a filter and used for monitoring. It is generated from the 

low-level specification. The second one is the event checker and used for 

checking the specified requirements. It is generated from the high-level 

specification. Both of these are created automatically. How they work is 

described in the run-time phase below. 

2.5.1.2 Run-time Phase 

During the run-time phase, the instrumented code is executed and meanwhile it 

is monitored and checked with respect to the requirement specification. The 

filter sends relevant state information to the event recognizer and by using this 

information event recognizer determines the occurrence of events. These 

events are then relayed to the run-time checker to check whether there is a 

violation of requirements or not. 

 

Filter 

The target program is instrumented directly by inserting additional codes on its 

executable code (in Java, byte-code) according to the low-level description in 

the monitoring script. The set of such program fragments inserted into the 

target code are called a filter. A filter keeps track of changes of monitored 

objects and sends related state information to the event recognizer.  

 

Event Recognizer 

The event recognizer receives the values of monitored objects from the filter 

and according to these values, it detects that there is an event occurred or not. It 

changes low-level information into high-level information. Events, which 

wanted to be recognized, are written into the monitoring script by using 
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Primitive Event Definition Language (PEDL) and these are relayed to the run-

time checker. The event recognizer is the part of the monitoring and also it can 

be combined with the filter. The reason behind thinking them separately is to 

provide flexibility in an implementation of the architecture.  

 

Run-time Checker 

The run-time checker receives the necessary information from the event 

recognizer and by evaluating this, it decides whether or not the current 

execution history satisfies the given requirements written by using Meta Event 

Definition Language (MEDL). Also, the run-time checker does not only give 

warning; if there is a violation which is not dangerous, it may perform some 

recovery operations; which are written in a script by using Steering Action 

Definition Language (SADL). 

2.5.2 MaC Languages 

Before giving the description of the languages, we should discuss about events 

and conditions. Events are either present or not at an instant of time, they 

depend on the state changes. On the other hand, the conditions are true or false 

for a finite time duration. They also depend on the state changes, but between 

two state changes they are present. For example, machine_full_event event 

occurs whenever the monitored machine_full variable value becomes true, 

(machine_full==true); machine_full_condition holds true, while this variable value 

remains true, or until it leaves the state of being true. For the last sentence 

starting with “until”, it can also be said that “until it becomes false”; however, 

this is not correct, because while the program reaches such a state that this 

variable is out of that scope, then it becomes undefined. Therefore, in Java-

MaC this is handled by evaluating the logical expressions over 3 values: true, 

false and undefined (Λ).[12] 
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If we assume a countable set C = {c1, c2, …} of primitive conditions and a 

countable set of Є = {e1, e2, …} of primitive events, the syntax of conditions 

and events is specified as below: 

 
<C> ::= c | defined(<C>) | [<E>,<E>) | !<C> | <C> && <C> | <C> || <C> | <C> => <C> 

<E> ::= e | start(<C>) | end(<C>) | <E> && <E> | <E> || <E> | <E> when <C> 

 

• As indicated above, because the condition can have an undefined value, to 

handle this, defined(c) is used, that is true whenever the condition c has a 

well-defined value (true or false). 

 

• By using two events, an interval of time can be defined, so  a condition 

[e1,e2) is true from the event e1 until the event e2.  

 

• start(c) is an event definition, which depends on an instant of time when the 

condition c starts to be true. 

 

• end(c) is an event definition, which means that at that instant of time the 

condition c starts to be false. Also, an event, which depends on the instant 

of the condition whose value is Λ, is defined as end(defined(c)). 

 

• (e when c) is an event that present if the event e occurs when the condition c 

is true. 

 

Also, Java-MaC has time attribute for events. time(e) is the time when the event 

e occurs, according to the clock of the monitored system(this can be different 

from the clock of the monitor).  
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The reason why the languages in the MaC framework are called “event 

definition languages” is that when any condition becomes true, false or Λ, this 

can be identified as an event. 

2.5.2.1 Primitive Event Definition Language (PEDL) 

PEDL is the language for writing the monitoring scripts, which have low-level 

requirement specifications, so the implementation-specific details of the target 

program are used. The attributes and the methods, which need to be monitored, 

are written and, by using these, the events and conditions are defined. The 

name of this language indicates that the main purpose of PEDL specifications 

is to define primitive events of the requirement specifications. From these 

primitive events, more complex events can be defined. The design of PEDL 

has two principles: 

 

1. Encapsulating all implementation-specific details of the monitoring 

process in PEDL specifications.  

 

2. Extract only the current state of the target program execution to make 

the process of event recognizer as simple as possible. 

2.5.2.2 Meta Event Definition Language (MEDL) 

With this script, which is written in MEDL, the correctness of the execution 

system is checked by using the safety requirements, which must hold true, and 

the alarms, which must not raise during the execution. MEDL is also based on 

events and conditions. Primitive events and conditions defined in PEDL are 

imported, so the language has the name of ”meta event definition”. By using 

these imported events and conditions new events and conditions are defined. 

Also, in this script, auxiliary variables can be defined, and their values can be 

updated, and this is bound to the occurrence of events. In the new conditions 
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and the events, these variables can be used, also. The high-level requirements 

of the system are defined by using safety properties and alarms. 

2.5.2.3 Steering Action Definition Language (SADL) 

When steering is wanted to be used, a steering script is written in SADL, 

besides the monitoring script. Steering actions and conditions are described in 

this script. If  requirement violations detected by the event checker occur, then 

steering actions are invoked in response to these violations. Additional 

instrumentation date is generated by the steering script  and also a special run-

time component is created by this script which called injector that accepts 

action invocations from the monitor and triggers their execution within the 

system.  

2.5.3 Example 

In this section, an example (inspired by our application) to illustrate the use of 

PEDL and MEDL is given. This example is about a robot, a machine and lots 

of parts in a buffer some of which must be processed by this machine, some of 

which must not. If the current part will not be manufactured by the machine, 

robot passes to the next part until finds such a part for the machine. After 

finding, it puts the part into the machine, machine works, and after machine 

finishes to manufacture the part, robot takes the part and puts another buffer, 

and then this process starts from the beginning. The requirement of the system 

is that while the machine is full, the robot cannot try to put a new part into it. It 

is assumed that, there are two classes in the system, Robot and Machine. Both 

has an attribute full, which means that if full is true, then it is full. The robot has 

request_type attribute, because all the parts do not request the same thing, only 

some them request to be manufactured in the machine.  
class Robot{ 

boolean full; 

int request_type; 

…. 
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public void main(String[] args){  

….. 

} 

} 

 

class Machine{ 

boolean full; 

…. 

} 

 
The below is PEDL script. Three attributes and one method, which is the main 

method, are monitored. By using the values of the attributes, three conditions 

are defined and two of them are exported to the MEDL script. The start of the 

main method is also monitored to recognize the beginning of the execution. The 

following PEDL script introduces three high-level events, and three high level 

conditions.  
MonScr Example 

    export condition machineFull_cond, robotEmpty_cond; 

    export event startPgm, start_put_machine, machineEmpty_event; 

 

    //Monitored Variable Declaration: 

    monobj boolean Machine.full; 

    monobj boolean Robot.full; 

    monobj int Robot.request_type; 

 

    //Monitored Method Declaration: 

    monmeth void Robot.main(String[]); 

 

    //Condition Definitions: 

    condition machineFull_cond = (Machine.full == true); 

    condition robotEmpty_cond = (Robot.full == false); 

    conditon req_put_machine= (Robot.request_type ==2); 

 

    //Event Definitions: 

    event startPgm = start(Robot.main(String[])); 
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      event start_put_machine = start(req_put_machine) && 

         end(robotEmpty_cond); 

    event machineEmpty_event = end(machineFull_cond); 

End 

 

The requirement specification for this example is indicated above, a part can be 

put into the machine while it is empty. Also, how many parts are processed by 

the machine can be calculated by using an auxiliary variable to keep the this 

count. When the execution starts it is given an initial value, 0, and every time 

the machine becomes full, it is incremented by 1. The condition putting is 

defined as from robot starts to put a part until it becomes empty (means that it 

has put the part). The MEDL script is below: 

 
ReqSpec Example 

    import condition machineFull_cond, robotEmpty_cond; 

    import event startPgm, start_put_machine, machineEmpty_event; 

 

    //Auxiliary Variables: 

    var int machine_part_count; 

 

    //Condition Definitions: 

    condition putting = [start_put_machine, robotEmpty);  

 

    //Event Definitions: 

    event robotEmpty = start(robotEmpty_cond);  

    event machineFull_event = start(machineFull_cond);   

 

    //Safety Property Definitions: 

    property safeExample = putting ->  !machineFull_cond ; 

 

    //Guards: 

    startPgm -> { machine_part_count=0; } 

    machineFull_event -> { machine_part_count=machine_part_count +1; } 

End 



 22 
 

 

 

 

 

CHAPTER 3 
 

 

SIMULATION MODEL 
 

 

 

In this thesis, the operation of METUCIM Lab in the Mechanical Engineering 

Department of METU is simulated. METUCIM Lab is a single manufacturing 

cell. Therefore, in this chapter, the basic definitions about manufacturing cell 

are given, firstly. Afterwards, its real world model, and the simulation model 

are described in detail. 

3.1 Application Domain: Manufacturing Cell 

3.1.1 Manufacturing Cells 

A manufacturing cell is a series of automatic machine tools or items of 

fabrication equipment linked together with an automatic material handling 

system. Their shop floor layout is usually classified as below [16]: 

 

Function: According to the functionality, similar machines are grouped 

together, to perform one specific machining or inspection task. These 

functional groups are then located relative to each other to minimize 

interdepartmental material handling. 
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Line: If there is a strict order or sequence required, a line or flow arrangement 

of machines can be applied, which is also called as transfer line. In this layout, 

machines are located next to each other in the order of their usage. 

 

Cell: The cell layout is a combination of both the function and line layouts to 

use the efficiencies of both by decreasing into a single multifunctional unit. 

Sometimes it is called as a Group Technology Cell, each individual cell or 

department has different machines such that no machines may similar to any in 

located in the other cell or department. 

 

 

 

 

Figure 3.1 Shop floor arranged in functional (1), cellular (2), line (3) layouts 
[13] 
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Each layout brings certain advantages and disadvantages, and the optimum 

solution highly depends on the application. In any arrangement, a flexible 

manufacturing cell (FMC) is the latest application of computer control to 

automate manufacturing to achieve higher productivity and flexibility from the 

manufacturing equipment [15]. 

3.1.2 Computer Integrated Manufacturing (CIM) 

Computer Integrated Manufacturing is total or near total integration of all 

computer systems in a manufacturing facility for free exchange of information 

and sharing of databases. This integration may extend beyond the confines of 

one factory into multiple manufacturing facilities and into the facilities of 

customers and vendors. CIM is an approach to the organization and 

management of a firm, in which all functions including order processing, 

design, manufacturing and production management, accounting, finance and 

computerized equipment on the shop floor are completely coordinated, through 

the use of computers and information/communication technologies. The idea is 

to form one large computer integrated system that connects all activities, and 

by doing this, common information is shared on a real-time basis for decision-

making and control [16]. 

3.3 Process-Oriented Model of METUCIM Lab 

3.3.1 METUCIM Lab 

METUCIM basically consists of a single manufacturing cell and is classified as 

a “Flexible Manufacturing Cell”. 

 

The main material handling system is the closed loop buffer, which is called 

conveyor and the 6-axis robot. Also, there is a static input/output buffer for 

loading and unloading parts to the system. The robot can move between the 

Computerized Numerical Control (CNC) Turning and CNC Milling Machine 

over the Pneumatic Linear Robot Drive (PLRD). Coordinate Measuring 
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Machine (CMM) controls the quality of the manufactured items in the cell. The 

main job of the system is processing the small parts to give them a wanted 

shape. For example, chessmen can be made from brass. A general view of the 

system is in Figure 3.2. 

 

 

 

 

Figure 3.2 A general view of METUCIM Lab [14] 
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Functionality, properties and capabilities of the manufacturing, transport and 

quality control hardware can be summarized as [14]: 

 

1. CNC Turning Machine: Mirac/Denford/UK. PC based, medium duty 

lathe having 2 simultaneously controlled axes. Equipped with a turret 

having 8 stations. Door and chuck are pneumatically powered. Can handle 

typically bars up to 50 mm in diameter and 150 mm in length, speeds up to 

2500 rpm. Has a user-friendly built-in interface to visualize and debug part 

programs. The control is via standard RS 232 serial communication port 

and I/O card at a single sensor channel. Channel state OFF indicates that 

there is no part program running, or the task is finished. Channel state is 

ON when there is an active program running. “M62” and “M64” codes 

make the channel ON and OFF respectively. 

 

2. CNC Milling Machine: Triac/Denford/UK. PC based, medium duty 

milling machine having 3 simultaneously controlled axes. Equipped with 

an automatic tool magazine with 6 stations. Door, chuck and tool magazine 

are pneumatically powered. Can handle parts up to 200 mm in width and 

500 mm in length, speeds up to 2500 rpm. Has a user-friendly built-in 

interface to visualize and debug part programs. The control is via standard 

RS 232 serial communication port and I/O card at a single sensor channel. 

Channel state OFF indicates that there is no part program running, or the 

task is finished. Channel state is ON when there is an active program 

running. “M62” and “M64” codes make the channel ON and OFF 

respectively. 

 

3. Coordinate Measuring Machine (CMM): Kemco/UK. 3 Axis CMM with 

a table of 600x400 mm wide. Capable of measuring up to 1µm resolution 

and accuracy. The control is accomplished using its own feature based 

control software running at its host computer. Coupled to the client via the 
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standard RS 232 serial communication port. The client is the part of the 

agent-based system through Ethernet communication. 

 

4. Closed Loop Buffer: SKF/UK. Unidirectional, constant speed, closed loop 

buffer having 14 cups. Typically, it can handle cylindrical parts up to 50 

mm in diameter. Makes a full rotation in 1.5 minutes approximately. 

Driven by a motor with gearbox. The control is via 48 channel I/O card. 

Has one operate channel and one counter channel. When the operate 

channel is ON, it starts to rotate and stops when the channel is OFF, the 

counter channel is used to count the cups passed. 

 

5. Robot: Movemaster EX/Mitsubishi/Japan. 6 axis controlled material 

handling robot. Capable of handling bars of 50 mm in diameter, weight of 3 

kg approximately. The control is by storing positions taught by the user in 

its EPROM and they can be executed by external triggering of program 

commands through RS232 connection from the computer. A DSR (data set 

ready) signal from the serial port indicates that there is no active program 

running or the task is finished. 

 

6. Pneumatic Linear Robot Drive (PLRD): FESTO/Germany. 

Pneumatically powered linear drive for the robot. Has a movement range of 

2m. Has two stop positions at both ends only. In METUCIM configuration 

it is used to move the robot from CNC Turning to CNC Milling/CMM 

neighborhood. The control is via 48 channel I/O card. Has two operate- and 

two sensor channels. When the first operate channel is triggered and 

immediately released it moves to right and vice versa for the second. 

Sensor channels on the left- and right positions indicate ON when the robot 

is at left and right ends of its range respectively. 
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7. Static Buffer (AGV): Buffer used for in and out loading to the cell. Has 3 

input stations, which can handle bars of 70-90-100 mm, and 3 output 

buffers, Accept, Reject and Rework respectively. Is not physically 

connected or driven by a computer, but as the agent, status information is 

kept. Although it has no computer control and moving capabilities, it is 

modeled as an AGV in the system. 

 

METUCIM Laboratory is a computer supported manufacturing cell. In fact, 

computers are the essential parts of METUCIM. Also, since it is a flexible 

manufacturing cell, the hardware architecture should support long-term 

flexibility also for future modifications. Therefore, while describing how this 

cell works, the software part is ignored; only the work viewed by an outside 

observer is described. 

3.3.2 How does METUCIM work? 

There is an input-output buffer (AGV) in the cell. The parts enter into the cell 

from input buffer and exit the cell from output buffer. There is no outside 

intervention of the operation of the cell; the cell interacts with the outside 

world only through input-output buffer (iobuffer). The carriers are robot and 

the closed loop buffer, conveyor. There are 14 cups on the conveyor, and each 

cup can hold only one part at the same time. The conveyor has three fix 

positions for the robot: iobuffer matching position, CNC1 matching position 

and CNC2 matching position. While loading/unloading processes, the 

conveyor must fix its cups to those specific positions. When the robot loads 

one of the three cups, they must be free. Also, when the robot unloads these 

cups, they must be full. The other details are told later under this subtitle.  

 

How does METUCIM manufacture a part, which is processed by CNC1 and 

CNC2? Here is the dynamic view of METUCIM Lab: When the cell starts to 

work, there must be no part on it; all machines and  carriers must be idle. The 
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part, which will be manufactured, must be in the input buffer. The robot takes 

the part from the input buffer, and puts it onto the cup, which is at the iobuffer 

entry position. After loading this part, the robot gets its waiting position. The 

robot does this after every load/unload operation. The conveyor rotates by one 

cup for indexing the part to the CNC1 entry position. The robot loads/unloads 

CNC1 only from this entry. The capacity of the CNC1 is limited by one part. 

Therefore, when robot tries to load CNC1, it must be free. After the robot puts 

the part into it, it gets its waiting position and CNC1 starts to process the part. 

When CNC1 finishes its job, the robot takes the part from it and puts onto the 

cup at the CNC1 entry position of the conveyor. Then, the conveyor rotates by 

3 cups to fix the part to the CNC2 entry position, because CNC2 and CMM are 

loaded/unloaded by using this entry position. The robot takes its position on the 

right side of the cell and puts the part into the CNC2. After CNC2 finishes 

processing the part, the robot takes it from CNC2 and puts onto the cup at the 

CNC2 entry position again. Then, to put the part into the CMM machine, it 

takes the part from this position. Also, CNC2 and CMM must be free, when the 

robot tries to load them; because their capacities are limited by one part, too. 

After measured by CMM, the part is taken and reloaded on the cup at CNC2 

entry position. Then, the conveyor rotates by 10 cups to fix the part to the 

iobuffer entry position. The robot comes on the left side of the cell and puts the 

part onto the output buffer. This means that the part exits the cell. 

 

The important points from the above paragraph are: 

• First of all, the cell does not perform any useless operation: Any action 

of a component contributes the fulfillment of some request. 

 

• Robot loads/unloads the buffers and the machines always from the 

conveyor. It is not possible to directly carry a part from one machine or 

buffer to the other. 
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• The conveyor has three machine matching positions. The robot uses 

iobuffer entry position for unloading input buffer and loading output 

buffer. It uses CNC1 entry position for loading/unloading CNC1, and 

CNC2 entry position for loading/unloading CNC2 and CMM. 

 

• The capacity of the conveyor is 14, however for CNC1, CNC2 and 

CMM, it is one. These machines can process only one part at the same 

time. Also, the robot can carry only one part. The input and output 

buffers are assumed to have infinite capacities. 

 

• In a carrying operation of the robot, the source must be full, and the 

target must be empty. 

3.3.3  Simulation Model 

The simulation model of METUCIM Lab has been built according to the 

outside observation as discussed above with some assumptions. The actual cell 

performs sequential processing, i.e. after one part is manufactured in the cell, 

the other enters. In the simulated cell, multiple parts can be processed in 

parallel. However, it capacity is limited; at the same time, there can be at most 

14 parts in the cell; it does not accept the fifteenth one until any part leaves the 

cell.  

 

The robot is the moving component of the cell, so the requests coming from the 

other components are evaluated only by the robot. The requests can be one of 

the below ones: 

a. IOBUFFER : take part from IOBUFFER and load it onto conveyor 

b. CNC1 : take part from CNC1 and load it onto conveyor  

c. CONVEYOR_IOBUFFER : take part from conveyor and load it 

onto output buffer      
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d. CONVEYOR_CNC1 : take part from conveyor and load it into 

CNC1      

e. CONVEYOR_CNC2 : take part from conveyor and load it into 

CNC2      

f. CONVEYOR_CMM : take part from conveyor and load it into 

CMM     

g. CNC2 : take part from CNC2 and load onto conveyor 

h. CMM : take part from CMM and load onto conveyor 

 

Three part types are defined since there are two CNC machines in this cell: 

a. type 1 : This part type is processed first by CNC1 and then CNC2. 

b. type 2 : This part type is processed by only CNC1. 

c. type 3 : This part type is processed by only CNC2. 

 

All parts are measured by CMM before leaving the system and all of them 

leave the system whether they are manufactured correctly or not. Although 

there are three output buffers according to the result of the CMM, Accept, 

Reject and Rework buffers, it is assumed that they are combined into one. Parts 

are processed according to their types. Parts of the same type are considered 

identical. The system processed the first nearest part on the conveyor. 

Therefore, there is a possibility that the first entering part of the run can be 

rotate over the conveyor by many without processed until the run ends and it 

can be the last part leaving the system. Also, for the runs with multiple parts, 

the movement of the conveyor is such that if the robot wants to put a part onto 

the conveyor and that specific cup is full, conveyor rotates to index the first 

free cup to that entry. If the requested part type is not on that specific cup, then 

the conveyor rotates to fix the nearest cup with a part of requested type to that 

index. Finally, the cell starts to run with no parts, and it runs for 7 hours 

without any failure (particularly, no component breaks down), and after that 
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duration, it stops accepting new parts; it only tries to manufacture the 

remaining parts. After all parts exit, then it stops in an idle state. 

3.3.3.1 Use Case, Class and Sequence Diagrams 

This model was implemented by using Java, because of the MaC’s tool. In this 

simulation model, multithreading system has been used. There are nine classes 

four of which, namely Customer, IOBuffer, Robot and Cnn_Cmm classes, 

extend the thread class. The classes of the model are described in detailed 

below: 

 

1. Request : It has been created to define the attributes of a request. 

 

2. RequesterQueue : All requests made while the system runs is kept in this 

queue as a ‘first in first out’ manner. Only the robot is allowed to perform a 

dequeue operation on this queue. 

 

3. METUCIM : This class starts a simulation run. 

 

4. Customer : This class puts new parts onto the input buffer at certain time 

instants, and signals this buffer of the system. 

 

5. IOBuffer : The raw parts and the manufactured parts are put into this 

buffer. It uses the special entry of the conveyor: IOBuffer entry. 

 

6. Robot : This class is the core of the system. Robot evaluates the requests. 

If it cannot fulfill this request then it reinserts the request into the queue, 

else it signals the machine in which the part will be processed. For 

example, if the current  request is CONVEYOR_CNC1, but CNC1 is full, 

then the robot reinserts this request into the queue. Each time this request is 

evaluated by the robot, it is reinserted until CNC1 becomes empty. 
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7. Conveyor : According to the requests evaluated by the robot, it rotates by 

certain cups to fix a free cup or the first part, which matches the request. 

 

8. Cnc_Cmm : The behavior of CNC1, CNC2 and CMM is all same. 

Therefore, this is the general class of the machines processing the parts. To 

represent these three machines, this class used as a parent class and three 

new classes inherit this one. However, they can be ignored while counting 

the number of classes for the model. The main working concept behind 

these classes is that they all wait for the signal, which will be coming from 

the robot. There are two specific conveyor entries for transferring parts 

between these and the conveyor. CNC2 and CMM machines use the same 

entry. 

 

9. Signal : Because there are thread classes, this class controls and arranges 

the all system signals. 

 

The use case diagram of the model is in Figure 3.3 and the class diagram is in 

Figure 3.4. In the class diagram, CNC1, CNC2 and CMM are seen as different 

classes, which inherit the Cnc_Cmm class. In fact, because of the MaC’s 

limitations, the Cnc_Cmm class has been erased, and three exact copies of 

classes whose names are Cnc1, Cnc2 and Cmm have been created. However, the 

diagrams for the simulation are created before starting to use MaC.  

 

The sequence diagrams of each part type are in figures 3.5 through 3.7. 
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Figure 3.3 Use Case Diagram for METUCIM Lab Simulation Model 
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Figure 3.4 Class Diagram for METUCIM Lab Simulation Model 
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ten cups

end of rotate 

take part 

load part into CMM 

enqueue : unload part from CMM 

dequeue 

load part 

enqueue : take part and
load into IOBuffer 

unload part from CMM 

take part 

load part into the Output Buffer 

CMM Customer IOBuffer CNC1 CNC2 RequesterQueue Robot Conveyor 

Figure 3.5 Sequence Diagram of Part Type 1 (continued) 
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a  new part 

load  part 

enqueue : unload part 

dequeue 

load 

dequeue 

end of rotate 

take part 

rotate by 
one cup 

load part into CNC1 

enqueue : unload part from CNC1

enqueue : take part 
and load into CNC1 

dequeue 

unload part from CNC1 

take part 

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor 

Figure 3.6 Sequence Diagram of Part Type 2 



 40 
 

 

enqueue : take part and 
load into IOBuffer 

enqueue : take part and
load into CMM 

dequeue 

rotate by 
three cups 

end of 
rotate 

take part 

dequeue 

load part 

dequeue 

unload part from CMM 

load part into CMM 

enqueue : unload part from CMM 

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor 

Figure 3.6 Sequence Diagram of Part Type 2 (continued) 
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rotate by 

thirteen cups 

end of 
rotate 

take part 

load part into Output Buffer 

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor 

Figure 3.6 Sequence Diagram of Part Type 2 (continued) 
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a  new part 

load  part 

enqueue : unload part

dequeue 

load part 

dequeue 

end of rotate 

take part 

rotate by four 
cups 

load part into CNC2 

enqueue: unload part from CNC2 

enqueue : take part 
and load into CNC2 

dequeue 

unload part from CNC2 

take part 

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor 

Figure 3.7 Sequence Diagram of Part Type 3  
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enqueue : take part 
and load into CMM 

dequeue

rotate by 
three cups 

end of 
rotate 

take part 

dequeue

load part 

dequeue

unload part from CMM 

load part into CMM 

enqueue : unload part from CMM 

enqueue : take part and 
load into  IOBuffer 

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor 

Figure 3.7 Sequence Diagram of Part Type 3 (continued) 
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rotate by ten 
cups 

end of 
rotate 

take part 

load part into Output Buffer 

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor 

 

 

 

Figure 3.7 Sequence Diagram of Part Type 3 (continued) 
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CHAPTER 4 
 

 

VALIDATION STUDY 
 

 

 

According to the MaC architecture, requirement specifications have been 

produced as a result of analyzing the structure and operations of the cell at 

METUCIM Lab. Our aim is to compare the simulated model with the real 

world via these requirements, which are extracted from the real system. And 

again according to the MaC framework, in system design phase, the 

requirements are also changed into low level.  

4.1 Validation Requirements 

Validation requirements of the METUCIM Lab have been defined group by 

group to eliminate the repetition. In this way, there are 10 groups of 

requirements for validating a single run. These are explained in more detail 

below: 

4.1.1 Group 1: Preservation of Parts 

There must be at most 14 parts in process at a time. This is because of the 

limited capacity of the conveyor; it has only 14 cups. Also, the exiting part 

count of the system must be less than or equal to the entering part count.  And, 

the difference of these two must be equal to the current part count of the 

system. While the current part count of the system can be found in this way, 

there is another way to control it: the sum of all the parts in the machines, robot 
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and conveyor must give the existing part count of the system. At the end of the 

simulation run, the entering part count must be equal to the leaving part count.  

 

This group has 5 validation requirements, three of which are safety properties, 

and the other two are defined as alarms. The first one checks if the count of 

entering parts is greater than or equal to the count of exiting parts. In the 

second one, the difference of the incoming part count from the leaving part 

count must always give the existing part count. The third one checks if the 

current part count, which is evaluated according to the entering part and exiting 

part events, is equal to the total part count in the machines, at the mount of the 

robot and on the conveyor. The forth one gives alarm if its defined event 

occurs, which is that at the end of the simulation run, the entering part count is 

not equal to exiting part count. In fact, it must be equal, all entering parts must 

exit the system at the end. Therefore, if the event checker catches this event, 

MaC issues an alarm. The last one is again an alarm, but which should not be 

hold during the run. In this one, the capacity of the system, which must not 

exceed 14, is controlled.  

 
1. property part_count_safe1 

2. property part_count_safe2 

3. property part_count_safe3  

4. alarm part_out_count_error 

5. alarm capasity_exceeded 

 

Also, this group has other safety properties and alarms. These are similar to the 

above ones, but in this time the preservation is checked according to each part 

type. If there is something wrong with the part count in the run, one of the 

below violations must occur. However, the same is not true for the above ones.  
 

1. property part_count_safe1_type1  (for part type 1) 

2. property part_count_safe1_type2  (for part type 2) 

3. property part_count_safe1_type3  (for part type 3) 
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4. property part_count_safe2_type1  (for part type 1) 

5. property part_count_safe2_type2  (for part type 2) 

6. property part_count_safe2_type3  (for part type 3) 

7. property part_count_safe3_type1  (for part type 1) 

8. property part_count_safe3_type2  (for part type 2) 

9. property part_count_safe3_type3  (for part type 3) 

10. alarm part_out_count_error1  (for part type 1) 

11. alarm part_out_count_error2  (for part type 2) 

12. alarm part_out_count_error3  (for part type 3) 

 

4.1.2 Group 2: Request-Process Consistency 

Eight processes in the system have been focused on at the design phase. While 

defining them, the movement of the robot and its position are taken as a start 

point. The first four are defined according to the first position of the robot, 

which is at the CNC1, while the second four are defined according to the 

second position of it, which is at the CNC2. The processes are also used for the 

requests of the system. The requests are done according to these processes. 

 

The requests are evaluated by the robot and if there is something wrong to 

process them, system gives at least one of the below alarms. According to the 

name of each implied, they control the eight defined processes. These alarms 

depend on the events that are monitored in the event recognizer part of the 

MaC. 
1. alarm wrong_IOBUFFER_process_alarm 

2. alarm wrong_CNC1_process_alarm 

3. alarm wrong_CNC2_process_alarm 

4. alarm wrong_CMM_process_alarm 

5. alarm wrong_CONVEYOR_IOBUFFER_process_alarm 

6. alarm wrong_CONVEYOR_CNC1_process_alarm 

7. alarm wrong_CONVEYOR_CNC2_process_alarm  

8. alarm wrong_CONVEYOR_CMM_process_alarm 
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4.1.3 Group 3: Part Routes Consistency 

There are 3 part types of the system and their routes in the system are shown 

clearly by using their sequence diagrams given in the previous chapter. These 

part types are chosen according to the number of CNC machines of the system. 

In METUCIM Lab, there are two such machines. Therefore, we have three part 

types and three part routes to be checked. These are controlled by the alarms 

listed below. The events used to describe the alarm are defined in the event 

recognition part of the system. 
1. alarm wrong_part1_request 

2. alarm wrong_part2_request 

3. alarm wrong_part3_request 

 

4.1.4 Group 4: Limited hardware capacity 

All hardware of the system has a limited capacity. Robot can hold only one 

part at the same time. CNC1, CNC2 and CMM machines process only one part. 

Finally, the conveyor has only 14 cups, and each cup can carry only one part. 

Because of the MaC’s limitations, which will be described in the following 

part, entries of the conveyor cannot be monitored one by one. Therefore, only 

the specific three entries are controlled, which are IOBuffer entry, CNC1 entry 

and CNC2 entry. As a result, if there is a capacity overflow problem, one of the 

below alarms is given by the event checker.  
1. alarm robot_capacity_exceeded 

2. alarm cnc1_capacity_exceeded 

3. alarm cnc2_capacity_exceeded 

4. alarm cmm_capacity_exceeded 

5. alarm conveyor_capacity_exceeded 

6. alarm iobuffer_entry_capacity_exceeded 

7. alarm cnc1_entry_capacity_exceeded 

8. alarm cnc2_enrty_capacity_exceeded 
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4.1.5 Group 5: Already empty hardware 

If robot tries to unload a part from an already empty cup, or machine, the 

system gives one of the alarms below. At that point, the event checker catches 

the unloading event, and decreases the part count of that hardware by one. 

Therefore, the part count of the hardware starts to have a minus value, which 

must not happen while the system is running. It can have values only between 

0 and the maximum capacity of that hardware. The maximum capacity 

exceeded control is also done by the previous group.  
1. alarm robot_process_error 

2. alarm cnc1_process_error 

3. alarm cnc2_process_error 

4. alarm cmm_process_error 

5. alarm conveyor_process_error 

6. alarm iobuffer_entry_already_empty 

7. alarm cnc1_entry_already_empty 

8. alarm cnc2_entry_already_empty 

 

4.1.6 Group 6: Visitation Consistency 

This group is defined to control the visitation consistency of the three 

machines, which are CNC1, CNC2 and CMM. Incoming parts of the system 

has three types. According to their types, the total visitation number of the 

machines can be evaluated. At the end of the simulation run, if these machines 

are really used as that number then this means everything is satisfied according 

to this requirement. But, if there is something wrong and the evaluated total is 

not equal to the total working count then system gives at least one of the alarms 

below. The alarms are defined as the above logic. When a new part enters the 

system, the event checker calculates how many times the machines will be 

used. Also, it keeps other variables to calculate how many times the machines 

really have been used. At the end of the run, it compares these two values, 

which are expected to be equal. 
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1. alarm CNC1_visitation_inconsistent 

2. alarm CNC2_visitation_inconsistent 

3. alarm CMM_visitation_inconsistent 

 

4.1.7 Group 7: Time Consistency 

Like group 6, the working time of the machines, which are CNC1, CNC2 and 

CMM,  must be consistent at the end of the run. If there is a new incoming part, 

the system evaluates how long the machines will be used. And it also controls 

and keeps the working duration of those machines while system is running. At 

the end, it compares these values to check inconsistency. The difference of this 

group from the other inconsistency checking ones, there is an error in these 

calculations because of using the system clock for simulation time. Therefore, 

the below alarms are given if the working duration of the machines exceeds the 

error bounds. According to the many runs, the error bound is found as 

approximately ±5% for CNC1 and CNC2, and for CMM, it is found as 

approximately ±10%, since CMM processes more parts then the others so the 

error fraction is relatively larger.  
1. alarm cnc1_time_problem 

2. alarm cnc2_time_problem 

3. alarm cmm_time_problem 

 

4.1.8 Group 8: Conveyor Rotation 

If conveyor turns by more than 13 cups then this will be an useless rotate, 

because it has only 13 cups. If an order comes to rotate, but no rotate is needed, 

then this is also an useless order for rotate. Also, if there is something wrong 

and rotating order comes with a minus rotate number, then this situation must 

be hold by the event checker. For all of these cases, an alarm is given by the 

system, which is copied below. 

 
1. alarm conveyor_rotate_problem 
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4.1.9 Group 9: Robot sides 

The processes, which are also the requests of the system, have been defined 

according to the robot movements and the position of the robot, which is  

mentioned above. There are two position of the robot in this manufacturing 

cell. Four processes must be done in the first position, and the other second 

must be done at the second side. If the robot seems operating at the wrong side, 

the below alarm is given by the system. 
1. alarm robot_at_wrong_side 

 

4.1.10 Group 10: Minimum time between two consecutive 
exits 

If any manufactured part exits from the system, then the second exiting part 

must leave the system after minimum 30000ms. This is the total time of the 

following sequential works: 

 

1. Robot gets its normal position after putting the first part onto the output 

buffer.  

 

2. The request for the second part comes to the robot and robot wants this part 

from the conveyor. Conveyor rotates by one cup (the second part must be 

on the next cup of the first one to calculate the minimum time). 

 

3. Robot takes the part from the conveyor. 

 

4. Robot puts the second part onto the output buffer. 

 

The defined alarm for this group is below: 
1. alarm min_time_difference 
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4.2 MaC Scripts 

According to the MaC framework, the validation requirements are defined 

while the system requirements are worked on. After the design phase of the 

simulation development, these high-level requirements are changed into low-

level information by using the variables of the designed system.  

 

First, the primitive-event definitions are written, this is the only script, which 

communicates with the simulation run. The variables of the simulation code 

can only be seen by this script, so in this one, most of the events and conditions 

depending on the different state of the object attributes can be defined.  

 

The second script, written by using the meta-event definition language, imports 

the necessary events and conditions. In this script, auxiliary variables can be 

defined and are used to keep historical information about the system. New 

events and conditions can be defined by using these auxiliary variables, 

imported events and conditions. The conditions are used to define the safety 

conditions of the system, and the events are used to define the alarms. 

4.2.1 Limitations and Problems with MaC Tool 

While writing and testing the scripts, lots of problems and limitations were 

encountered such that sometimes finding the source of the error took one 

month, sometimes it was impossible to find the error, so other ways, which 

were not practical, were followed to get around it. The problems and 

limitations are written below one by one, with necessary explanations, or 

examples. 

 

1. In the PEDL script, an array entry cannot be monitored. Because of this 

limitation, the conveyor array of the simulation code cannot be written in 

this script to be monitored. To get around this limitation, three same classes 

with different names have been defined (the answer of “why not one class” 
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is another item of the problems). Each of them is corresponding to the each 

three specific entry of the conveyor. The name of these classes are: 

a. IOBUFFER_Cup_Entry 

b. CNC1_Cup_Entry 

c. CNC2_Cup_Entry 

When an assignment is done to one of the three entries of the conveyor, it is 

also done to the corresponding class instant. Consequently, in the PEDL 

script, these three classes are monitored instead of the conveyor itself. 

 

2. At the beginning of the work, experience with MaC was done with 

programs that had one or two classes some of which had threads. Also, 

some changes were done on the examples of the MaC’s itself, and they 

were tried to run, and success was obtained. After writing the first codes of 

METUCIM Lab simulation with 10 classes, and a small script to only see 

the monitoring was ok, the event recognizer of MaC gave run-time errors. 

Several things done; at the end, “return;” was added at the end of all void 

functions and it started to work. However, it is so misleading that for the 

programs with one or two classes, it does not require such a thing.  

 

3. It does not allow use of named constants. Therefore, instead of constants, 

literals are used. For example, for the request named by IOBUFFER, the 

literal value, 1, is used. 
condition IOBUFFER = (Robot.x_request_type == 1); 

 

4. The conditions and the events were written group by group, each group was 

tested before to sure they were correct. Some strange things happened 

again. When a group of three conditions are defined, it gave run-time error 

again. These conditions are: 
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      condition part_cnt_control1 = (METUCIM.val_part_cnt_control == 0) ||  

      ((Robot.val_full + Cnc1.val_full + Cnc2.val_full +  

        Cmm.val_full   + Conveyor.val_full) <= 14); 

 

      condition part_cnt_control2 = ((METUCIM.val_part_cnt_control == 0) ||  

     ((Robot.val_full + Cnc1.val_full + Cnc2.val_full +  

       Cmm.val_full   + Conveyor.val_full) ==  

 (METUCIM.val_count_enter_parts - METUCIM.val_count_exit_parts))); 

 

      condition part_cnt_control3 = METUCIM.val_count_enter_parts >=  

 METUCIM.val_count_exit_parts; 

 

After several tries, it was found out that, the source of the run-time error is 

that the condition 2 and condition 3 could not written together, so the 

condition 3 was commented out and rewritten at the back of condition two 

by using “&&”.  

 

At first, the source of the error can be seen that using same monitored 

variables can cause a run-time error. But, this is not true, anyway condition 

1 and 2 use same variables, also when the below condition was added 

which liked the third one, the recognizer gave no error: 
 

condition part_cnt_control4 =  (METUCIM.val_count_enter_parts –  

                      METUCIM.val_count_exit_parts) >  

             

METUCIM.CONVEYOR_CUP_NUMBER; 

 

But the problem in this case was the event checker. Although, while the 

condition 4 was tried by alone, there was no run-time error, when it was 

used together with the condition 1 and 2, event checker gave run-time error. 

This problem was managed (after found out) in a same way such that the 

condition 4 was also commented out and added to the back of condition 1 

with “&&”. 
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Also, note that, these ones are not used the last version of the scripts. The 

controls done by using them is now the function of the events defined in 

MEDL script, by the help of the auxiliary variables. 

 

5. When the input buffer size was increased from 200 to 2000, event checker 

gave run-time error. 

 

6. Inheritance cannot be used. When an attribute of such a class is wanted to 

be monitored, the event recognizer does not see it from the child class, or 

the parent class. 

 

While defining the conditions, if end(condition) statement is used then one must 

be more careful. This statement means that when the condition becomes false, 

this is caught by using end predefined function. The problem is that, at 

beginning of the simulation run, this condition is undefined and it catches this 

event. When a predefined function definition is used, like end(defined(condition)), 

it still behaves in the same way. 

 

7. After importing lots of events from PEDL script, MEDL script started not 

use the imported conditions. Importing could be done, but when the 

imported conditions were tried to be used in MEDL script, event checker 

gave run-time error.  

 

8. It did not see a local variable of a method while instrumenting the class of 

this method. Before that, at the first experience of  MaC, such a thing could 

be done. While the code of the script gets large, it may give these errors. 

 

9. If the simulation classes are instrumented, the daemon property of the 

thread classes does not do their jobs, which are that when the main function 

ends, if this property has been set, the thread must end also. 
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4.2.2 Primitive Event Definition Script of the Simulation 

The primitive event definition script is in Appendix A. In this section, the 

monitored objects and methods are explained. 

 

1. Monitored Attributes: 

METUCIM.val_part_cnt_control : This attribute helps control the time of 

transferring a part between the robot and the hardware. When the value of this 

attribute is not 1, the part count controls are not done. Since at the time of 

getting or putting a part, it cannot be determined to which hardware the part 

belongs, because of the two consecutive assignment statements, first of which 

makes the robot full or empty. If this control is not in effect at that time then 

the part cannot be seen in the system, or it can be seen as double. 

 

METUCIM.end_threads : By using this monitored object, the end of the run can 

be detected. 

 

Robot.val_full, Cnc1.val_full, Cnc2.val_full, Cmm.val_full : These attributes are used 

to check that hardware is full or empty. 

 

Cnc1.part_type, Cnc2.part_type, Cmm.part_type : To get the type of the part inside 

these machines, these attributes are monitored. 

 

Cnc1.start_work, Cnc2.start_work, Cmm.start_work : By these objects, how long 

these machines process the parts can be obtained. 

 
IOBUFFER_Cup_Entry.val_full, CNC1_Cup_Entry.val_full, CNC2_Cup_Entry.val_full : 
These classes are created to monitor the three specific entry index of the 

conveyor. These attributes show that whether the entry is empty or not. 
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IOBUFFER_Cup_Entry.part_type, 

 CNC1_Cup_Entry.part_type, 

CNC2_Cup_Entry.part_type : Also, knowing the type of the parts on these entries 

is important. 

 

Robot.x_request_type, Robot.x_part_type, Robot.x_from : These are attributes of 

the request, which is deleted by the robot from the requester queue to be 

processed. Robot will operate according to the request type, so it wants the first 

matching part type from the system. Also, the system must know where the 

part has been lastly; because there can be several parts of same type, which are 

not at that step of their manufacturing processes. 

 

Robot.after_turn : To watch the steps of the robot process, this attribute is used. 

Before dequeueing the first request, its value is 0. Then, the part is made ready 

for taking by the robot. Now, its value is 1. After robot takes the part, it is 2. 

Finally, after robot puts the part, it is 3. 

 

Robot.robot_place : To track the robot movement on the phenoumetic buffer, 

this attribute is monitored. 

 

Conveyor.turn_number : This is monitored to check whether there is an abnormal 

rotate of conveyor or not. 

 

Conveyor.turn_flag : If this flag is set, this means that the conveyor rotates. 

 

IOBuffer.first_element : Robot can always take the first element of the input 

buffer. This attribute value is controlled for this requirement. 
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2. Monitored Methods: 

METUCIM.main(String[]) : Start of the simulation run is important to set all 

auxiliary variables of MEDL script. Therefore, start of this method is 

monitored. 

4.2.3 Meta Event Definition Script of the Simulation 

In this script, the alarms, which must never raise, and the safe conditions, 

which  must always hold true, are defined. The necessary events, which depend 

on the monitoring object values, are imported. There is no imported conditions 

since there is a problem in the MaC tool with using them. The meta event 

definition script of this simulation is at Appendix B. 

4.3 Fault Injected Simulations 

After the METUCIM Lab simulation has been completed, series of test runs 

have been performed according to the specified requirements told above. MaC 

tool has not given any error against the validation rules written in the script. By 

being sure of that this is the true simulation code according to the wanted 

requirements, it is rewritten to test the validation groups. In total, 27 scenarios 

have been worked on. The scenarios that have been though as if someone 

misunderstood the requirements, or coded something wrong. Afterwards, the 

true simulation code is changed into its fault injected versions, the count of 

which are 47. These are told below one by one with necessary explanations. 

First the scenario is described. Afterwards, expected alarms and violated 

properties are written before the real alarms and violated properties, which are 

given by MaC while running this fault injected simulations. There can be 

differences between them. In some cases, there can be extra violations, of 

whose occurrences are impossible, given by the system beside the expected 

ones, like the compiler errors, and they might be called “superfluous alarms”. 

In some cases, even expected violations are not raised by the checker because 

the system cannot reach that state. The reasons of these are explained at the end 

of each scenario. 



 59 
 

 

4.3.1 Scenario 1: Using IOBuffer entry instead of CNC1 
entry 

CNC1 and the IOBuffer entries are two consecutive cups on the conveyor. In 

this scenario, CNC1 entry was ignored and all jobs using this entry were 

rewritten to use IOBuffer entry instead. 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

 

After execution: 
1. wrong_CONVEYOR_CNC1_process_alarm (2.group) 

2. wrong_CNC1_process_alarm (2.group) 

3. part_count_safe3 (1.group) 

4. part_count_safe3_type2 (1.group) 

5. part_count_safe3_type1 (1.group) 

6. conveyor_capacity_exceeded (4.group) 

 

Although the third and the forth alarms were not expected, they were given 

because of the monitor does not see the from_conveyor event which is defined 

according to the emptiness of the entries. In this case, CNC1 entry is still full, 

while robot takes the part from IOBuffer entry. Therefore, from_conveyor event 

does not work. However, while putting the part onto IOBuffer entry, because 

the CNC1 entry is full, it recognizes onto_conveyor event. This means that there 

is part count inconsistency in the run, and finally, the conveyor capacity is 

greater than 14. 

 

4.3.2 Scenario 2: Directly loading parts into CMM from 
CNC2 

The parts are loaded into the machines or iobuffer from always conveyor. No 

directly transfer is allowed from one machine to another. In this scenario, this 
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requirement is violated such that robot loads the part into CMM after taking it 

from CNC2. 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

 

After execution: 
1. wrong_CNC2_process_alarm (2.group) 

2. part_count_safe3 (1.group) 

3. part_count_safe3_type1 (1.group) 

4. part_count_safe3_type3 (1.group) 

5. conveyor_capacity_exceeded (4.group) 

 

The explanation of the unexpected violations is that while the part is loaded 

into CMM, if  the CNC2 entry is empty then the event recognizer sees this as 

onto_conveyor event. However, since CONVEYOR_CMM request never 

comes, the corresponding from_conveyor event does not occur. Therefore, when 

CNC2 request comes to the cell, if its entry is empty then the part count on the 

conveyor always increases, and as a result, event recognizer gives the second 

and the third violations. The reason that the second expected alarm does not 

occur is that the CONVEYOR_CMM request never comes to the robot because 

the job as a result of this request is done by CNC2 request. 

 

4.3.3 Scenario 3: Parts are not measured 

All parts are measured by CMM before leaving the system. In this scenario, the 

parts exit the system without loading into CMM. 

 

Example for the Violation of Requirement Groups: 
1. Group 3 : Part Routes Consistency 

2. Group 6 : Visitation Consistency 

3. Group 7 : Time Consistency 
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After execution: 
1. wrong_ part1_request (3.group) 

2. wrong_ part2_request (3.group) 

3. wrong_ part3_request (3.group) 

4. cmm_visitation_inconsistency (6.group) 

5. cmm_time_problem (7.group) 

 

All expected alarms are issued and no superfluous alarms are given in this test. 

All of the third group violations occur since all routes are wrong and at the end 

of the simulation run, the CMM visitation is inconsistent.  

 

4.3.4 Scenario 4: Loading second part into the machines 

The capacities of the machines are limited by 1. This means that there can be 

only one part at the same time to be manufactured or the machine must be 

empty. In this scenario, the robot tries to load second parts while the machines 

are already full. 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 4 : Limited Hardware Capacity 

 

After execution: 
1. wrong_CONVEYOR_CNC1_process_alarm (2.group) 

2. wrong_CNC1_process_alarm (2.group) 

3. cnc1_capacity_exceeded (4.group) 

4. wrong_CONVEYOR_CNC2_process_alarm (2.group) 

5. wrong_CNC2_process_alarm (2.group) 

6. cnc2_capacity_exceeded (4.group) 

7. wrong_CONVEYOR_CMM_process_alarm (2.group) 

8. wrong_CMM_process_alarm (2.group) 

9. cmm_capacity_exceeded (4.group) 
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The simulation does not end because when robot loads second part into any 

machine, the previous part is erased from the system according to this fault-

injected simulation. Therefore, the expected violations at end of the simulation 

do not occur. Also, the reason to take the process errors although there seems 

no process error is that, the checker controls the part type from which the 

request comes. If it is not same as the part type in the machine, the process 

alarms of group 2 raise.  

 

The interesting thing in this scenario is that while the parts get lost in the 

system, the last expected violation does not occur. This is because of the 

limited defined events for event recognizer. At the design phase, handling all 

faults like this scenario is impossible, so the events are defined according to the 

normal running situation of the system. Therefore, by the guide of the 

assumption, no part gets lost in the system, machines’ part counts are always 

increased, and everything seems proper to that safety property, although the 

machines’ capacities are exceeded. Anyway, this is caught by the violation 

group 4. 

 

4.3.5 Scenario 5: Robot drops the parts 

The parts in the system should not get lost while simulation running. In this 

scenario, this requirement violation is tested again. While the robot loading or 

unloading a part, it drops the part. This scenario is detailed one by one for each 

machine and the conveyor.  

 

For this test group, the general expected violations controlled at the end of the 

simulation are written below and the explanation about them will be done here.  

 
1. Group 1 : Preservation of Parts 

2. Group 6 : Visitation Consistency 

3. Group 7 : Time Consistency 
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None of the simulations of 5th scenario ends its run, because of losing the parts 

in the cell. The cell does not end until it manufactures all entered parts. 

Therefore, the simulations described below do not reach at these violation 

states. 

 

1. Robot drops the part while loading into CNC1: 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts 

2. Group 2 : Request-Process Consistency 

 

      After execution: 
1. wrong_CONVEYOR_CNC1_process_alarm (2.group) 

2. part_count_safe3 (1.group) 

3. part_count_safe3_type1 (1.group) 

4. part_count_safe3_type2 (1.group) 

 

For the first case, expected violations, except from the general ones, occur. 

Robot drops the part while loading, so CNC1 does not know that there is a 

part wanted to be loaded into itself. Everything goes on as nothing happens, 

but only the current part count of the system decreases which also causes 

violation. 

 

2. Robot drops the part while loading into CNC2: 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts 

2. Group 2 : Request-Process Consistency 

 

      After execution: 
1. wrong_CONVEYOR_CNC2_process_alarm (2.group) 

2. part_count_safe3 (1.group) 
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3. part_count_safe3_type1 (1.group) 

4. part_count_safe3_type3 (1.group) 

 

The same things described for the first one is valid for this test case. In this 

case, CNC2 does not know that there is a part, which is to be loaded into 

itself. The part is dropped and CNC2 does not sense anything. However, 

the existing part count is not equal to the part count calculated according to 

the incoming and outgoing part numbers. 

 

3. Robot drops the part while loading into CMM. 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts 

2. Group 2 : Request-Process Consistency 

 

      After execution: 
1. wrong_CONVEYOR_CMM_process_alarm (2.group) 

2. part_count_safe3 (1. group) 

3. part_count_safe3_type1 (1.group) 

4. part_count_safe3_type2 (1.group) 

5. part_count_safe3_type3 (1.group) 

 

The first three fault injections are same as each other, so the results and the 

explanation of those results are almost same. In this case, robot drops the 

part while putting into CMM and no hardware of the system is effected 

from this.  

 

4. Robot drops the part while loading onto conveyor: 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts 

2. Group 2 : Request-Process Consistency 
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      After execution: 
1. wrong_IOBUFFER_process_alarm (2.group) 

2. wrong_CNC1_process_alarm (2.group) 

3. wrong_CNC2_process_alarm (2.group) 

4. wrong_CMM_process_alarm (2.group) 

5. wrong_CONVEYOR_CNC1_process_alarm (2.group) 

6. wrong_CONVEYOR_CNC2_process_alarm (2.group) 

7. wrong_CONVEYOR_CMM_process_alarm (2.group) 

8. iobuffer_entry_already_empty (5.group) 

9. cnc1_entry_already_empty (5.group) 

10. cnc2_entry_already_empty (5.group) 

11. conveyor_process_error (5.group) 

12. part_count_safe3 (1.group) 

13. part_count_safe3_type1 (1.group) 

14. part_count_safe3_type2 (1.group) 

15. part_count_safe3_type3 (1.group) 

 

This case is different from the first three since for this fault it is assumed 

that the conveyor does not sense whether there is a part or not on its 

specific cup. Robot cannot load the part, but it suggests that the part has 

been put, so the requests have been done for that dropped part and 

everything gets mixed while the run goes on. The difference is that the 

machines sense whether there is a part inside itself or not, so according to 

this they start to work, however, conveyor is controlled by the robot. If 

robot does a wrong thing and does not notice like this situation, conveyor 

cannot handle this error. 

 

5. Robot drops the part while unloading from CNC1 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts 

2. Group 2 : Request-Process Consistency 
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      After execution: 
1. wrong_CNC1_process_alarm (2.group) 

2. wrong_CONVEYOR_CNC2_process_alarm (2.group) 

3. wrong_CONVEYOR_CMM_process_alarm (2.group) 

4. conveyor_process_error (5.group) 

5. robot_process_error (5.group) 

6. cnc1_entry_already_empty (5.group) 

7. cnc2_entry_already_empty (5.group) 

8. part_count_safe3 (1.group) 

9. part_count_safe3_type1 (1.group) 

10. part_count_safe3_type2 (1.group) 

 

The main reason of the superfluous alarms are explained at the end of the 

previous fault injected case. The reason is that the conveyor does not sense 

whether the part is put onto it successfully or not, so the consecutive alarms 

raise. The parts are not put onto conveyor, but the system continues to run, 

and makes requests for this parts. Therefore, although the entries are empty, 

robot tries to take the part. Also, robot tries to put a part while there is no 

part at its mount. All of these raise the half of the group 5 alarms. 

 

6. Robot drops the part while unloading from CNC2: 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts 

2. Group 2 : Request-Process Consistency 

 

      After execution: 
1. wrong_CNC2_process_alarm (2.group) 

2. wrong_CMM_process_alarm (2.group) 

3. wrong_CONVEYOR_CMM_process_alarm (2.group) 

4. conveyor_process_error (5.group) 

5. robot_process_error (5.group) 

6. cnc2_entry_already_empty (5.group) 
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7. iobuffer_entry_already_empty (5.group) 

8. part_count_safe3 (1.group) 

9. part_count_safe3_type1 (1.group) 

10. part_count_safe3_type3 (1.group) 

 

The same explanation as in fifth one can be done for this case since only 

the machine is different. However, in this one,  the same entry cnc2 entry is 

used for also loading the CMM, so CMM process is effected from this 

situation. 

 

7. Robot drops the part while unloading from CMM: 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts 

2. Group 2 : Request-Process Consistency 

 

      After execution: 
1. wrong_CNC2_process_alarm (2.group) 

2. wrong_CMM_process_alarm (2.group) 

3. wrong_CONVEYOR_CMM_process_alarm (2.group) 

4. conveyor_process_error (5.group) 

5. robot_process_error (5.group) 

6. cnc2_entry_already_empty (5.group) 

7. iobuffer_entry_already_empty (5.group) 

8. part_count_safe3 (1.group) 

9. part_count_safe3_type1 (1.group) 

10. part_count_safe3_type2 (1.group) 

11. part_count_safe3_type3 (1.group) 

 

This is not also different from the above one. Robot uses the same entry for 

loading or unloading CNC2 and CMM, so both are effected from this case.  
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8. Robot drops the part while unloading from conveyor 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts 

2. Group 2 : Request-Process Consistency 

 

      After execution: 
1. wrong_CONVEYOR_CNC1_process_alarm (2.group) 

2. wrong_CONVEYOR_CNC2_process_alarm (2.group) 

3. robot_process_error (5.group) 

4. part_count_safe3 (1.group) 

5. part_count_safe3_type1 (1.group) 

6. part_count_safe3_type2 (1.group) 

7. part_count_safe3_type3 (1.group) 

 

In this case, some of the expected violations do not occurred because 

system losts the parts immediately after they enter the system either 

unloading to put into CNC1 or CNC2. The parts of  types 1 or 2 get lost 

after CNC1 request, and the parts of type 3 get lost after CNC2 request. 

They cannot reach to CMM and the output buffer. 

 

4.3.6 Scenario 6: Wrong part routes 

There are three part types defined for the system. The process routes of each 

are certain. In this case, these routes are changed. Three different scenarios are 

worked on for handle all three paths. 

 

1. The parts of type 1 do not make a request to be manufactured in CNC1: 

 

Example for the Violation of Requirement Groups: 
1. Group 3 : Part Routes Consistency 

2. Group 6 : Visitation Consistency 
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3. Group 7 : Time Consistency 

 

      After execution: 
1. wrong_part1_request (3.group) 

2. CNC1_visitation_inconsistent (6.group) 

3. cnc1_time_problem (7.group) 

 

The parts of type 1 should firstly processed by CNC1. They skip this 

machine, so the evaluated visitation number is not consistent after the 

simulation ends. 

 

2. The parts of type 2 are only manufactured by CNC2: 

 

Example for the Violation of Requirement Groups: 
1. Group 3 : Part Routes Consistency 

2. Group 6 : Visitation Consistency 

3. Group 7 : Time Consistency 

 

      After execution: 
1. wrong_part2_request (3.group) 

2. CNC1_visitation_inconsistent (6.group) 

3. CNC2_visitation_inconsistent (6.group) 

4. cnc1_time_problem (7.group) 

 

The parts of type 2 are only manufactured by CNC1. In such a scenario, 

CNC1 is omitted from the route, and instead CNC2 is used. Therefore, 

CNC1 is not used as expected as, while CNC2 is used more than evaluated 

visitation count. However, for part type 2, CNC2 does not work, it does not 

know this part type, so the time problem for this machine does not raise. 
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3. The parts of type 3 are manufactured both by CNC1 and CNC2: 

 

Example for the Violation of Requirement Groups: 
1. Group 3 : Part Routes Consistency 

2. Group 6 : Visitation Consistency 

3. Group 7 : Time Consistency 

 

      After execution: 
1. wrong_part3_request (3.group) 

2. CNC1_visitation_inconsistent (6.group) 

 

This type of parts are only processed by CNC2. In this case, they also 

request to be manufactured by CNC1, so CNC1 visitation inconsistency 

occurs at the end of the simulation run. 

 

4.3.7 Scenario 7: Taking a part from an empty machine 

Robot cannot try to take a part from an already empty machine. In this 

scenario, this requirement is violated. In the simulation code, after each request 

evaluated by robot, the system automatically creates the proper request 

according to the machine if that machine is empty.   

 

1. Robot tries to take a part from CNC1 while CNC1 is already empty: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 

 

      After execution: 
1. wrong_IOBUFFER_process_alarm (2.group) 

2. wrong_CNC1_process_alarm (2.group) 

3. wrong_CNC2_process_alarm (2.group) 
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4. wrong_CMM_process_alarm (2.group) 

5. iobuffer_entry_capacity_exceeded (4.group) 

6. cnc1_entry_capacity_exceeded (4.group) 

7. cnc2_entry_capacity_exceeded (4.group) 

8. conveyor_capacity_exceeded (4.group) 

9. cnc1_process_error (5.group) 

10. part_count_safe3 (1.group) 

11. part_count_safe3_type1 (1.group) 

12. part_count_safe3_type2 (1.group) 

 

The code of evaluating the requests, which come from the machines in the 

correct simulation code, has not changed. In normal run, this cannot be 

happen, so the emptiness of the machines are not controlled in the code. 

However, if it is changed to create this scenario, there are lots of 

superfluous violations. This is because of that robot does not control 

whether there is a part in the machine or not, it supposes to take the part 

and to put it onto the conveyor, and the system continues to run as nothing 

happens. This is same as the scenario(5.4) of dropping part while putting it 

onto the conveyor. 

 

2. Robot tries to take a part from CNC2 while CNC2 is already empty: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 

 

      After execution: 
1. wrong_CNC1_process_alarm (2.group) 

2. wrong_CNC2_process_alarm (2.group) 

3. cnc1_entry_capacity_exceeded (4.group) 

4. cnc2_entry_capacity_exceeded (4.group) 

5. conveyor_capacity_exceeded (4.group) 

6. cnc2_process_error (5.group) 
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The same explanation of the previous one is valid for this case. However, 

in this one the count of raised violations is less because the system starts to 

run incorrectly after the first machine, so the states, which cause the 

violations, have less time to occur. This reason decreases the number of 

violation variety. 

 

3. Robot tries to take a part from CMM while CMM is already empty: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 

 

      After execution: 
1. wrong_CMM_process_alarm (2.group) 

2. part_count_safe3 (1.group) 

3. part_count_safe3_type1 (1.group) 

4. part_count_safe3_type2 (1.group) 

5. part_count_safe3_type3 (1.group) 

6. conveyor_capacity_exceeded (4.group) 

7. cmm_process_error (5.group) 

 

The decrease in the violation count continues in this case, because CMM is 

the last machine. This scenario has less time to reach the violated states 

than the previous scenario. 

 

None of the simulations has ended in this scenario because of the improper 

work of the system and as a result of meaningless requests. 
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4.3.8 Scenario 8: Taking a part from an empty cup 

Robot cannot try to take a part from an already empty cup of the conveyor. 

This scenario looks like the previous one. But, in this one the violations raised 

are different. To handle them separately, this is handled as a new scenario.   

 

1. Robot tries to take a part from IOBUFFER entry while IOBUFFER 

entry is already empty: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 

 

After execution: 
1. wrong_CONVEYOR_IOBUFFER_process_alarm (2.group) 

2. wrong_part2_request (3.group) 

3. wrong_part3_request (3.group) 

4. iobuffer_entry_already_empty (5.group) 

 

To implement this scenario, CONVEYOR_IOBUFFER process has 

been changed in the code of the robot. In the correct one, if this request 

comes, robot tries to find the first nearest same typed part, waiting for 

this request. However, in this scenario, it tries to find the first empty 

cup index. Also, when this request comes, the part that makes the 

request should be measured by CMM. This is also controlled by the 

event checker. The empty cup cannot have this information, so the 

3.group violations occur. Type 1 is different from type 2 and 3, while 

they are manufactured only by one machines, type 1 is processed by 

both of them, so to reach the violation state about the route of type 1 is 

hard than the others. 
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2. Robot tries to take a part from CNC1 entry while CNC1 entry is 

already empty: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 

 

      After execution: 
1. wrong_CONVEYOR_CNC1_process_alarm (2.group) 

2. wrong_part2_request (3.group) 

3. cnc1_entry_already_empty (5.group) 

 

Same as the previous one, the process for CONVEYOR_CNC1 request 

of robot has been changed. While in the correct code, robot tries to find 

a part that matches the request, in this fault-injected simulation, it only 

finds the first empty cup. Also, event checker controls that from where 

the part comes, in this one, it must comes from IOBuffer, but in an 

empty cup, checker can not reach this information, so the route error 

raises. 

 

3. Robot tries to take a part from CNC2 entry while CNC2 entry is 

already empty: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 

 

      After execution: 
1. wrong_CONVEYOR_CNC2_process_alarm (2.group) 

2. cnc2_entry_already_empty (5.group) 

3. wrong_part3_request (3.group) 
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This entry is used by both CNC2 and CMM, so the change in the code 

is done for both requests, CONVEYOR_CNC2 and 

CONVEYOR_CMM. However, the run does not reach the state 

where the violation occurs for CONVEYOR_CMM request. 

 

None of the runs has ended in this scenario, so the checker cannot control the 

violations that can be happen at the end of the simulation. 

 

4.3.9 Scenario 9: Loading an already full cup 

Robot cannot load a part onto the conveyor entry, which has already full. This 

scenario is split into three cases because there are three specific entries on the 

conveyor.  

 

1. Robot tries to put a part into the  IOBUFFER entry while 

IOBUFFER entry is already full: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 4 : Limited Hardware Capacity 

 

       After execution: 
1. wrong_IOBUFFER_process_alarm (2.group) 

2. iobuffer_entry_capacity_exceeded (4.group) 

 

To implement this scenario, in the code of the robot, the process for 

IOBUFFER request has been changed. In the correct one, if this 

request comes, robot tries to find the nearest free cup. However, in 

this scenario, it doe not try to find an empty cup, so while putting the 

part onto this entry, this entry may already have a part. 
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2. Robot tries to put a part into the CNC1 entry while the CNC1 

entry is already full: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 4 : Limited Hardware Capacity 

 

After execution: 
1. cnc1_entry_capacity_exceeded (4.group) 

2. wrong_CNC1_process_alarm (2.group) 

 

Same as the previous one, the process for CNC1 request of robot has 

been changed. While in the correct code, robot tries to find the first 

empty cup, in the fault injected one, it directly loads the part onto this 

entry. 

 

3. Robot tries to put a part into the CNC2 entry while the CNC2 

entry is already full: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 4 : Limited Hardware Capacity 

 

After execution: 
1. cnc2_entry_capacity_exceeded (4.group) 

2. wrong _CNC2_process_alarm (2.group) 

3. wrong _CMM_process_alarm (2.group) 

 

This entry is used by both CNC2 and CMM, so the change in the code 

is done for both requests, CNC2 and CMM. Robot directly puts the 

part onto this entry, without controlling whether it is full or empty. 
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None of the runs has ended because when the robot puts the part over another, 

the first part on the cup is erased and only the new part is seen by the system. 

 

4.3.10 Scenario 10: Problem in conveyor rotation 

Conveyor always rotates by exactly how many cups wanted. In this scenario, 

conveyor rotates by fourteen cups more. Therefore, when robot wants a free 

cup, or a cup with a part matching the request, the system finds the exact index 

of that entry, but the conveyor rotates one more tour to indexing that cup. 

 

Example for the Violation of Requirement Groups: 
1. Group 8 : Conveyor Rotation 

 

After execution: 
1. conveyor_rotate_problem (8.group) 

 

For this one, only conveyor_rotate_problem alarm raises, and because of the 

extra turns, the incoming part count decreases approximately by half.  

 

4.3.11 Scenario 11: Robot at wrong side 

Robot has two position in the cell and it carries out half of the defined 

processes on the left side, and on the right side, it performs the others. Robot’s 

start position is left side. In this scenario, robot can not move from its start 

position to the right side of the system. 

 

Example for the Violation of Requirement Groups: 
1. Group 9 : Robot sides 

 

After execution: 
1. robot_at_wrong_side (9.group) 
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In the validated simulation code according to the specified validation 

requirements, the side of the robot is not controls while the robot performs the 

request. Because this fault injected one is the new version with comments at 

robot movement code, everything seems ok, but not in the point of the checker. 

 

4.3.12 Scenario 12: Problem in the direction of conveyor 
rotation 

The conveyor rotates in the clockwise direction. In this scenario, the only 

change is that the conveyor turns in the counter-clockwise direction. 

 

1. The system finds the part matching the currently processed request 

in the correct direction and evaluates by how many cups the 

conveyor must rotate, but the conveyor turns in the wrong direction: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

 

After execution: 
1. wrong_IOBUFFER_process_alarm (2.group) 

2. wrong_CNC1_process_alarm (2.group) 

3. wrong_CNC2_process_alarm (2.group) 

4. wrong_CMM_process_alarm (2.group) 

5. wrong_CONVEYOR_CNC1_process_alarm (2.group) 

6. wrong_CONVEYOR_CNC2_process_alarm (2.group) 

 

The process of finding out the requested part is done in the clockwise 

direction, but the conveyor rotate in the counter clockwise direction, so 

the correct parts or free cups wanted cannot be indexed correctly. Two 

of the expected alarms do not raise because the system cannot reach at 

those violated states. 
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2. At this time, also the requested parts and the free cups are found out 

in the reverse direction on the conveyor, and conveyor rotates in 

this direction: 

 

Example for the Violation of Requirement Groups: 
1. No violation 

 

After execution: 
1. No violation 

 

Since this state does not effect the correct run of the system, there is no 

violation. Only the entering part count of the system decreases because 

rotating in the reverse direction means rotating by more cups than in the 

normal turn.  

 

4.3.13 Scenario 13: Not processing some parts 

All three part types defined for this the system must be manufactured by at 

least one CNC. Afterwards, they are measured by CMM. In this scenario, some 

parts are measured without processed by any CNC. 

 

Example for the Violation of Requirement Groups: 
1. Group 3 : Part Routes Consistency 

2. Group 6 : Visitation Consistency 

3. Group 7 : Time Consistency 

 

After execution: 
1. wrong_part1_request (3.group) 

2. wrong_part2_request (3.group) 

3. wrong_part3_request (3.group) 

4. cnc1_time_problem (7.group) 

5. cnc2_time_problem (7.group) 
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6. CNC1_visitation_inconsistent (6.group) 

7. CNC2_visitation_inconsistent (6.group) 

 

All expected violations occur for this scenario. The part routes are not correct 

so the third group alarms raise. CNC1 and CNC2 are not used as evaluated 

according to the part types when a new part enters the system. Therefore, time 

problem and visitation inconsistency problem for their usage happen. 

 

4.3.14 Scenario 14: Directly loading parts into CNC1 from 
IOBuffer 

The parts cannot be transferred directly from one machine or input buffer to 

another machine or output buffer. In all transfers, conveyor must be used even 

directly putting the part has shorter way. In this scenario, the robot unloads the 

parts of the type 1 or 2 from input buffer and directly loads them into the 

CNC1.  

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 3 : Part Routes Consistency 

 

After execution: 
1. wrong_part1_request (3.group) 

2. wrong_part2_request (3.group) 

3. wrong_IOBUFFER_process_alarm (2.group) 

4. part_count_safe3 (1.group) 

5. part_count_safe3_type1 (1.group) 

6. part_count_safe3_type2 (1.group) 

7. conveyor_capacity_exceeded (4.group) 

 

At the end of the IOBUFFER request, the checker wants to see that the 

IOBuffer is full with the carried part. Because it is empty at the end of the 
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process, wrong_IOBUFFER_process_alarm raises. If by wrongly, this entry is full 

(because the conveyor does not rotate to index a free cup to that entry), then 

onto_conveyor event is recognized by the event recognizer, then the count of 

current parts on the conveyor increases which causes the last two violations. 

 

4.3.15 Scenario 15: Loading parts onto the wrong cups 

There are three specific positions for the conveyor according to the machines, 

conveyor fixes its entries to these positions and robot can load or unload only 

the parts on the indexed entries. In this scenario, robot loads the part onto the 

just one front cup of the indexed one. 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 4 : Limited hardware capacity 

 

After execution: 
1. part_count_safe3 (1.group) 

2. part_count_safe3_type1 (1.group) 

3. part_count_safe3_type2 (1.group) 

4. part_count_safe3_type3 (1.group) 

5. cnc1_entry_capacity_exceeded (4.group) 

 

The run gets stuck at the beginning, because the system indexes the first free 

cup to the IOBuffer entry, but the robot puts the part into the CNC1 entry. 

Therefore, the capacity of CNC1 entry exceeds. The other expected violations 

do not occur, since the system does not com into those violated states.  
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4.3.16 Scenario 16: Changing CNC places 

CNC1 is on the left of the cell, and CNC2 is on the right. In this scenario, the 

places of these two machines are changed, CNC2 is on the left, CNC1 is on the 

right. Robot starts position is still left side. 

 

Example for the Violation of Requirement Groups: 
1. Group 3 : Part Routes Consistency 

 

After execution: 
1. wrong_part1_request (3.group) 

 

The position of the two machines are changed, but the flow concept is not 

disturbed. Therefore, the only problem for this scenario is with the parts of type 

1. In normal flow, these parts, manufactured in the left machine and then in the 

right machine. Now, they first processed by CNC2, and then manufactured by 

CNC1.  

 

4.3.17 Scenario 17: Conveyor rotation by 1, 3 or 10 cups only 

Conveyor can rotate by at least one cup and at most 13 cups. It may rotate by 

more than 13 cups, but this is not an acceptable situation. In this, scenario, it 

rotates only by 1 cup, 3 cups or 10 cups. When the part enters to the system, it 

is on the IOBuffer entry. When the conveyor rotates by one cup, it is at the 

CNC1 entry index; from this point, when the conveyor rotates by three cups, 

the parts is at the CNC2 entry index. Finally, after conveyor rotates by ten 

cups, the part is at the starting index position, which is the IOBuffer entry. 

 

Example for the Violation of Requirement Groups: 
1. No violation 
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After execution: 
1. No violation 

 

The simulation does not end, also the checker does not give any violation since 

the system cannot be in a state, which violates the validation rules. For this 

scenario, where the error is done cannot be found by monitoring MaC, because 

there is no specific validation rule has though for such a situation. 

 

4.3.18 Scenario 18: Stop working after 7 hours 

The working duration of the system is 7 hours. After this duration, system 

continues to run until the last part leaves the system. In this scenario, after 7 

hours, system stops to run with a number of unprocessed parts. 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts 

2. Group 6 : Visitation Consistency 

3. Group 7 : Time Consistency 

 

After execution: 
1. CNC1_visitation_inconsistent (6.group) 

2. CNC2_visitation_inconsistent (6.group) 

3. CMM_visitation_inconsistent (6.group) 

4. cmm_time_problem (7.group) 

5. part_out_count_error (1.group) 

6. part_out_count_error1 (1.group) 

7. part_out_count_error2 (1.group) 

8. part_out_count_error3 (1.group) 

 

All the expected violations, which raise at the end of the simulation run is 

caught by the checker. Machines are not used by evaluated times, so visitation 

inconsistency occurs. However, there is a problem with the usage time of cnc1 
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and cnc2. Although, there must be a time inconsistency for these machines 

because of the error bounds, it seems everything is ok. Also, the entering part 

count is not equal to the exiting part count at the end of the run. 

 

4.3.19 Scenario 19: Processing the parts according to their 
IDs 

The parts are processed according to their types. If there is a request, then the 

system finds the first matching part with this request on the conveyor. Also, the 

parts have identification numbers, which are not used in the correct simulation 

code. However, for this scenario, these identification numbers are used, so 

which ID makes the request, that part is processed. 

 

Example for the Violation of Requirement Groups: 
1. No violation 

 

After execution: 
1. No violation 

 

There is no violation at the end of the simulation run, only the entering part 

count slightly decreases. This is because of that the rotate duration of the 

conveyor increases to index the cup with specific ID. While there may be a part 

matching with this request is too near, it must turn for that ID.  

 

4.3.20 Scenario 20: Rerotation of incorrectly manufactured 
parts 

All the parts leave the cell after manufactured, no matter whether they are 

processed correctly or not. The result of CMM is ignored, because the 

assumption is that, if a part is not manufactured correctly, it is put into the 

output buffer as the others and if the customer decides that it must be 



 85 
 

 

reprocessed, he can put it into the input buffer again. This is same as the 

current of METUCIM Lab for such a situation. In this scenario, the wrongly 

manufactured parts rerotate to be remanufactured in the cell.   

 

Example for the Violation of Requirement Groups: 
1. Group 3 : Part Routes Consistency 

2. Group 6 : Visitation Consistency 

3. Group 7 : Time Consistency 

 

After execution: 
1. CNC1_visitation_inconsistent (6.group) 

2. CNC2_visitation_inconsistent (6.group) 

3. CMM_visitation_inconsistent (6.group) 

4. cnc1_time_problem (7.group) 

5. cnc2_time_problem (7.group) 

6. cmm_time_problem (7.group) 

7. wrong_part1_request (3.group) 

8. wrong_part2_request (3.group) 

9. wrong_part3_request (3.group) 

 

Because of the rerotation, the three machines, CNC1, CNC2 and CMM, are 

used more than evaluated. The reason is that the evaluation is done only when 

the parts are put on the conveyor from the input buffer, which means that a new 

part enters to the system. Also, all parts must leave the system after measured 

by CMM. In this case, they do not leave, so they violate their process routes.  

 

4.3.21 Scenario 21: Robot can not take parts 

The assumption is that, since the duration is 7 hours, which is a short time, 

there is nothing wrong for any run. In this scenario, the robot cannot take the 

parts. Parts stay in machines or on the input buffer or on the conveyor cups. To 

avoid to stuck the run at some point, these are handled one by one. 
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1. Robot can not take part from CNC1: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 

 

      After execution: 
1. part_count_safe3 (1.group) 

2. part_count_safe3_type1 (1.group) 

3. part_count_safe3_type2 (1.group) 

4. part_count_safe3_type3 (1.group) 

5. wrong_CNC1_process_alarm (2.group) 

6. wrong_CONVEYOR_CMM_process_alarm (2.group) 

7. cnc2_entry_already_empty (5.group) 

8. robot_process_error (5.group) 

 

Robot cannot take the part, but it goes on doing its job without knowing 

this, so the CNC1 entry behaves like that there is a part on it. This causes 

the other following violations while the simulation run is continuing.  

 

2. Robot can not take part from CNC2: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 

 

      After execution: 
1. part_count_safe3 (1.group) 

2. part_count_safe3_type1 (1.group) 

3. part_count_safe3_type2 (1.group) 

4. part_count_safe3_type3 (1.group) 

5. wrong_CNC2_process_alarm (2.group) 

6. wrong_CMM_process_alarm (2.group) 
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7. robot_process_error (5.group) 

 

The reason of these violations is same as the previous one. Also, the robot 

tries to put a part while there is no part at the mount of itself, which causes 

robot_process_error alarm to be raised like the above scenario again. 

 

3. Robot can not take part from CMM: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 

 

      After execution: 
1. part_count_safe3 (1.group) 

2. part_count_safe3_type1 (1.group) 

3. part_count_safe3_type2 (1.group) 

4. part_count_safe3_type3 (1.group) 

5. cnc2_entry_capacity_exceeded (4.group) 

6. wrong _CNC2_process_alarm (2.group) 

7. robot_process_error (5.group) 

 

Since the robot uses the same entry for CNC2 and CMM requests, although 

CNC2 is left behind, the process error of this raises. The other reasons 

mentioned above for the previous two scenarios are still valid for this one. 

 

4. Robot can not take part from the conveyor: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 
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      After execution: 
1. part_count_safe3 (1.group) 

2. part_count_safe3_type1 (1.group) 

3. part_count_safe3_type2 (1.group) 

4. part_count_safe3_type3 (1.group) 

5. wrong_CONVEYOR_CNC1_process_alarm (2.group) 

6. wrong_CONVEYOR_CNC2_process_alarm (2.group) 

7. robot_process_error (5.group) 

 

This scenario means that no parts can be processed by the machines, all 

parts entering the system stay on the conveyor, so they cannot reach even to 

CMM. 

 

5. Robot can not take part from the input buffer: 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 5 : Already empty hardware 

 

      After execution: 
1. part_count_safe3 (1.group) 

2. part_count_safe3_type1 (1.group) 

3. part_count_safe3_type2 (1.group) 

4. part_count_safe3_type3 (1.group) 

5. wrong_IOBUFFER_process_alarm (2.group) 

6. robot_process_error (5.group) 

 

No part can enter the system, but the event recognizer sees the 

onto_conveyor event, and it increases the count of the entering parts to the 

system. This causes the first violation. 
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4.3.22 Scenario 22: Not starting in a cold start situation 

When the cell begins to run, it must be in a cold start situation, which means 

that there must not be any part at the cell, all hardware must be empty. In this 

scenario, however, it starts while there are several parts on the conveyor. 

 

Example for the Violation of Requirement Groups: 
1. Group 2 : Request-Process Consistency 

2. Group 4 : Limited hardware capacity 

 

After execution: 
1. wrong_IOBUFFER_process_alarm (2.group) 

2. iobuffer_entry_capacity_exceeded (4.group) 

 

The system does not know the type of the parts, which are on the cell when the 

run starts. The system can know the part types, only when it places that part 

onto any hardware. Therefore, while processing the requests, it behaves like 

that there is no part on that cup. This is because the first simulation code has 

been written according to the correct situations, and this scenario is the 

rewritten version of that one with fault.  

 

4.3.23 Scenario 23: Entering more than 14 parts  

The capacity of the system, while it is running, is fourteen, this means that 

there can be at most fourteen parts in the cell at any time. In this scenario, the 

cell accepts new parts without controlling the current part count. 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts  

 

After execution: 
1. capacity_exceeded (1.group) 
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The simulation run does not end, because exceeding capacity means, free cups 

can be found to put processed parts by the machines. Therefore, a deadlock 

occurs. 

 

4.3.24 Scenario 24: Problem with two consecutive exit 
events 

For validation rule group 10, this scenario is written. After the robot puts the 

part onto the output buffer, it tries to process the same job again. System 

behaves as the part is still on the conveyor to reach such a violated state located 

in group 10. 

 

Example for the Violation of Requirement Groups: 
1. Group 10 : Minimum time difference between two consecutive exit events 

 

After execution: 
1. min_time_difference (10.group) 

2. wrong_CONVEYOR_IOBUFFER_process_alarm (2.group) 

3. wrong_part2_request (3.group) 

4. wrong_part3_request (3.group) 

5. iobuffer_entry_already_empty (5.group) 

 

As expected, the min_time_difference violation occurs. This scenario is an 

example of that, in the system, the minimum duration between any two jobs 

can be checked. The superfluous alarms raises because the system is forced to 

reach that state. Normally, if the entry is empty, it does not do anything, but in 

this situation, robot still tries to get a part from an empty cup, which is emptied 

by itself, a little ago. 
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4.3.25 Scenario 25: New parts entered by the customer 

The parts are normally loaded onto the IOBuffer entry from the input buffer by 

robot. In this scenario, it is assumed that the customer does this job instead of 

the robot. 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts  

2. Group 2 : Request-Process Consistency 

 

After execution: 
1. wrong_IOBUFFER_process_alarm (2.group) 

2. part_count_safe1 (1.group) 

3. part_count_safe1_type1 (1.group) 

4. part_count_safe1_type2 (1.group) 

5. part_count_safe1_type3 (1.group) 

6. part_count_safe3 (1.group) 

7. part_count_safe1_type1 (1.group) 

8. part_count_safe1_type2 (1.group) 

9. part_count_safe1_type3 (1.group) 

 

Event recognizer can not see a new part entering the system event because this 

event is defined as a robot dependent event. Therefore, the exiting part count of 

the system is always greater than the entering part count, which causes the 

violation. 

 

4.3.26 Scenario 26: Conveyor does not rotate 

In this scenario, the “rotate” action of the conveyor is forgotten in the 

implementation, but this is not noticed.   

 

Example for the Violation of Requirement Groups: 
1. Group 4 : Limited hardware capacity 
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2. Group 5 : Already empty hardware 

 

After execution: 
1. wrong_IOBUFFER_process_alarm (2.group) 

2. wrong_CONVEYOR_CMM_process_alarm (2.group) 

3. wrong_CONVEYOR_CNC1_process_alarm (2.group) 

4. wrong_CONVEYOR_IOBUFFER_process_alarm (2.group) 

5. wrong_CONVEYOR_CNC2_process_alarm (2.group) 

6. iobuffer_entry_capacity_exceeded (4.group) 

7. wrong_part1_request (3.group) 

8. wrong_part2_request (3.group) 

9. wrong_part3_request (3.group) 

10. cnc1 _entry_already_empty (5.group)  

11. cnc2_entry_already_empty (5.group)  

 

“The conveyor does not rotate” means that the parts are put onto the cup at the 

iobuffer entry position, so the capacity of this cups exceeds. Also, the program 

continues to run as if there is no such problem, so the robot tries to get a part 

from the empty hardware of the cell. 

 

4.3.27 Scenario 27: Changing the type of a part 

There must be part consistency according to types as the type of a part does not 

change. In this scenario, the type of some part is 2 and, it becomes type 1 at 

some instant of its processing. 

 

Example for the Violation of Requirement Groups: 
1. Group 1 : Preservation of Parts 

 

After execution: 
1. part_count_safe3_type1 (1.group) 

2. part_count_safe3_type2 (1.group) 

3. part_out_count_error1  (1.group) 



 93 
 

 

4. part_out_count_error2 (1.group) 

5. part_count_safe1_type1 (1.group) 

6. CNC2_visitation_inconsistent (6.group) 

7. cnc2_time_problem (7.group) 

 

In this scenario, the preservation of the parts according to their types are 

checked. There is no change in the count of the parts in the cell. However, the 

type of any part is changed. This situation can not be caught by the 

preservation of parts according to only their counts. Therefore, the same 

preservation events, conditions, alarms and safety properties are defined for 

each part type. 
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CHAPTER 5 
 

 

CONCLUSION AND DISCUSSION 
 

 

 

In this work, we studied the assertion checking method, and tried to use it as a 

validation technique. Finding an example from the real world should be 

effective to demonstrate the results of the application of assertion checking 

method for validation. Therefore, we have modeled the METUCIM 

Laboratory, which is a single manufacturing cell. The model is process 

oriented, and is implemented by using Java thread library. The simplicity of 

this example chosen made our work have been understood clearly. Also, we 

found luckily, MaC tool, which serves our aim. At the beginning, it seemed 

that MaC would make our life easier, because it exactly fit our work; however, 

the problems with MaC made this work much slower. Finally, the simulation 

was finished, and the working version of the MaC scripts including all 

validation requirements were written. The last missing thing was the 

demonstration of correctness of the simulation runs with respect to the 

validation requirements of the real world. For this, we created a lot of 

scenarios. Each scenario was simulated and their runs were monitored and 

checked by using the MaC scripts. 

 

It should be emphasized that we do not try to validate the simulation model, we 

only validate the current run of the simulation against a set of validation 

requirements. This is because of that we use the assertion checking method to 
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achieve this, which is one of the dynamic V&V techniques, and in dynamic 

techniques run-time monitoring is required. One of the limitations of run-time 

monitoring is that it is virtually impossible to monitor all possible runs of a 

model. Thus, it is practical to validate a simulation model itself in this way. 

 

In this thesis, one person has done all the steps, analyzed the system, extracted 

the validation requirements, made the design, wrote the simulation code, and 

the MaC scripts. If all jobs are done by one person, the mistake or 

misunderstanding is repeated at all steps of the work. One person can make a 

wrong analyses, and by this wrong result, he/she builds the wrong system and 

writes wrong validation scripts. As a result, nothing can be caught, everything 

looks like working  properly. It seems a chaos at first glance, but if we think of 

a project team with at least two people, this work gets much more meaning. If 

one makes a mistake or misunderstands something, at the other side of the 

project (the simulation code side or monitoring and checking side), it can be 

realized that either the simulation model or code is not right, or there is 

something wrong with the defined validation requirements. In fact, model 

development and derivation of assertions are independent processes, best 

performed by different persons. 

 

In this work, we tried to show that assertion checking can be used as a 

validation method. This approach can be effective for run-time validations of 

discrete event simulation model in general. Of course, the validation 

requirements and necessary tools must be tailored for each specific application. 

For this aim, we used a run-time monitoring and checking tool, MaC version 

0.99. Because, we encountered some limitations and problems with MaC, to 

overcome them, the validation requirements were defined in a limited way, 

such as defining three same classes for the three entries of the conveyor. For 

the advanced versions of the MaC tool, this work can be more improved. This 
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is a core study, and it shows that with a more mature tool, more complex 

simulations and requirements can be handled easily. 

 

Consequently, as the results of the test studies show that, the aim gains success, 

except from the time consistency of machines. This is because of using the 

system clock and sleep method of threads. This problem can be handled in a 

mature tool or again with MaC, seeing this problem, instead of making the 

threads sleep, other ways can be used. However, this missing was tried to close 

by another assertion validation, visitation consistency. In generally, the results 

are successful and show that, by using assertion checking, no mistake can be 

escaped from the system. Although there can be superfluous violations, the 

important thing here is that if there is a violation the system warns the user, 

since it is not intended to provide diagnostics for locating errors. Also, 

although the case study is based on an actual system (METUCIM Lab), the 

method is applicable to hypothetical systems as well. Because, the validation is 

performed with respect to a conceptual model. 
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APPENDIX A 
 

 

PEDL SCRIPT OF METUCIM LAB 
 

 

 
MonScr METUCIM 
 
 //exported events for defining high-level events and conditions more easily  
 
 export event startPgm,  
       robotFull_event, robotEmpty_event,  
       robotFull_event1, robotEmpty_event1,  
       robotFull_event2, robotEmpty_event2,  
       robotFull_event3, robotEmpty_event3,  
       cnc1Full_event, cnc1Empty_event, 
       cnc1Full_event1, cnc1Empty_event1, 
       cnc1Full_event2, cnc1Empty_event2, 
       cnc1Full_event3, cnc1Empty_event3, 
       cnc2Full_event, cnc2Empty_event,  
       cnc2Full_event1, cnc2Empty_event1,  
       cnc2Full_event2, cnc2Empty_event2,  
       cnc2Full_event3, cnc2Empty_event3,  
       cmmFull_event, cmmEmpty_event, 
       cmmFull_event1, cmmEmpty_event1, 
       cmmFull_event2, cmmEmpty_event2, 
       cmmFull_event3, cmmEmpty_event3, 
       cnc1_start_work, cnc2_start_work, cmm_start_work, 
       cnc1_stop_work, cnc2_stop_work, cmm_stop_work, 
       IOBufferEntryFull_event, IOBufferEntryEmpty_event, 
       IOBufferEntryFull_event1, IOBufferEntryEmpty_event1, 
       IOBufferEntryFull_event2, IOBufferEntryEmpty_event2, 
       IOBufferEntryFull_event3, IOBufferEntryEmpty_event3, 
       cnc1EntryFull_event, cnc1EntryEmpty_event, 
       cnc1EntryFull_event1, cnc1EntryEmpty_event1, 
       cnc1EntryFull_event2, cnc1EntryEmpty_event2, 
       cnc1EntryFull_event3, cnc1EntryEmpty_event3, 
       cnc2EntryFull_event, cnc2EntryEmpty_event, 
       cnc2EntryFull_event1, cnc2EntryEmpty_event1, 
       cnc2EntryFull_event2, cnc2EntryEmpty_event2, 
       cnc2EntryFull_event3, cnc2EntryEmpty_event3, 
       from_conveyor, onto_conveyor, from_conveyor1, onto_conveyor1,  
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       from_conveyor2, onto_conveyor2, from_conveyor3, onto_conveyor3,  
       new_part, exit_part , exit_part1 , exit_part2 , exit_part3 ,  
       control_start, control_end, abnormal_rotate,  
       part1_path_event, part2_path_event, part3_path_event,  

     CNC1_will_used, CNC2_will_used, CMM_will_used, 
       CNC1_has_used, CNC2_has_used, CMM_has_used,  
       wrong_IOBUFFER_process, wrong_CNC1_process,  

     wrong_CNC2_process, wrong_CMM_process,  
     wrong_CONVEYOR_IOBUFFER_process,  

        wrong_CONVEYOR_CNC1_process,  
     wrong_CONVEYOR_CNC2_process,  
     wrong_CONVEYOR_CMM_process, 

       new_part_type1, new_part_type2, new_part_type3, 
       wrong_robot_place,endPgm; 
 
 //Monitored attributes of the classes 
 monobj int METUCIM.val_part_cnt_control; 
 monobj int METUCIM.mac1; 
 monobj boolean METUCIM.end_threads; 
 monobj int Robot.val_full; 
 monobj int Cnc1.val_full; 
 monobj int Cnc2.val_full; 
 monobj int Cmm.val_full; 
 monobj int Cnc1.part_type; 
 monobj int Cnc2.part_type; 
 monobj int Cmm.part_type; 
 monobj int Cnc1.start_work; 
 monobj int Cnc2.start_work; 
 monobj int Cmm.start_work; 
 monobj int IOBUFFER_Cup_Entry.val_full; 
 monobj int IOBUFFER_Cup_Entry.part_type; 
 monobj int CNC1_Cup_Entry.val_full; 
 monobj int CNC1_Cup_Entry.part_type; 
 monobj int CNC2_Cup_Entry.val_full; 
 monobj int CNC2_Cup_Entry.part_type; 
 monobj int Robot.x_request_type; 
 monobj int Robot.x_part_type; 
 monobj int Robot.x_from; 
 monobj int Robot.after_turn; 
 monobj int Robot.robot_place; 
 monobj int Conveyor.turn_number; 
 monobj int Conveyor.turn_flag; 
 monobj int IOBuffer.first_element; 
 
 //Also, the main method is monitored 
 monmeth void METUCIM.main(String[]); 
 
 //Current request in the cell 
 condition IOBUFFER     = (Robot.x_request_type==1); 
 condition CNC1      = (Robot.x_request_type==2); 
 condition CONVEYOR_IOBUFFER = (Robot.x_request_type==3); 
 condition CONVEYOR_CNC1    = (Robot.x_request_type==4); 
 condition CONVEYOR_CNC2    = (Robot.x_request_type==5); 
 condition CONVEYOR_CMM    = (Robot.x_request_type==6); 
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 condition CNC2      = (Robot.x_request_type==7); 
 condition CMM      = (Robot.x_request_type==8); 
 
 //which component of the system makes that request, 
 //this means that the part lastly in that component 
 condition from_IOBUFFER = (Robot.x_from==1); 
 condition from_CNC1  = (Robot.x_from==2); 
 condition from_CNC2  = (Robot.x_from==7); 
 condition from_CMM  = (Robot.x_from==8); 
 
 //while robot puts a part, or gets a part, 
 //to control that to which component the part belongs  
 condition control_ok = (METUCIM.val_part_cnt_control == 1); 
 condition end_control = (METUCIM.val_part_cnt_control == 0); 
 
 event control_start = start(control_ok); 
 event control_end = start(end_control); 
 
 //start of the simulation 
 event startPgm = StartM(METUCIM.main(String[])); 
 
 //simulation ends 
 event endPgm = start(METUCIM.end_threads==true); 
 
 //a new part is loaded into the cell 
 event new_part = start(IOBUFFER && robotFull_cond); 
 
 //what is the type of this new part?  
 event new_part_type1 = start(IOBUFFER && robotFull_cond &&  

Robot.x_part_type==1); 
 event new_part_type2 = start(IOBUFFER && robotFull_cond &&  

Robot.x_part_type==2); 
 event new_part_type3 = start(IOBUFFER && robotFull_cond &&  

Robot.x_part_type==3); 
 
 //part exit from the cell 
 event exit_part = start(CONVEYOR_IOBUFFER && (Robot.after_turn==3) &&  

robotEmpty_cond && IOBufferEntryEmpty_cond); 
 event exit_part1 = start(CONVEYOR_IOBUFFER && (Robot.after_turn==3) &&  

robotEmpty_cond && IOBufferEntryEmpty_cond)  
when Robot.x_part_type==1;    

 event exit_part2 = start(CONVEYOR_IOBUFFER && (Robot.after_turn==3) &&  
robotEmpty_cond && IOBufferEntryEmpty_cond)  

when Robot.x_part_type==2;   
 event exit_part3 = start(CONVEYOR_IOBUFFER && (Robot.after_turn==3) &&  

robotEmpty_cond && IOBufferEntryEmpty_cond)  
when Robot.x_part_type==3;   

 
 //the below components become full or empty 
 event robotFull_event = start(robotFull_cond);    
 event robotFull_event1 = start(robotFull_cond) when Robot.x_part_type==1;    
 event robotFull_event2 = start(robotFull_cond) when Robot.x_part_type==2;    
 event robotFull_event3 = start(robotFull_cond) when Robot.x_part_type==3;    
 



 102 
 

 

 event robotEmpty_event = start(robotEmpty_cond); 
 event robotEmpty_event1 = start(robotEmpty_cond) when Robot.x_part_type==1;    
 event robotEmpty_event2 = start(robotEmpty_cond) when Robot.x_part_type==2;    
 event robotEmpty_event3 = start(robotEmpty_cond) when Robot.x_part_type==3    
 
 event cnc1Full_event = start(cnc1Full_cond);    
 event cnc1Full_event1 = start(cnc1Full_cond) when Robot.x_part_type==1;    
 event cnc1Full_event2 = start(cnc1Full_cond) when Robot.x_part_type==2;    
 event cnc1Full_event3 = start(cnc1Full_cond) when Robot.x_part_type==3    
 
 event cnc1Empty_event = start(cnc1Empty_cond); 
 event cnc1Empty_event1 = start(cnc1Empty_cond) when Robot.x_part_type==1;    
 event cnc1Empty_event2 = start(cnc1Empty_cond) when Robot.x_part_type==2;    
 event cnc1Empty_event3 = start(cnc1Empty_cond) when Robot.x_part_type==3    
 
 event cnc2Full_event = start(cnc2Full_cond);    
 event cnc2Full_event1 = start(cnc2Full_cond) when Robot.x_part_type==1;    
 event cnc2Full_event2 = start(cnc2Full_cond) when Robot.x_part_type==2;    
 event cnc2Full_event3 = start(cnc2Full_cond) when Robot.x_part_type==3    
 
 event cnc2Empty_event = start(cnc2Empty_cond);  
 event cnc2Empty_event1 = start(cnc2Empty_cond) when Robot.x_part_type==1;    
 event cnc2Empty_event2 = start(cnc2Empty_cond) when Robot.x_part_type==2;    
 event cnc2Empty_event3 = start(cnc2Empty_cond) when Robot.x_part_type==3    
 
 event cmmFull_event = start(cmmFull_cond);    
 event cmmFull_event1 = start(cmmFull_cond) when Robot.x_part_type==1;    
 event cmmFull_event2 = start(cmmFull_cond) when Robot.x_part_type==2;    
 event cmmFull_event3 = start(cmmFull_cond) when Robot.x_part_type==3    
 
 event cmmEmpty_event = start(cmmEmpty_cond); 
 event cmmEmpty_event1 = start(cmmEmpty_cond) when Robot.x_part_type==1;    
 event cmmEmpty_event2 = start(cmmEmpty_cond) when Robot.x_part_type==2;    
 event cmmEmpty_event3 = start(cmmEmpty_cond) when Robot.x_part_type==3    
 
 event IOBufferEntryFull_event = start(IOBufferEntryFull_cond);   
 event IOBufferEntryFull_event1 = start(IOBufferEntryFull_cond)  

when Robot.x_part_type==1;    
 event IOBufferEntryFull_event2=start(IOBufferEntryFull_cond)  

when Robot.x_part_type==2;    
 event IOBufferEntryFull_event3=start(IOBufferEntryFull_cond)  

when Robot.x_part_type==3    
  
 event IOBufferEntryEmpty_event = start(IOBufferEntryEmpty_cond); 
 event IOBufferEntryEmpty_event1 = start(IOBufferEntryEmpty_cond)  

when Robot.x_part_type==1;    
 event IOBufferEntryEmpty_event2 = start(IOBufferEntryEmpty_cond)  

when Robot.x_part_type==2;    
 event IOBufferEntryEmpty_event3 = start(IOBufferEntryEmpty_cond)  

when Robot.x_part_type==3    
 event cnc1EntryFull_event = start(cnc1EntryFull_cond);    
 event cnc1EntryFull_event1 = start(cnc1EntryFull_cond)  

when Robot.x_part_type==1;    
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 event cnc1EntryFull_event2 = start(cnc1EntryFull_cond)  
when Robot.x_part_type==2;    

 event cnc1EntryFull_event3 = start(cnc1EntryFull_cond)  
when Robot.x_part_type==3; 

 
 event cnc1EntryEmpty_event = start(cnc1EntryEmpty_cond); 
 event cnc1EntryEmpty_event1 = start(cnc1EntryEmpty_cond)  

when Robot.x_part_type==1;    
 event cnc1EntryEmpty_event2 = start(cnc1EntryEmpty_cond)  

when Robot.x_part_type==2;    
 event cnc1EntryEmpty_event3 = start(cnc1EntryEmpty_cond)  

when Robot.x_part_type==3;   
 
 event cnc2EntryFull_event = start(cnc2EntryFull_cond);    
 event cnc2EntryFull_event1 = start(cnc2EntryFull_cond)  

when Robot.x_part_type==1;    
 event cnc2EntryFull_event2 = start(cnc2EntryFull_cond)  

when Robot.x_part_type==2;    
 event cnc2EntryFull_event3 = start(cnc2EntryFull_cond)  

when Robot.x_part_type==3; 
 
 event cnc2EntryEmpty_event = start(cnc2EntryEmpty_cond); 
 event cnc2EntryEmpty_event1 = start(cnc2EntryEmpty_cond)  

when Robot.x_part_type==1;    
 event cnc2EntryEmpty_event2 = start(cnc2EntryEmpty_cond)  

when Robot.x_part_type==2;    
 event cnc2EntryEmpty_event3 = start(cnc2EntryEmpty_cond)  

when Robot.x_part_type==3;    
 
 //the below components start and finish operation,  
 event cnc1_start_work = start(Cnc1.start_work==1); 
 event cnc1_stop_work = end(Cnc1.start_work==1); 
 event cnc2_start_work = start(Cnc2.start_work==1); 
 event cnc2_stop_work = end(Cnc2.start_work==1); 
 event cmm_start_work = start(Cmm.start_work==1); 
 event cmm_stop_work = end(Cmm.start_work==1); 
 
 //robot can move from one side to the other in the cell 
 //it must be at the right side while operates a request 
 event wrong_robot_place = start((Robot.robot_place==1 &&  

Robot.x_request_type > 4 && robotFull_cond) || 
          (Robot.robot_place==2 &&  

Robot.x_request_type < 5 && robotFull_cond)); 
 
 //conveyor must rotate by at least 1, at most 13 cups 
 event abnormal_rotate = start(Conveyor.turn_flag==1 &&  

  ((Conveyor.turn_number >0 && Conveyor.turn_number > 13) || 
    (Conveyor.turn_number <0 && Conveyor.turn_number+14 <=0) ||  
     Conveyor.turn_number==0)); 
 
 //the below components are full or empty 
 condition robotFull_cond = (Robot.val_full==1); 
 condition robotEmpty_cond = (Robot.val_full==0); 
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 condition cnc1Full_cond = (Cnc1.val_full==1); 
 condition cnc1Empty_cond = (Cnc1.val_full==0); 
 
 condition cnc2Full_cond = (Cnc2.val_full==1); 
 condition cnc2Empty_cond = (Cnc2.val_full==0); 
 
 condition cmmFull_cond = (Cmm.val_full==1); 
 condition cmmEmpty_cond = (Cmm.val_full==0); 
 
 condition IOBufferEntryFull_cond = (IOBUFFER_Cup_Entry.val_full==1); 
 condition IOBufferEntryEmpty_cond = (IOBUFFER_Cup_Entry.val_full==0); 
 
 condition cnc1EntryFull_cond = (CNC1_Cup_Entry.val_full==1); 
 condition cnc1EntryEmpty_cond = (CNC1_Cup_Entry.val_full==0); 
 
 condition cnc2EntryFull_cond = (CNC2_Cup_Entry.val_full==1); 
 condition cnc2EntryEmpty_cond = (CNC2_Cup_Entry.val_full==0); 
 
 //control if there is something wrong with the routes of the parts 
 condition part1_path = !control_ok && !(Robot.x_part_type!=1 ||  

(Robot.x_part_type==1 &&  (IOBUFFER ||  
        (CONVEYOR_CNC1 && from_IOBUFFER) || CNC1 || 
        (CONVEYOR_CNC2 && from_CNC1) || CNC2 || 
        (CONVEYOR_CMM  && from_CNC2) || CMM || 
        (CONVEYOR_IOBUFFER && from_CMM)))); 
 
 condition part2_path = !control_ok && !(Robot.x_part_type!=2 ||  

(Robot.x_part_type==2 &&  (IOBUFFER ||  
        (CONVEYOR_CNC1 && from_IOBUFFER) || CNC1 || 
        (CONVEYOR_CMM  && from_CNC1) || CMM || 
        (CONVEYOR_IOBUFFER && from_CMM)) && 
        !CONVEYOR_CNC2 && !CNC2)); 
 
 condition part3_path = !control_ok && !(Robot.x_part_type!=3 ||  

(Robot.x_part_type==3 &&  (IOBUFFER ||  
        (CONVEYOR_CNC2 && from_IOBUFFER) || CNC2 || 
        (CONVEYOR_CMM  && from_CNC2) || CMM || 
        (CONVEYOR_IOBUFFER && from_CMM)) && 
        !CONVEYOR_CNC1 && !CNC1)); 
 
 event part1_path_event = start(part1_path); 
 event part2_path_event = start(part2_path); 
 event part3_path_event = start(part3_path); 
 
 //the useage of the machines, 
 //how many times they will be used, and 
 //how many times they have been used. 
 event CNC1_will_used = new_part && start(Robot.x_part_type!=3); 
 event CNC2_will_used = new_part && start(Robot.x_part_type!=2); 
 event CMM_will_used = new_part; 
 event CNC1_has_used = end(Cnc1.val_full==1); 
 event CNC2_has_used = end(Cnc2.val_full==1); 
 event CMM_has_used = end(Cmm.val_full==1); 
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 //control whether something wrong with processing of the requests 
 event wrong_IOBUFFER_process = start(control_ok && IOBUFFER &&  
  !((Robot.after_turn==0) || 

((Robot.after_turn==1) &&  
robotEmpty_cond && IOBufferEntryEmpty_cond && 
(IOBuffer.first_element==Robot.x_part_type)) || 

  ((Robot.after_turn==2) &&  
robotFull_cond && IOBufferEntryEmpty) || 

  ((Robot.after_turn==3) &&  
robotEmpty_cond && IOBufferEntryFull_cond &&  
(IOBUFFER_Cup_Entry.part_type==Robot.x_part_type)))); 

 
 event wrong_CNC1_process = start(control_ok && CNC1 &&  
  !((Robot.after_turn==0 && cnc1Full_cond) || 
   ((Robot.after_turn==1) &&  

robotEmpty_cond && cnc1EntryEmpty_cond && 
cnc1Full_cond && (Cnc1.part_type==Robot.x_part_type)) ||   

   ((Robot.after_turn==2) &&  
robotFull_cond && cnc1EntryEmpty_cond &&  
cnc1Empty_cond) || 

   ((Robot.after_turn==3) && robotEmpty_cond &&  
cnc1EntryFull_cond && cnc1Empty_cond &&  
(CNC1_Cup_Entry.part_type==Robot.x_part_type))));  

 
 event wrong_CNC2_process = start(control_ok && CNC2 &&  
  !((Robot.after_turn==0 && cnc2Full_cond) || 
   ((Robot.after_turn==1)  

&& robotEmpty_cond && cnc2EntryEmpty_cond &&  
cnc2Full_cond && (Cnc2.part_type==Robot.x_part_type)) ||   

   ((Robot.after_turn==2) && 
robotFull_cond && cnc2EntryEmpty_cond &&  
cnc2Empty_cond) || 

   ((Robot.after_turn==3) && robotEmpty_cond &&  
cnc2EntryFull_cond && cnc2Empty_cond &&  
(CNC2_Cup_Entry.part_type==Robot.x_part_type))));  

 
 event wrong_CMM_process = start(control_ok && CMM &&  
  !((Robot.after_turn==0 && cmmFull_cond) || 
   ((Robot.after_turn==1) &&  

robotEmpty_cond && cnc2EntryEmpty_cond &&  
cmmFull_cond && (Cmm.part_type==Robot.x_part_type)) ||   

   ((Robot.after_turn==2) &&  
robotFull_cond && cnc2EntryEmpty_cond &&  
cmmEmpty_cond) || 

   ((Robot.after_turn==3) &&  
robotEmpty_cond && cnc2EntryFull_cond &&  
cmmEmpty_cond && 
(CNC2_Cup_Entry.part_type==Robot.x_part_type))));  

 
 event wrong_CONVEYOR_IOBUFFER_process =  

start(control_ok && CONVEYOR_IOBUFFER &&  
  !((Robot.after_turn==0) || 
   ((Robot.after_turn==1) && 

 robotEmpty_cond && iobufferEntryFull_cond &&  
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(IOBUFFER_Cup_Entry.part_type==Robot.x_part_type)) ||   
   ((Robot.after_turn==2) &&  

robotFull_cond && iobufferEntryEmpty_cond) ||   
   ((Robot.after_turn==3) &&  

robotEmpty_cond && iobufferEntryEmpty_cond))); 
       
 event wrong_CONVEYOR_CNC1_process =  

start(control_ok && CONVEYOR_CNC1 &&  
  !((Robot.after_turn==0) || 
   ((Robot.after_turn==1) &&  

robotEmpty_cond && cnc1EntryFull_cond &&  
cnc1Empty_cond && 
 (CNC1_Cup_Entry.part_type==Robot.x_part_type)) || 

   ((Robot.after_turn==2) && 
 robotFull_cond && cnc1EntryEmpty_cond && 
 cnc1Empty_cond) || 

   ((Robot.after_turn==3) &&  
robotEmpty_cond && cnc1EntryEmpty_cond &&  
cnc1Full_cond &&  
(Cnc1.part_type==Robot.x_part_type))));  

 
 event wrong_CONVEYOR_CNC2_process =  

start(control_ok && CONVEYOR_CNC2 && 
   !((Robot.after_turn==0) || 
    ((Robot.after_turn==1) &&  

robotEmpty_cond && cnc2EntryFull_cond && cnc2Empty_cond 
&& (CNC2_Cup_Entry.part_type==Robot.x_part_type)) || 

   ((Robot.after_turn==2) &&  
robotFull_cond && cnc2EntryEmpty_cond &&  
cnc2Empty_cond) || 

    ((Robot.after_turn==3) &&  
robotEmpty_cond && cnc2EntryEmpty_cond &&  
cnc2Full_cond && (Cnc2.part_type==Robot.x_part_type)))); 

 
 event wrong_CONVEYOR_CMM_process =  

start(control_ok && CONVEYOR_CMM && 
  !((Robot.after_turn==0) ||      
  ((Robot.after_turn==1) &&  

robotEmpty_cond && cnc2EntryFull_cond &&  
cmmEmpty_cond &&  
(CNC2_Cup_Entry.part_type==Robot.x_part_type)) || 

  ((Robot.after_turn==2) &&  
robotFull_cond && cnc2EntryEmpty_cond &&  
cmmEmpty_cond) || 

    ((Robot.after_turn==3) &&  
robotEmpty_cond && cnc2EntryEmpty_cond &&  
cmmFull_cond && (Cmm.part_type==Robot.x_part_type)))); 

 
 //a part has been taken from the conveyor 
 event from_conveyor = start(Robot.after_turn==2 && robotFull_cond &&  

((CONVEYOR_IOBUFFER && IOBufferEntryEmpty_cond) ||  
   (CONVEYOR_CNC1 && cnc1EntryEmpty_cond) || 

                (CONVEYOR_CNC2 && cnc2EntryEmpty_cond) ||  
    (CONVEYOR_CMM && cnc2EntryEmpty_cond))); 
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 event from_conveyor1 = from_conveyor when Robot.x_part_type==1;  
 event from_conveyor2 = from_conveyor when Robot.x_part_type==2;  
 event from_conveyor3 = from_conveyor when Robot.x_part_type==3;  
       
 //a part has been put onto the conveyor 
 event onto_conveyor = start(Robot.after_turn==3 && robotEmpty_cond && 

 ((IOBUFFER && IOBufferEntryFull_cond) ||  
   (CNC1 && cnc1EntryFull_cond) || 
   (CNC2 && cnc2EntryFull_cond) ||  
    (CMM && cnc2EntryFull_cond))); 
 
 event onto_conveyor1 = onto_conveyor when Robot.x_part_type==1; 
 event onto_conveyor2 = onto_conveyor when Robot.x_part_type==2; 
 event onto_conveyor3 = onto_conveyor when Robot.x_part_type==3; 
End 
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APPENDIX B 
 

 

MEDL SCRIPT OF METUCIM LAB 
 

 

 
ReqSpec METUCIM 
 import condition part1_path, part2_path, part3_path; 
 
 import event startPgm,  
       robotFull_event, robotEmpty_event,  
       robotFull_event1, robotEmpty_event1,  
       robotFull_event2, robotEmpty_event2,  
       robotFull_event3, robotEmpty_event3,  
       cnc1Full_event, cnc1Empty_event, 
       cnc1Full_event1, cnc1Empty_event1, 
       cnc1Full_event2, cnc1Empty_event2, 
       cnc1Full_event3, cnc1Empty_event3, 
       cnc2Full_event, cnc2Empty_event,  
       cnc2Full_event1, cnc2Empty_event1,  
       cnc2Full_event2, cnc2Empty_event2,  
       cnc2Full_event3, cnc2Empty_event3,  
       cmmFull_event, cmmEmpty_event, 
       cmmFull_event1, cmmEmpty_event1, 
       cmmFull_event2, cmmEmpty_event2, 
       cmmFull_event3, cmmEmpty_event3, 
       cnc1_start_work, cnc2_start_work, cmm_start_work, 
       cnc1_stop_work, cnc2_stop_work, cmm_stop_work, 
       IOBufferEntryFull_event, IOBufferEntryEmpty_event, 
       IOBufferEntryFull_event1, IOBufferEntryEmpty_event1, 
       IOBufferEntryFull_event2, IOBufferEntryEmpty_event2, 
       IOBufferEntryFull_event3, IOBufferEntryEmpty_event3, 
       cnc1EntryFull_event, cnc1EntryEmpty_event, 
       cnc1EntryFull_event1, cnc1EntryEmpty_event1, 
       cnc1EntryFull_event2, cnc1EntryEmpty_event2, 
       cnc1EntryFull_event3, cnc1EntryEmpty_event3, 
       cnc2EntryFull_event, cnc2EntryEmpty_event, 
       cnc2EntryFull_event1, cnc2EntryEmpty_event1, 
       cnc2EntryFull_event2, cnc2EntryEmpty_event2, 
       cnc2EntryFull_event3, cnc2EntryEmpty_event3, 
       from_conveyor, onto_conveyor, from_conveyor1, onto_conveyor1,  
       from_conveyor2, onto_conveyor2, from_conveyor3, onto_conveyor3,  
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       new_part, exit_part , exit_part1 , exit_part2 , exit_part3 ,  
       control_start, control_end, abnormal_rotate,  
       part1_path_event, part2_path_event, part3_path_event,  

     CNC1_will_used, CNC2_will_used, CMM_will_used, 
       CNC1_has_used, CNC2_has_used, CMM_has_used,  
       wrong_IOBUFFER_process, wrong_CNC1_process,  

     wrong_CNC2_process, wrong_CMM_process,  
     wrong_CONVEYOR_IOBUFFER_process,  

        wrong_CONVEYOR_CNC1_process,  
     wrong_CONVEYOR_CNC2_process,  
     wrong_CONVEYOR_CMM_process, 

       new_part_type1, new_part_type2, new_part_type3, 
       wrong_robot_place,endPgm; 
 
 //AuxilliaryVariables 
 var int SCALE; 
 var int part_count, part_in_cnt, part_out_cnt, exit_part_cnt;  
 var int part_count1, part_in_cnt1, part_out_cnt1, exit_part_cnt1;  
 var int part_count2, part_in_cnt2, part_out_cnt2, exit_part_cnt2;  
 var int part_count3, part_in_cnt3, part_out_cnt3, exit_part_cnt3;  
 var int part_in_type1_cnt; 
 var int part_in_type2_cnt; 
 var int part_in_type3_cnt; 
 var int robot_part_count; 
 var int robot_part_count1; 
 var int robot_part_count2; 
 var int robot_part_count3; 
 var int cnc1_part_count, cnc2_part_count, cmm_part_count; 
 var int cnc1_part_count1, cnc2_part_count1, cmm_part_count1; 
 var int cnc1_part_count2, cnc2_part_count2, cmm_part_count2; 
 var int cnc1_part_count3, cnc2_part_count3, cmm_part_count3; 
 var int iobuffer_entry_part_cnt,cnc1_entry_part_cnt,cnc2_entry_part_cnt; 
 var int iobuffer_entry_part_cnt1,cnc1_entry_part_cnt1,cnc2_entry_part_cnt1; 
 var int iobuffer_entry_part_cnt2,cnc1_entry_part_cnt2,cnc2_entry_part_cnt2; 
 var int iobuffer_entry_part_cnt3,cnc1_entry_part_cnt3,cnc2_entry_part_cnt3; 
 var int conveyor_part_count; 
 var int conveyor_part_count1; 
 var int conveyor_part_count2; 
 var int conveyor_part_count3; 
 var int cnc1_will_used, cnc2_will_used, cmm_will_used; 
 var int cnc1_has_used, cnc2_has_used, cmm_has_used; 
 var long time1; 
 var long time2; 
 var int exit_flag; 
 
 var long cnc1_time, cnc1_time1, cnc1_time2; 
 var long cnc2_time, cnc2_time1, cnc2_time2; 
 var long cmm_time, cmm_time1, cmm_time2; 
 
 //for calculating the time duration between two exit events 
 event exit_part_first      = exit_part  when exit_flag==1; 
 event exit_part_second = exit_part  when exit_flag==2; 
 
 //parts has been taken from the below components 
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 event cnc1Empty = cnc1Empty_event when cnc1_time1>0; 
 event cnc2Empty = cnc2Empty_event when cnc2_time1>0; 
 event cmmEmpty = cmmEmpty_event when cmm_time1>0; 
 
 event cnc1Empty1 = cnc1Empty_event1 when cnc1_time1>0; 
 event cnc2Empty1 = cnc2Empty_event1 when cnc2_time1>0; 
 event cmmEmpty1 = cmmEmpty_event1 when cmm_time1>0; 
 
 event cnc1Empty2 = cnc1Empty_event2 when cnc1_time1>0; 
 event cnc2Empty2 = cnc2Empty_event2 when cnc2_time1>0; 
 event cmmEmpty2 = cmmEmpty_event2 when cmm_time1>0; 
 
 event cnc1Empty3 = cnc1Empty_event3 when cnc1_time1>0; 
 event cnc2Empty3 = cnc2Empty_event3 when cnc2_time1>0; 
 event cmmEmpty3 = cmmEmpty_event3 when cmm_time1>0; 
 
 //parts has been loaded into the below components 
 event cnc1Full = cnc1Full_event; 
 event cnc2Full = cnc2Full_event; 
 event cmmFull = cmmFull_event; 
 
 event cnc1Full1 = cnc1Full_event1; 
 event cnc2Full1 = cnc2Full_event1; 
 event cmmFull1 = cmmFull_event1; 
 
 event cnc1Full2 = cnc1Full_event2; 
 event cnc2Full2 = cnc2Full_event2; 
 event cmmFull2 = cmmFull_event2; 
 
 event cnc1Full3 = cnc1Full_event3; 
 event cnc2Full3 = cnc2Full_event3; 
 event cmmFull3 = cmmFull_event3; 
 
 //the below machines start and stop to process one part 
 event cnc1Stop = cnc1_stop_work when cnc1_time1>0; 
 event cnc2Stop = cnc2_stop_work when cnc2_time1>0; 
 event cmmStop = cmm_stop_work when cmm_time1>0; 
 
 event cnc1Start = cnc1_start_work; 
 event cnc2Start = cnc2_start_work; 
 event cmmStart = cmm_start_work; 
  
 //to control the time of transfering a part from one component to the other 
 //since at that time, it cannot known that to which component the part belongs 
 //two components can be seen full, or both can be seen empty at this time 
 //this violates the part count preservation rule 
 condition control = [control_start,control_end); 
  
 
 //Preservation of parts 
 property part_count_safe1 = !control || (part_in_cnt>=part_out_cnt); 
 property part_count_safe1_type1 = !control || (part_in_cnt1>=part_out_cnt1); 
 property part_count_safe1_type2 = !control || (part_in_cnt2>=part_out_cnt2); 
 property part_count_safe1_type3 = !control || (part_in_cnt3>=part_out_cnt3); 
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 property part_count_safe2 = !control || (part_count==part_in_cnt-part_out_cnt); 
 property part_count_safe2_type1=!control ||  

(part_count1==part_in_cnt1-part_out_cnt1); 
 property part_count_safe2_type2=!control ||  

(part_count2==part_in_cnt2-part_out_cnt2); 
 property part_count_safe2_type3=!control ||  

(part_count3==part_in_cnt3-part_out_cnt3); 
 
 property part_count_safe3 = !control ||  

(part_count==robot_part_count+cnc1_part_count+cnc2_part_count+ 
         cmm_part_count+conveyor_part_count); 

 property part_count_safe3_type1 = !control ||  
(part_count1==robot_part_count1+cnc1_part_count1+cnc2_part_count1+ 

           cmm_part_count1+conveyor_part_count1); 
 property part_count_safe3_type2 = !control ||  

(part_count2==robot_part_count2+cnc1_part_count2+cnc2_part_count2+ 
           cmm_part_count2+conveyor_part_count2); 

 property part_count_safe3_type3 = !control ||  
(part_count3==robot_part_count3+cnc1_part_count3+cnc2_part_count3+ 

           cmm_part_count3+conveyor_part_count3); 
 
 alarm part_out_count_error = endPgm when (part_out_cnt!=part_in_cnt); 
 alarm part_out_count_error1 = endPgm when (part_out_cnt1!=part_in_cnt1); 
 alarm part_out_count_error2 = endPgm when (part_out_cnt2!=part_in_cnt2); 
 alarm part_out_count_error3 = endPgm when (part_out_cnt3!=part_in_cnt3); 
 
 alarm capasity_exceeded = start(part_count > 14); 
 
 //Request-process consistency 
 alarm wrong_IOBUFFER_process_alarm = wrong_IOBUFFER_process; 
 alarm wrong_CNC1_process_alarm = wrong_CNC1_process; 
 alarm wrong_CNC2_process_alarm = wrong_CNC2_process; 
 alarm wrong_CMM_process_alarm = wrong_CMM_process; 
 alarm wrong_CONVEYOR_IOBUFFER_process_alarm =  

 wrong_CONVEYOR_IOBUFFER_process; 
 alarm wrong_CONVEYOR_CNC1_process_alarm =  

wrong_CONVEYOR_CNC1_process; 
 alarm wrong_CONVEYOR_CNC2_process_alarm =  

wrong_CONVEYOR_CNC2_process; 
 alarm wrong_CONVEYOR_CMM_process_alarm =  

wrong_CONVEYOR_CMM_process; 
 
 //part routes consistency 
 alarm wrong_part1_request = part1_path_event; 
 alarm wrong_part2_request = part2_path_event; 
 alarm wrong_part3_request = part3_path_event; 
 
 //robot sides  
 alarm robot_at_wrong_side = wrong_robot_place; 
 //time consistency 
 alarm cnc1_time_problem = endPgm when ((0.95*cnc1_time)>cnc1_time2 || 

 cnc1_time2>(1.05*cnc1_time));  
 alarm cnc2_time_problem = endPgm when ((0.95*cnc2_time)>cnc2_time2 ||  
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cnc2_time2>(1.05*cnc2_time)); 
 alarm cmm_time_problem = endPgm when ((0.90*cmm_time)>cmm_time2 ||  

cmm_time2>(1.10*cmm_time)); 
 
 //event endPgm_for_cnc1 = endPgm when cnc1_time !=0; 
 event end_cnc1_time_cont = endPgm when ((0.95*cnc1_time)>cnc1_time2 ||  

cnc1_time2>(1.05*cnc1_time)); 
 event end_cnc2_time_cont = endPgm when ((0.95*cnc2_time)>cnc2_time2 ||  

cnc2_time2>(1.05*cnc2_time)); 
 event end_cmm_time_cont = endPgm when ((0.90*cmm_time)>cmm_time2 ||  

cmm_time2>(1.10*cmm_time)); 
  
 //minimum time between two consecutive exits 
 alarm min_time_difference = start(time1!=0 && time2!=0 && 

((time1-time2 > 0 && time1-time2 < 30000/SCALE )|| 
(time2-time1 >0 && time2-time1 < 30000/SCALE ))); 

 
 //visitation consistency 
 alarm CNC1_visitation_inconsistent=endPgm   

when (cnc1_will_used!=cnc1_has_used); 
 alarm CNC2_visitation_inconsistent=endPgm   

when (cnc2_will_used!=cnc2_has_used); 
 alarm CMM_visitation_inconsistent=endPgm   

when (cmm_will_used!=cmm_has_used); 
 
 //limited hardware capacity 
 alarm robot_capacity_exceeded  = start(robot_part_count>1); 
 alarm cnc1_capacity_exceeded   = start(cnc1_part_count>1); 
 alarm cnc2_capacity_exceeded   = start(cnc2_part_count>1); 
 alarm cmm_capacity_exceeded  = start(cmm_part_count>1); 
 alarm conveyor_capacity_exceeded  = start(conveyor_part_count>14); 
 alarm iobuffer_entry_capacity_exceeded = start(iobuffer_entry_part_cnt>1); 
 alarm cnc1_entry_capacity_exceeded      = start(cnc1_entry_part_cnt>1); 
 alarm cnc2_enrty_capacity_exceeded      = start(cnc2_entry_part_cnt>1); 
 
 //hardware is already empty 
 alarm robot_process_error = start(robot_part_count<0); 
 alarm cnc1_process_error = start(cnc1_part_count<0); 
 alarm cnc2_process_error = start(cnc2_part_count<0); 
 alarm cmm_process_error = start(cmm_part_count<0); 
 alarm conveyor_process_error = start(conveyor_part_count < 0); 
 alarm iobuffer_entry_already_empty = start(iobuffer_entry_part_cnt<0); 
 alarm cnc1_entry_already_empty = start(cnc1_entry_part_cnt<0); 
 alarm cnc2_entry_already_empty = start(cnc2_entry_part_cnt<0); 
 
 //conveyor rotation problem 
 alarm conveyor_rotate_problem = abnormal_rotate; 
 
 startPgm->{ 
  part_in_cnt=0; 
  part_in_cnt1=0; 
  part_in_cnt2=0; 
  part_in_cnt3=0; 
  part_in_type1_cnt=0; 
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  part_in_type2_cnt=0; 
  part_in_type3_cnt=0; 
  part_out_cnt=0; 
  part_out_cnt1=0; 
  part_out_cnt2=0; 
  part_out_cnt3=0; 
  part_count=0; 
  part_count1=0; 
  part_count2=0; 
  part_count3=0; 
  exit_part_cnt=0; 
  exit_part_cnt1=0; 
  exit_part_cnt2=0; 
  exit_part_cnt3=0; 
  robot_part_count=1; 
  robot_part_count1=1; 
  robot_part_count2=1; 
  robot_part_count3=1; 
  cnc1_part_count=0; 
  cnc1_part_count1=0; 
  cnc1_part_count2=0; 
  cnc1_part_count3=0; 
  cnc2_part_count=0; 
  cnc2_part_count1=0; 
  cnc2_part_count2=0; 
  cnc2_part_count3=0; 
  cmm_part_count=0; 
  cmm_part_count1=0; 
  cmm_part_count2=0; 
  cmm_part_count3=0; 
  conveyor_part_count=0; 
  iobuffer_entry_part_cnt=0; 
  cnc1_entry_part_cnt=0; 
  cnc2_entry_part_cnt=0; 
  conveyor_part_count1=0; 
  iobuffer_entry_part_cnt1=0; 
  cnc1_entry_part_cnt1=0; 
  cnc2_entry_part_cnt1=0; 
  conveyor_part_count2=0; 
  iobuffer_entry_part_cnt2=0; 
  cnc1_entry_part_cnt2=0; 
  cnc2_entry_part_cnt2=0; 
  conveyor_part_count3=0; 
  iobuffer_entry_part_cnt3=0; 
  cnc1_entry_part_cnt3=0; 
  cnc2_entry_part_cnt3=0; 
  exit_flag=1; 
  time1=0; 
  time2=0; 
  cnc1_time=0; 
  cnc1_time1=0; 
  cnc1_time2=0; 
  cnc2_time=0; 
  cnc2_time1=0; 
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  cnc2_time2=0; 
  cmm_time=0; 
  cmm_time1=0; 
  cmm_time2=0; 
  cnc1_will_used=0; 
  cnc2_will_used=0; 
  cmm_will_used=0; 
  cnc1_has_used=0; 
  cnc2_has_used=0; 
  cmm_has_used=0; 
  SCALE=100; 
 } 
  
 new_part->{ part_in_cnt=part_in_cnt+1; 
      part_count=part_count+1; } 
 
 new_part_type1->{ part_in_type1_cnt=part_in_type1_cnt + 1; 
     cnc1_time=cnc1_time+203000/SCALE; 
     cnc2_time=cnc2_time+109000/SCALE; 
     cmm_time=cmm_time+219000/SCALE; 
     cnc1_will_used=cnc1_will_used + 1; 
     cnc2_will_used=cnc2_will_used + 1; 
     cmm_will_used=cmm_will_used + 1;  
     part_in_cnt1=part_in_cnt1+1; 
     part_count1=part_count1+1; } 
 
 new_part_type2->{ part_in_type2_cnt=part_in_type2_cnt + 1; 
     cnc1_time=cnc1_time+103000/SCALE; 
     cmm_time=cmm_time+219000/SCALE; 
     cnc1_will_used=cnc1_will_used + 1; 
     cmm_will_used=cmm_will_used + 1;  
     part_in_cnt2=part_in_cnt2+1; 
     part_count2=part_count2+1; } 
 
 new_part_type3->{ part_in_type3_cnt=part_in_type3_cnt + 1; 
     cnc2_time=cnc2_time+131000/SCALE; 
     cmm_time=cmm_time+219000/SCALE; 
     cnc2_will_used=cnc2_will_used + 1; 
     cmm_will_used=cmm_will_used + 1;  
     part_in_cnt3=part_in_cnt3+1; 
     part_count3=part_count3+1; } 
 
 robotFull_event-> { robot_part_count=robot_part_count+1; } 
 robotEmpty_event->{ robot_part_count=robot_part_count-1;  
       robot_part_count1=0; 
       robot_part_count2=0; 
       robot_part_count3=0; } 
 robotFull_event1-> { robot_part_count1=robot_part_count1+1; } 
 robotFull_event2-> { robot_part_count2=robot_part_count2+1; } 
 robotFull_event3-> { robot_part_count3=robot_part_count3+1; } 
 cnc1Full-> { cnc1_part_count=cnc1_part_count+1; } 
 cnc1Empty->{ cnc1_part_count=cnc1_part_count-1; 
       cnc1_has_used=cnc1_has_used+1; 
       cnc1_part_count1=0; 
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       cnc1_part_count2=0; 
       cnc1_part_count3=0;} 
 cnc1Full1-> { cnc1_part_count1=cnc1_part_count1+1; } 
 cnc1Full2-> { cnc1_part_count2=cnc1_part_count2+1; } 
 cnc1Full3-> { cnc1_part_count3=cnc1_part_count3+1; } 
 
 cnc1Start->{ cnc1_time1=time(cnc1Start); }  
 cnc1Stop  -> { cnc1_time2=cnc1_time2+(time(cnc1Stop)-cnc1_time1); } 
 
 cnc2Full  -> { cnc2_part_count=cnc2_part_count+1; } 
 cnc2Empty -> { cnc2_part_count=cnc2_part_count-1; 
         cnc2_has_used=cnc2_has_used+1; 
         cnc2_part_count1=0; 
         cnc2_part_count2=0; 
         cnc2_part_count3=0;} 
 cnc2Full1  -> { cnc2_part_count1=cnc2_part_count1+1; } 
 cnc2Full2  -> { cnc2_part_count2=cnc2_part_count2+1; } 
 cnc2Full3  -> { cnc2_part_count3=cnc2_part_count3+1; } 
 
 cnc2Start->{ cnc2_time1=time(cnc2Start); }  
 cnc2Stop->{ cnc2_time2=cnc2_time2+(time(cnc2Stop)-cnc2_time1); } 
 
 cmmFull->  { cmm_part_count=cmm_part_count+1; } 
 cmmEmpty->  { cmm_part_count=cmm_part_count-1; 
        cmm_has_used=cmm_has_used+1; 
        cmm_part_count1=0; 
        cmm_part_count2=0; 
        cmm_part_count3=0;} 
 cmmFull1  ->  { cmm_part_count1=cmm_part_count1+1; } 
 cmmFull2  ->  { cmm_part_count2=cmm_part_count2+1; } 
 cmmFull3  ->  { cmm_part_count3=cmm_part_count3+1; } 
 
 cmmStart->{ cmm_time1=time(cmmStart); }  
 cmmStop->{ cmm_time2=cmm_time2+(time(cmmStop)-cmm_time1); } 
 
 from_conveyor->{ conveyor_part_count=conveyor_part_count-1; } 
 
 from_conveyor1->{ conveyor_part_count1=conveyor_part_count1-1; } 
 
 from_conveyor2->{ conveyor_part_count2=conveyor_part_count2-1; } 
  
 from_conveyor3->{ conveyor_part_count3=conveyor_part_count3-1; } 
 
 onto_conveyor->{ conveyor_part_count=conveyor_part_count+1; } 
 
 onto_conveyor1->{ conveyor_part_count1=conveyor_part_count1+1; } 
 onto_conveyor2->{ conveyor_part_count2=conveyor_part_count2+1; } 
 onto_conveyor3->{ conveyor_part_count3=conveyor_part_count3+1; } 
 
 exit_part ->{ part_out_cnt=part_out_cnt+1;  
         part_count=part_count-1;      
        exit_part_cnt=exit_part_cnt+1; } 
 
 exit_part1 ->{part_out_cnt1=part_out_cnt1+1;  
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          part_count1=part_count1-1;      
          exit_part_cnt1=exit_part_cnt1+1; } 
 
 exit_part2 ->{ part_out_cnt2=part_out_cnt2+1;  
           part_count2=part_count2-1;      
          exit_part_cnt2=exit_part_cnt2+1; } 
 
 exit_part3 ->{ part_out_cnt3=part_out_cnt3+1;  
           part_count3=part_count3-1;      
          exit_part_cnt3=exit_part_cnt3+1; } 
 
 exit_part_first ->{ time1=time(exit_part1);     
                exit_flag=2; }  
 
 exit_part_second ->{ time2=time(exit_part2);     
        exit_flag=1; }  
 
 IOBufferEntryFull_event ->{ iobuffer_entry_part_cnt=iobuffer_entry_part_cnt+1; } 
 IOBufferEntryEmpty_event->{ iobuffer_entry_part_cnt=iobuffer_entry_part_cnt-1; 
             iobuffer_entry_part_cnt1=0; 
            iobuffer_entry_part_cnt2=0; 
            iobuffer_entry_part_cnt3=0; } 
 cnc1EntryFull_event ->{ cnc1_entry_part_cnt=cnc1_entry_part_cnt+1; } 
 cnc1EntryEmpty_event->{ cnc1_entry_part_cnt=cnc1_entry_part_cnt-1; 
    cnc1_entry_part_cnt1=0; 
    cnc1_entry_part_cnt2=0; 
    cnc1_entry_part_cnt3=0;} 
 cnc2EntryFull_event ->{ cnc2_entry_part_cnt=cnc2_entry_part_cnt+1; } 
 cnc2EntryEmpty_event->{ cnc2_entry_part_cnt=cnc2_entry_part_cnt-1; 
    cnc2_entry_part_cnt1=0; 
    cnc2_entry_part_cnt2=0; 
    cnc2_entry_part_cnt3=0;}  
 
 IOBufferEntryFull_event1  ->{ 

 iobuffer_entry_part_cnt1=iobuffer_entry_part_cnt1+1; } 
 cnc1EntryFull_event1 ->{ cnc1_entry_part_cnt1=cnc1_entry_part_cnt1+1; } 
 cnc2EntryFull_event1 ->{ cnc2_entry_part_cnt1=cnc2_entry_part_cnt1+1; } 
 
 IOBufferEntryFull_event2  ->{ 
iobuffer_entry_part_cnt2=iobuffer_entry_part_cnt2+1; } 
 cnc1EntryFull_event2  ->{ cnc1_entry_part_cnt2=cnc1_entry_part_cnt2+1; } 
 cnc2EntryFull_event2  ->{ cnc2_entry_part_cnt2=cnc2_entry_part_cnt2+1; } 
 
 IOBufferEntryFull_event3  ->{ 
iobuffer_entry_part_cnt3=iobuffer_entry_part_cnt3+1; } 
 cnc1EntryFull_event3  ->{ cnc1_entry_part_cnt3=cnc1_entry_part_cnt3+1; } 
 cnc2EntryFull_event3  ->{ cnc2_entry_part_cnt3=cnc2_entry_part_cnt3+1; } 
 
End 


