

MONITORING AND CHECKING OF DISCRETE EVENT SIMULATIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

BUKET ULU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF COMPUTER ENGINEERING

AUGUST 2003

Approval of the Graduate School of Natural And Applied Sciences.

 Prof. Dr. Canan ÖZGEN

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master Science.

Prof. Dr. Ayşe KİPER

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master Science.

Assoc. Prof. Dr. Sinan KAYALIGİL Assist. Prof. Dr. Halit OĞUZTÜZÜN

 Co-Supervisor Supervisor

Examining Committee Members:

Prof. Dr. Kemal LEBLEBİCİOĞLU

Prof. Dr. Faruk POLAT

Assoc. Prof. Dr. Sinan KAYALIGİL

Assist. Prof. Dr. Ahmet COŞAR

Assist. Prof. Dr. Halit OĞUZTÜZÜN

 iii

ABSTRACT

MONITORING AND CHECKING OF DISCRETE EVENT SIMULATIONS

Ulu, Buket

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Halit Oğuztüzün

Co-Supervisor : Assoc. Prof. Dr. Sinan Kayalıgil

August 2003, 127pages

Discrete event simulation is a widely used technique for decision support. The

results of the simulation must be reliable for critical decision making problems.

Therefore, much research has concentrated on the verification and validation of

simulations. In this thesis, we apply a well-known dynamic verification

technique, assertion checking method, as a validation technique. Our aim is to

validate the particular runs of the simulation model, rather than the model itself.

As a case study, the operations of a manufacturing cell have been simulated. The

cell, which is METUCIM Laboratory at the Mechanical Engineering Department

of METU, has a robot and a conveyor to carry the materials, and two machines to

 iv

manufacture the items, and a quality control to measure the correctness of the

manufactured items.

This simulation is monitored and checked by using the Monitoring and Checking

(MaC) tool, a prototype developed at the University of Pennsylvania. The

separation of low-level implementation details (pertaining to the code) from the

high-level requirement specifications (pertaining to the simuland) helps keep

monitoring and checking the simulations at an abstract level.

Keywords : discrete event simulation, validation and verification, assertion

checking, run-time monitoring, instrumentation.

 v

ÖZ

KESİKLİ OLAYLARIN BENZETİMLERİ ÜZERİNDE İZLEME VE

KONTROL

Ulu, Buket

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Y. Doç. Dr. Halit Oğuztüzün

Ortak Tez Yöneticisi : Doç. Dr. Sinan Kayalıgil

Ağustos 2003, 127sayfa

Kesikli olayların benzetimleri, yaygın olarak kullanılan bir karar destekleme

tekniğidir. Kritik problemler için bu benzetimlerden elde edilen sonuçların

güvenilirliği önem taşır. Bu nedenle, sistem benzetimlerinin doğrulanması ve

geçerlenmesi üzerinde birçok araştırma yapılmaktadır. Bu tezde, çok iyi bilinen

bir dinamik doğrulama tekniği olan, önesürümlerin denetimi yöntemi,

benzetimlerin geçerliliğini kanıtlama yönünde uygulanmaktadır. Amacımız

modelin kendisinden ziyade o modelin koşturmalarını geçerlemektir.

 vi

Bir vaka çalışması olarak, Ortadoğu Teknik Üniversitesi Makine Mühendisliği

Bölümü Bilgisayar Tümleşik Üretim Laboratuvarı'nın bir benzetimi yapılmıştır.

Bu laboratuvarda biri robot olmak üzere iki tane taşıyıcı, parçaları işleyen iki

makine ve bir tane de kalite kontrol bileşeni bulunmaktadır.

Bu benzetimin izlenmesi ve kontrolü, Pensilvanya Üniversitesi’nde bu konuda

geliştirilmiş bir ön ürünle yapılmaktadır. Bu çalışmada düşük-seviye olarak

adlandırılan kod detayları, yüksek-seviye olarak adlandırılan sistem

gereksinimlerinden ayrılmıştır. Bu da izlenme ve kontrolün soyut bir seviyede

yapılmasını sağlamaktadır.

Anahtar Kelimeler : kesikli olayların benzetimleri, doğrulama ve geçerleme,

önesürüm denetimi, koşturma sırasında izleme,

enstrümantasyon.

 vii

DEDICATION

To My Family

 viii

ACKNOWLEDGEMENT

I would like to acknowledge the help of many people during my study.

My supervisor, Halit Oğuztüzün, for bestowing his knowledge and time,

providing resources, offering direction and insightful criticism, for numerous

useful discussions, and also for his friendly manner;

My co-supervisor, Sinan Kayalıgil, for suggesting METUCIM Lab as a case

study and all supports for this study;

Burak Sarı and Yusuf Başıbüyük, who are responsible for METUCIM Lab, for

describing the laboratory, providing resources and data;

Central Bank of the Republic of Turkey and my superiors for supporting this

academic study;

All my friends, for their valuable helps and smiling faces;

My brother, for always reminding me the future, and making my life colorful.

Finally, I am forever indebted to my parents for their understanding, endless love,

encouragement and patience during my academic life.

 ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ... v

DEDICATION ... vii

ACKNOWLEDGEMENT...viii

TABLE OF CONTENTS .. ix

CHAPTER

1 INTRODUCTION... 1

2 BACKGROUND... 4

2.1 Verification and Validation .. 4

2.1.1 Basic Concepts ... 4

2.1.2 Why is Validation Important? .. 5

2.1.3 Special Challenges of Validation ... 6

2.1.4 V&V Techniques.. 7

2.2 Assertion Checking .. 10

2.2.1 Assessment of Assertion Checking .. 10

2.3 Run-time Monitoring.. 11

2.4 Instrumentation... 12

2.5 Monitoring and Checking (MaC) Framework...................................... 12

2.5.1 MaC Architecture ... 12

2.5.1.1 Static Phase... 14

2.5.1.2 Run-time Phase... 15

2.5.2 MaC Languages.. 16

2.5.2.1 Primitive Event Definition Language (PEDL)......................... 18

2.5.2.2 Meta Event Definition Language (MEDL) 18

 x

2.5.2.3 Steering Action Definition Language (SADL) 19

2.5.3 Example.. 19

3 SIMULATION MODEL... 22

3.1 Application Domain: Manufacturing Cell.. 22

3.1.1 Manufacturing Cells ... 22

3.1.2 Computer Integrated Manufacturing (CIM)................................. 24

3.3 Process-Oriented Model of METUCIM Lab.. 24

3.3.1 METUCIM Lab.. 24

3.3.2 How does METUCIM work? ... 28

3.3.3 Simulation Model ... 30

3.3.3.1 Use Case, Class and Sequence Diagrams................................. 32

4 VALIDATION STUDY.. 45

4.1 Validation Requirements.. 45

4.1.1 Group 1: Preservation of Parts ... 45

4.1.2 Group 2: Request-Process Consistency.. 47

4.1.3 Group 3: Part Routes Consistency.. 48

4.1.4 Group 4: Limited hardware capacity.. 48

4.1.5 Group 5: Already empty hardware... 49

4.1.6 Group 6: Visitation Consistency .. 49

4.1.7 Group 7: Time Consistency.. 50

4.1.8 Group 8: Conveyor Rotation .. 50

4.1.9 Group 9: Robot sides.. 51

4.1.10 Group 10: Minimum time between two consecutive exits........... 51

4.2 MaC Scripts.. 52

4.2.1 Limitations and Problems with MaC Tool 52

4.2.2 Primitive Event Definition Script of the Simulation 56

4.2.3 Meta Event Definition Script of the Simulation........................... 58

4.3 Fault Injected Simulations.. 58

4.3.1 Scenario 1: Using IOBuffer entry instead of CNC1 entry 59

4.3.2 Scenario 2: Directly loading parts into CMM from CNC2.......... 59

4.3.3 Scenario 3: Parts are not measured... 60

 xi

4.3.4 Scenario 4: Loading second part into the machines 61

4.3.5 Scenario 5: Robot drops the parts... 62

4.3.6 Scenario 6: Wrong part routes.. 68

4.3.7 Scenario 7: Taking a part from an empty machine 70

4.3.8 Scenario 8: Taking a part from an empty cup 73

4.3.9 Scenario 9: Loading an already full cup....................................... 75

4.3.10 Scenario 10: Problem in conveyor rotation.................................. 77

4.3.11 Scenario 11: Robot at wrong side... 77

4.3.12 Scenario 12: Problem in the direction of conveyor rotation 78

4.3.13 Scenario 13: Not processing some parts....................................... 79

4.3.14 Scenario 14: Directly loading parts into CNC1 from IOBuffer ... 80

4.3.15 Scenario 15: Loading parts onto the wrong cups 81

4.3.16 Scenario 16: Changing CNC places ... 82

4.3.17 Scenario 17: Conveyor rotation by 1, 3 or 10 cups only.............. 82

4.3.18 Scenario 18: Stop working after 7 hours 83

4.3.19 Scenario 19: Processing the parts according to their IDs............. 84

4.3.20 Scenario 20: Rerotation of incorrectly manufactured parts.......... 84

4.3.21 Scenario 21: Robot can not take parts .. 85

4.3.22 Scenario 22: Not starting in a cold start situation 89

4.3.23 Scenario 23: Entering more than 14 parts 89

4.3.24 Scenario 24: Problem with two consecutive exit events 90

4.3.25 Scenario 25: New parts entered by the customer 91

4.3.26 Scenario 26: Conveyor does not rotate... 91

4.3.27 Scenario 27: Changing the type of a part 92

5 CONCLUSION AND DISCUSSION... 94

REFERENCES... 97

APPENDICES

A PEDL SCRIPT OF METUCIM LAB... 99

B MEDL SCRIPT OF METUCIM LAB ... 108

 1

CHAPTER 1

INTRODUCTION

Verification and validation (V&V) have a big role in the simulation world.

Verification means building the model right, and validation means building the

right model. There are lots of V&V techniques; these are categorized as

informal, static, dynamic and formal techniques.

 Validation includes verification as a concept, because if a model is validated

this means that it is already verified, but, on the contrary, if a model is verified,

this does not mean that it is the right model. Therefore, validation gains more

importance if the results of the simulations are used to support some decisions.

Validation makes the results of a simulation model more reliable.

Assertion checking is one of the dynamic verification techniques. It is used as a

verification method. In general, assertions are inserted into the code and in run-

time, they are checked to see if they are satisfied.

In this thesis, we use the assertion checking method, which is one of the

dynamic verification techniques, for validating the particular runs of a

simulation model according to a set of requirement specifications. In dynamic

techniques, simulation model behaviour is evaluated at run-time. For this

purpose, we have employed a framework, Monitoring and Checking (MaC)

 2

framework, which has been developed at the University of Pennsylvania, and

its prototype, Java-Mac release 0.99. This tool serves run-time monitoring of

the target programs and checks the program according to defined requirement

specifications.

Finally, to reach our aim, we had to simulate a system. We have chosen a real

world system, METUCIM Lab in the Mechanical Engineering Department of

METU, which is a single manufacturing cell supported by the computers.

While analyzing the system, the validation requirements have been specified,

and in the design phase, they have been changed from high-level to low-level.

Then, this simulation has been checked against the specified validation

requirements. For this purpose, different scenarios about METUCIM Lab have

been created as if there are misconceptions about the real world. These

scenarios have been run under the control of validation specifications, and from

these runs, the results have been reported in this thesis.

The remainder of this thesis is organized as follows: In Chapter 2, background

information is presented. Firstly, the concept of V&V, and their techniques are

discussed. Then, the assertion checking method, run-time monitoring and

instrumentation are described. Lastly, the architecture and the languages of

MaC are covered.

In Chapter 3, the simulation model is introduced. For this purpose, firstly, the

application domain, which is a manufacturing cell, is defined. Then,

METUCIM Lab in the real world and the information about its model in the

simulation world are described in detail.

In Chapter 4, the validation study about this simulation is written. The

validation requirements are given group by group, and the scenarios, which

 3

were created to capture these requirements, and the results are described. The

related source (PEDL and MEDL) files are presented in the appendices.

Chapter 5 is the conclusion and the discussion part of this thesis. In this

chapter, the results of the validation studies are evaluated and discussed.

Finally, some possible future work is suggested.

 4

CHAPTER 2

BACKGROUND

2.1 Verification and Validation

Verification and validation are the most important concepts in the simulation

world. They increase the reliability of the results of simulations and the critical

decisions can be taken based on these results.

2.1.1 Basic Concepts

“Simulation models are increasingly being used in problem solving and in

decision-making. The developers and users of these models, the decision-

makers using information derived from the results of the models, and people

affected by decisions based on such models are all rightly concerned with

whether a model and its results are “correct.” This concern is addressed

through model verification and validation.” [1]

“Model validation is substantiating that the model, within its domain of

applicability, behaves with satisfactory accuracy consistent with the modeling

and simulation (M&S) objectives. Model validation deals with building the

right model.” [2]

 5

“Model verification is substantiating that the model is transformed from one

form into another, as intended, with sufficient accuracy. Model verification

deals with building the model right. The accuracy of transforming a problem

formulation into a model specification or the accuracy of converting a model

representation from micro flowchart form into an executable computer

program is evaluated in model verification.” [2]

Validation contains verification as a concept, because a validated system

usually means that it is the right model, and built right. Therefore, such a

system can also be expected that it is a verified model. However, a verified

model cannot be said to be a right model, unless it captures all the specified

requirements, which is so difficult to achieve. Also, from the meaning of

verification, the priority is given to building the model right, verification deals

with error-free implementation. In conclusion, if a validation condition (for

example, the passengers must tie the safety belts before the airplane takes off)

fails, it cannot be understood that the error is in the code or in the model.

However, if the verification condition (for example, controlling the queue

length while inserting a new element) fails, it is clear that there is something

wrong with the code. [3]

2.1.2 Why is Validation Important?

The validation process increases the reliability of the model or the simulation

of that model by reducing the risks. In some projects, simulations are used as a

guide to the project development and management decision [6] . Therefore, in

such projects, validation plays a critical role. Some examples for such projects

are space searches and military works. Consequently, if a model is not

validated, the results obtained from the simulation of this model are not

reliable; but, if it is validated then it may be expected to behave like the real

system modeled, and the decisions affecting the real system can be made with

confidence based on the results of the simulation model [5] .

 6

2.1.3 Special Challenges of Validation

Validating models or simulations has several challenges. These can be stated as

below item by item [7]:

• Enough time and commitment must be obtained from the users to specify

the validation requirements sufficiently and accurately. These requirements

are stated often informally, incompletely and inconsistently.

• Different ideas about the represented requirements must be reconciled into

a single complete and consistent set of requirements.

• Sufficient and accurate information describing the functionality and the

performance of the modeled system must be obtained, especially if that

system exists only conceptually.

• Validating a conceptual model described entirely informally and perhaps

incompletely leaves a considerable number of parameters missing for

qualitative interpretation about the degree to which the model faithfully

represents the simulated system.

• Trying to balance project schedule and cost constraints against validation

may result in a model or simulation with less validity than desired.

• Justifying the investment required to support the extent of the validation

process is necessary to assure sufficient model or simulation credibility for

the user.

• There is no general method for detecting incompleteness or inconsistency

of requirement specifications.

 7

2.1.4 V&V Techniques

Over seventy-five V&V techniques and eighteen statistical techniques that can

be used for model validation are described in [6]. Most of these techniques are

derived from software engineering; the remaining are specific to the M&S

field. The V&V techniques can be separated into four categories: informal,

static, dynamic, and formal.

Informal:

These techniques heavily rely on human reasoning and subjectivity. However,

this does not mean that there is a lack of formal techniques. In fact, these

techniques must be employed under well-structured formal guidelines. If they

are used properly, their results can be very reliable.

Static:

These techniques do not require the execution of the programs, since in

general, mental execution is applied. For these techniques, the accuracy of the

model design and the source code becomes more important, because the aim is

to check the information about the structure of the model, modeling techniques

used, data and control flows within the model, and syntactical accuracy [4]. For

example, the simulation language compiler is itself a kind of static V&V tool.

Dynamic:

Dynamic V&V techniques require the model execution and evaluate the model

according to the execution behaviour. For evaluating the model while

executing, most of the dynamic techniques need the model to be instrumented,

which means insertion of additional codes (probes or stubs) into the executable

code of the model. By this way, such techniques collect necessary information

during the model execution.

 8

Formal:

These techniques require that the correctness of the model must be proven by

using the mathematical proof methods. The model development process must

be well defined and structured for successful application of these techniques.

Methods require the model development process to be well defined and

structured. These techniques rather than the simpler methods can be applied to

more complex problems. In fact, current formal proof correctness techniques

cannot even be applied to a reasonable complex simulation; however, formal

techniques can serve as the foundation for other V&V techniques.

 9

Verification and Validation

Informal
Audit
Desk Checking
Face Validation
Inspections
Reviews
Turing Test

Static
Cause-Effect Graphing
Control Analysis
Calling Structure
Concurrency Process
Control Flow
State Transition
Data Analysis
 Data Dependency
 Data Flow
Fault/Failure Analysis
Interface Analysis
 Model Interface
 User Interface
Semantic Analysis
Structural Analysis
Symbolic Evaluation
Syntax Analysis
Traceability
Assessment

Formal
Induction
Inference
Logical Deduction
Inductive Assertions
Lambda Calculus
Predicate Calculus
Predicate Transformation
Proof of Correctness

Dynamic
Acceptance Testing
Alpha Testing
Assertion Checking
Beta Testing
Bottom-Up Testing
Comparison Testing
Compliance Testing
 Authorization
 Performance
 Security
 Standards
Debugging
Execution Testing
 Monitoring
 Profiling
 Tracing
Fault/Failure Insertion Testing
Field Testing
Functional (Black-Box) Testing
Graphical Comparisons
Interface Testing
 Data
 Model
 User
Object-Flow Testing
Partition Testing
Product Testing
Regression Testing
Sensivity Analysis
Special Input Testing
 Boundary Value
 Equivalence Partitioning
Extreme Input
 Invalid Input
 Real-Time Input
 Self-Driven Input
 Stress
 Trace-Driven Input
Statistical Techniques
Structural (White-Box)
 Branch
 Condition
 Data Flow
 Loop
 Path
 Statement
Submodel/Module Testing
Symbolic Debugging
Top-Down Testing
Visualization/Animation

Figure 2.1 Taxonomy of Verification and Validation Techniques [6]

 10

2.2 Assertion Checking

An assertion is a statement that must hold when a simulation model execution

reaches that statement. It is a boolean expression decided to be true by the

programmer. An assertion either evaluates to “true” when it is satisfied by the

program state, to “false” otherwise [17].

Assertion checking is a dynamic verification technique in which assertions are

placed in various parts of the software code to monitor its execution. The

insertion of assertions into the user code, and the subsequent testing of such

assertions at run-time is one of the most powerful techniques of verifying the

software, although the additional codes make the runs slower. Even though, it

is a verification technique, in this thesis, it is used for validation.

2.2.1 Assessment of Assertion Checking

There are some advantages and disadvantages of the assertion checking

method; these are itemized below:

Advantages of Assertion Checking

1. It is a testing technique that will reveal defects early in the software

development process.

2. It quickly uncovers the misconceptions of the programmer

concerning the model being implemented.

3. Assertions can be monitored at run-time, making it a powerful

debugging tool.

4. Adding assertions to the program may find faults where black-box

test cases are ineffective.

 11

5. Assertions can also be used to document and implement

specifications, thereby facilitating the software development.

Disadvantages of Assertion Checking

1. There is a run-time cost associated with checking assertions. One

way of getting a round this is by making it possible to selectively

disable assertion checking. This can be achieved by using

conditional compiler directives.

2. Leaving assertion checking in the code increases the size of object

files. Despite this however, it is recommended that assertion

checking remains enabled during development.

2.3 Run-time Monitoring

Run-time monitoring means evaluating code while it runs or scrutinizing the

artifacts (event logs, etc) of running code. In this thesis, the first description is

valid, the simulation runs are monitored, not the logs. It looks like debugging,

but for this work, the meaning extracted from the values of the objects becomes

valuable. For example, suppose that in a program execution, the value of the

variable x is increased by 1 and the initial value of x is 0. If x is 0 or 1, this has

the meaning of “x is less than 2”. If x is 2, this means that “x is equal to 2”. If x

is 3 or 4, the meaning is that “x is greater than 2”. Therefore, the aim of the

monitoring is to reach meaningful information, which is the validation

assertions of the software, for this work.

Benefits

• Requires a relatively small incremental effort over traditional testing.

• Combines the ease of testing with the power of formal methods.

• Can locate error potential for problems that test engineers may not

envision.

 12

Challenges

• Logic-based monitoring can add overhead to the normal execution of

programs.

• While detecting difficult to find errors, error pattern runtime analysis

can also detect problems that do not exist (false positives).

The inherent limitation of the run-time monitoring is that it observes the

current program execution, but cannot observe all possible runs. Therefore, we

cannot directly address the issue of model validation. As indicated above, only

the particular runs are checked because of this limitation.

2.4 Instrumentation

Program instrumentation means inserting additional code to an existing

program and in such a way that collecting necessary information is possible

while the program runs. These additional codes are inserted at the points of the

statements, which are critical for monitoring. Finally, these instrumented code

runs and monitoring is done by the help of those inserted codes.

“An important characteristic is the abstraction level at which the program

instrumentation is done. This abstraction level can be the hardware level, the

library level, the source code level or the machine instruction level. It turns out

that the only true viable instrumentation method is dynamic instrumentation:

instrumentation code is added to the executable while it is running [9]. This

way, also the dynamic linked libraries can be instrumented”. [8]

2.5 Monitoring and Checking (MaC) Framework

2.5.1 MaC Architecture

The Monitoring and Checking (MaC) architecture has been developed at the

University of Pennsylvania, with the aim of guaranteeing the correctness of a

run of the target program according to a formal requirement specification [10].

 13

This is a general architecture, independent from any programming language.

However, to demonstrate the effectiveness of this architecture, a prototype has

been implemented for Java programs, which is called Java-MaC. This

prototype has a feature of automatic instrumentation of Java byte-codes. Also,

other run-time components to monitor and check the run of an instrumented

program are generated automatically for easy deployment of Java-MaC.

The structure of the MaC architecture is illustrated in Figure 2.2. The

architecture has two main phases: static and run-time phase. In the static phase,

the run-time components, namely a filter, an event recognizer and a run-time

checker, are automatically generated from a target program and formal

requirement specifications. In the run-time phase, necessary information is

collected from the running program and checked against the given formal

requirement specification [11].

 14

Static Phase

Program

Human

Informal
Requirement
Specification

Automatic
Instrumentation

Input

Low-level
Specification

High-level
Specification

Automatic
Translation

Automatic
Translation

Filter

Program

Event
Recognizer

Run-time
Checker

Run-time Phase

Figure 2.2 Overview of the MaC Architecture [11]

2.5.1.1 Static Phase

In this phase, there is a mapping between high-level events used in the high-

level requirement specification and low-level state information extracted from

the instrumented target program during execution. These are related explicitly

by means of a low-level specification, which describes how events at the high-

level requirement are defined in terms of monitored states of a target program.

For example, in a simple manufacturing cell, the requirements may be

expressed in terms of the condition system_capacity_exceeded. The target

program, on the other hand, stores the count of items in the system in an

 15

item_count. The low-level specification in this case defines the event

system_capacity_exceeded as item_count > 14.

To achieve the monitoring and checking, two components are created in this

phase. One of them is a filter and used for monitoring. It is generated from the

low-level specification. The second one is the event checker and used for

checking the specified requirements. It is generated from the high-level

specification. Both of these are created automatically. How they work is

described in the run-time phase below.

2.5.1.2 Run-time Phase

During the run-time phase, the instrumented code is executed and meanwhile it

is monitored and checked with respect to the requirement specification. The

filter sends relevant state information to the event recognizer and by using this

information event recognizer determines the occurrence of events. These

events are then relayed to the run-time checker to check whether there is a

violation of requirements or not.

Filter

The target program is instrumented directly by inserting additional codes on its

executable code (in Java, byte-code) according to the low-level description in

the monitoring script. The set of such program fragments inserted into the

target code are called a filter. A filter keeps track of changes of monitored

objects and sends related state information to the event recognizer.

Event Recognizer

The event recognizer receives the values of monitored objects from the filter

and according to these values, it detects that there is an event occurred or not. It

changes low-level information into high-level information. Events, which

wanted to be recognized, are written into the monitoring script by using

 16

Primitive Event Definition Language (PEDL) and these are relayed to the run-

time checker. The event recognizer is the part of the monitoring and also it can

be combined with the filter. The reason behind thinking them separately is to

provide flexibility in an implementation of the architecture.

Run-time Checker

The run-time checker receives the necessary information from the event

recognizer and by evaluating this, it decides whether or not the current

execution history satisfies the given requirements written by using Meta Event

Definition Language (MEDL). Also, the run-time checker does not only give

warning; if there is a violation which is not dangerous, it may perform some

recovery operations; which are written in a script by using Steering Action

Definition Language (SADL).

2.5.2 MaC Languages

Before giving the description of the languages, we should discuss about events

and conditions. Events are either present or not at an instant of time, they

depend on the state changes. On the other hand, the conditions are true or false

for a finite time duration. They also depend on the state changes, but between

two state changes they are present. For example, machine_full_event event

occurs whenever the monitored machine_full variable value becomes true,

(machine_full==true); machine_full_condition holds true, while this variable value

remains true, or until it leaves the state of being true. For the last sentence

starting with “until”, it can also be said that “until it becomes false”; however,

this is not correct, because while the program reaches such a state that this

variable is out of that scope, then it becomes undefined. Therefore, in Java-

MaC this is handled by evaluating the logical expressions over 3 values: true,

false and undefined (Λ).[12]

 17

If we assume a countable set C = {c1, c2, …} of primitive conditions and a

countable set of Є = {e1, e2, …} of primitive events, the syntax of conditions

and events is specified as below:

<C> ::= c | defined(<C>) | [<E>,<E>) | !<C> | <C> && <C> | <C> || <C> | <C> => <C>

<E> ::= e | start(<C>) | end(<C>) | <E> && <E> | <E> || <E> | <E> when <C>

• As indicated above, because the condition can have an undefined value, to

handle this, defined(c) is used, that is true whenever the condition c has a

well-defined value (true or false).

• By using two events, an interval of time can be defined, so a condition

[e1,e2) is true from the event e1 until the event e2.

• start(c) is an event definition, which depends on an instant of time when the

condition c starts to be true.

• end(c) is an event definition, which means that at that instant of time the

condition c starts to be false. Also, an event, which depends on the instant

of the condition whose value is Λ, is defined as end(defined(c)).

• (e when c) is an event that present if the event e occurs when the condition c

is true.

Also, Java-MaC has time attribute for events. time(e) is the time when the event

e occurs, according to the clock of the monitored system(this can be different

from the clock of the monitor).

 18

The reason why the languages in the MaC framework are called “event

definition languages” is that when any condition becomes true, false or Λ, this

can be identified as an event.

2.5.2.1 Primitive Event Definition Language (PEDL)

PEDL is the language for writing the monitoring scripts, which have low-level

requirement specifications, so the implementation-specific details of the target

program are used. The attributes and the methods, which need to be monitored,

are written and, by using these, the events and conditions are defined. The

name of this language indicates that the main purpose of PEDL specifications

is to define primitive events of the requirement specifications. From these

primitive events, more complex events can be defined. The design of PEDL

has two principles:

1. Encapsulating all implementation-specific details of the monitoring

process in PEDL specifications.

2. Extract only the current state of the target program execution to make

the process of event recognizer as simple as possible.

2.5.2.2 Meta Event Definition Language (MEDL)

With this script, which is written in MEDL, the correctness of the execution

system is checked by using the safety requirements, which must hold true, and

the alarms, which must not raise during the execution. MEDL is also based on

events and conditions. Primitive events and conditions defined in PEDL are

imported, so the language has the name of ”meta event definition”. By using

these imported events and conditions new events and conditions are defined.

Also, in this script, auxiliary variables can be defined, and their values can be

updated, and this is bound to the occurrence of events. In the new conditions

 19

and the events, these variables can be used, also. The high-level requirements

of the system are defined by using safety properties and alarms.

2.5.2.3 Steering Action Definition Language (SADL)

When steering is wanted to be used, a steering script is written in SADL,

besides the monitoring script. Steering actions and conditions are described in

this script. If requirement violations detected by the event checker occur, then

steering actions are invoked in response to these violations. Additional

instrumentation date is generated by the steering script and also a special run-

time component is created by this script which called injector that accepts

action invocations from the monitor and triggers their execution within the

system.

2.5.3 Example

In this section, an example (inspired by our application) to illustrate the use of

PEDL and MEDL is given. This example is about a robot, a machine and lots

of parts in a buffer some of which must be processed by this machine, some of

which must not. If the current part will not be manufactured by the machine,

robot passes to the next part until finds such a part for the machine. After

finding, it puts the part into the machine, machine works, and after machine

finishes to manufacture the part, robot takes the part and puts another buffer,

and then this process starts from the beginning. The requirement of the system

is that while the machine is full, the robot cannot try to put a new part into it. It

is assumed that, there are two classes in the system, Robot and Machine. Both

has an attribute full, which means that if full is true, then it is full. The robot has

request_type attribute, because all the parts do not request the same thing, only

some them request to be manufactured in the machine.
class Robot{

boolean full;

int request_type;

….

 20

public void main(String[] args){

…..

}

}

class Machine{

boolean full;

….

}

The below is PEDL script. Three attributes and one method, which is the main

method, are monitored. By using the values of the attributes, three conditions

are defined and two of them are exported to the MEDL script. The start of the

main method is also monitored to recognize the beginning of the execution. The

following PEDL script introduces three high-level events, and three high level

conditions.
MonScr Example

 export condition machineFull_cond, robotEmpty_cond;

 export event startPgm, start_put_machine, machineEmpty_event;

 //Monitored Variable Declaration:

 monobj boolean Machine.full;

 monobj boolean Robot.full;

 monobj int Robot.request_type;

 //Monitored Method Declaration:

 monmeth void Robot.main(String[]);

 //Condition Definitions:

 condition machineFull_cond = (Machine.full == true);

 condition robotEmpty_cond = (Robot.full == false);

 conditon req_put_machine= (Robot.request_type ==2);

 //Event Definitions:

 event startPgm = start(Robot.main(String[]));

 21

 event start_put_machine = start(req_put_machine) &&

 end(robotEmpty_cond);

 event machineEmpty_event = end(machineFull_cond);

End

The requirement specification for this example is indicated above, a part can be

put into the machine while it is empty. Also, how many parts are processed by

the machine can be calculated by using an auxiliary variable to keep the this

count. When the execution starts it is given an initial value, 0, and every time

the machine becomes full, it is incremented by 1. The condition putting is

defined as from robot starts to put a part until it becomes empty (means that it

has put the part). The MEDL script is below:

ReqSpec Example

 import condition machineFull_cond, robotEmpty_cond;

 import event startPgm, start_put_machine, machineEmpty_event;

 //Auxiliary Variables:

 var int machine_part_count;

 //Condition Definitions:

 condition putting = [start_put_machine, robotEmpty);

 //Event Definitions:

 event robotEmpty = start(robotEmpty_cond);

 event machineFull_event = start(machineFull_cond);

 //Safety Property Definitions:

 property safeExample = putting -> !machineFull_cond ;

 //Guards:

 startPgm -> { machine_part_count=0; }

 machineFull_event -> { machine_part_count=machine_part_count +1; }

End

 22

CHAPTER 3

SIMULATION MODEL

In this thesis, the operation of METUCIM Lab in the Mechanical Engineering

Department of METU is simulated. METUCIM Lab is a single manufacturing

cell. Therefore, in this chapter, the basic definitions about manufacturing cell

are given, firstly. Afterwards, its real world model, and the simulation model

are described in detail.

3.1 Application Domain: Manufacturing Cell

3.1.1 Manufacturing Cells

A manufacturing cell is a series of automatic machine tools or items of

fabrication equipment linked together with an automatic material handling

system. Their shop floor layout is usually classified as below [16]:

Function: According to the functionality, similar machines are grouped

together, to perform one specific machining or inspection task. These

functional groups are then located relative to each other to minimize

interdepartmental material handling.

 23

Line: If there is a strict order or sequence required, a line or flow arrangement

of machines can be applied, which is also called as transfer line. In this layout,

machines are located next to each other in the order of their usage.

Cell: The cell layout is a combination of both the function and line layouts to

use the efficiencies of both by decreasing into a single multifunctional unit.

Sometimes it is called as a Group Technology Cell, each individual cell or

department has different machines such that no machines may similar to any in

located in the other cell or department.

Figure 3.1 Shop floor arranged in functional (1), cellular (2), line (3) layouts
[13]

SHOP FLOOR

Cell1

Mil1 Grd1

Lth1

Storage1

Cell2

Mil2 Grd2

Lth2

Storage2

intercell
AGV or
transfer

line

2

SHOP FLOOR

Mil1 Lth1Roller Grd1Conveyor |||||||||||||

Workpiece Flow

Mil1 Lth1Roller Grd1Conveyor |||||||||||||

Inspection & Storage

3

SHOP FLOOR

Milling
Department

Mil1 Mil2

Grinding
Department

Grd1 Grd2
intercell AGV
or transfer line

Turning
Department

Lth1 Lth2

intercell AGV or
transfer line intercell AGV or

transfer lin
e

1

 24

Each layout brings certain advantages and disadvantages, and the optimum

solution highly depends on the application. In any arrangement, a flexible

manufacturing cell (FMC) is the latest application of computer control to

automate manufacturing to achieve higher productivity and flexibility from the

manufacturing equipment [15].

3.1.2 Computer Integrated Manufacturing (CIM)

Computer Integrated Manufacturing is total or near total integration of all

computer systems in a manufacturing facility for free exchange of information

and sharing of databases. This integration may extend beyond the confines of

one factory into multiple manufacturing facilities and into the facilities of

customers and vendors. CIM is an approach to the organization and

management of a firm, in which all functions including order processing,

design, manufacturing and production management, accounting, finance and

computerized equipment on the shop floor are completely coordinated, through

the use of computers and information/communication technologies. The idea is

to form one large computer integrated system that connects all activities, and

by doing this, common information is shared on a real-time basis for decision-

making and control [16].

3.3 Process-Oriented Model of METUCIM Lab

3.3.1 METUCIM Lab

METUCIM basically consists of a single manufacturing cell and is classified as

a “Flexible Manufacturing Cell”.

The main material handling system is the closed loop buffer, which is called

conveyor and the 6-axis robot. Also, there is a static input/output buffer for

loading and unloading parts to the system. The robot can move between the

Computerized Numerical Control (CNC) Turning and CNC Milling Machine

over the Pneumatic Linear Robot Drive (PLRD). Coordinate Measuring

 25

Machine (CMM) controls the quality of the manufactured items in the cell. The

main job of the system is processing the small parts to give them a wanted

shape. For example, chessmen can be made from brass. A general view of the

system is in Figure 3.2.

Figure 3.2 A general view of METUCIM Lab [14]

 26

Functionality, properties and capabilities of the manufacturing, transport and

quality control hardware can be summarized as [14]:

1. CNC Turning Machine: Mirac/Denford/UK. PC based, medium duty

lathe having 2 simultaneously controlled axes. Equipped with a turret

having 8 stations. Door and chuck are pneumatically powered. Can handle

typically bars up to 50 mm in diameter and 150 mm in length, speeds up to

2500 rpm. Has a user-friendly built-in interface to visualize and debug part

programs. The control is via standard RS 232 serial communication port

and I/O card at a single sensor channel. Channel state OFF indicates that

there is no part program running, or the task is finished. Channel state is

ON when there is an active program running. “M62” and “M64” codes

make the channel ON and OFF respectively.

2. CNC Milling Machine: Triac/Denford/UK. PC based, medium duty

milling machine having 3 simultaneously controlled axes. Equipped with

an automatic tool magazine with 6 stations. Door, chuck and tool magazine

are pneumatically powered. Can handle parts up to 200 mm in width and

500 mm in length, speeds up to 2500 rpm. Has a user-friendly built-in

interface to visualize and debug part programs. The control is via standard

RS 232 serial communication port and I/O card at a single sensor channel.

Channel state OFF indicates that there is no part program running, or the

task is finished. Channel state is ON when there is an active program

running. “M62” and “M64” codes make the channel ON and OFF

respectively.

3. Coordinate Measuring Machine (CMM): Kemco/UK. 3 Axis CMM with

a table of 600x400 mm wide. Capable of measuring up to 1µm resolution

and accuracy. The control is accomplished using its own feature based

control software running at its host computer. Coupled to the client via the

 27

standard RS 232 serial communication port. The client is the part of the

agent-based system through Ethernet communication.

4. Closed Loop Buffer: SKF/UK. Unidirectional, constant speed, closed loop

buffer having 14 cups. Typically, it can handle cylindrical parts up to 50

mm in diameter. Makes a full rotation in 1.5 minutes approximately.

Driven by a motor with gearbox. The control is via 48 channel I/O card.

Has one operate channel and one counter channel. When the operate

channel is ON, it starts to rotate and stops when the channel is OFF, the

counter channel is used to count the cups passed.

5. Robot: Movemaster EX/Mitsubishi/Japan. 6 axis controlled material

handling robot. Capable of handling bars of 50 mm in diameter, weight of 3

kg approximately. The control is by storing positions taught by the user in

its EPROM and they can be executed by external triggering of program

commands through RS232 connection from the computer. A DSR (data set

ready) signal from the serial port indicates that there is no active program

running or the task is finished.

6. Pneumatic Linear Robot Drive (PLRD): FESTO/Germany.

Pneumatically powered linear drive for the robot. Has a movement range of

2m. Has two stop positions at both ends only. In METUCIM configuration

it is used to move the robot from CNC Turning to CNC Milling/CMM

neighborhood. The control is via 48 channel I/O card. Has two operate- and

two sensor channels. When the first operate channel is triggered and

immediately released it moves to right and vice versa for the second.

Sensor channels on the left- and right positions indicate ON when the robot

is at left and right ends of its range respectively.

 28

7. Static Buffer (AGV): Buffer used for in and out loading to the cell. Has 3

input stations, which can handle bars of 70-90-100 mm, and 3 output

buffers, Accept, Reject and Rework respectively. Is not physically

connected or driven by a computer, but as the agent, status information is

kept. Although it has no computer control and moving capabilities, it is

modeled as an AGV in the system.

METUCIM Laboratory is a computer supported manufacturing cell. In fact,

computers are the essential parts of METUCIM. Also, since it is a flexible

manufacturing cell, the hardware architecture should support long-term

flexibility also for future modifications. Therefore, while describing how this

cell works, the software part is ignored; only the work viewed by an outside

observer is described.

3.3.2 How does METUCIM work?

There is an input-output buffer (AGV) in the cell. The parts enter into the cell

from input buffer and exit the cell from output buffer. There is no outside

intervention of the operation of the cell; the cell interacts with the outside

world only through input-output buffer (iobuffer). The carriers are robot and

the closed loop buffer, conveyor. There are 14 cups on the conveyor, and each

cup can hold only one part at the same time. The conveyor has three fix

positions for the robot: iobuffer matching position, CNC1 matching position

and CNC2 matching position. While loading/unloading processes, the

conveyor must fix its cups to those specific positions. When the robot loads

one of the three cups, they must be free. Also, when the robot unloads these

cups, they must be full. The other details are told later under this subtitle.

How does METUCIM manufacture a part, which is processed by CNC1 and

CNC2? Here is the dynamic view of METUCIM Lab: When the cell starts to

work, there must be no part on it; all machines and carriers must be idle. The

 29

part, which will be manufactured, must be in the input buffer. The robot takes

the part from the input buffer, and puts it onto the cup, which is at the iobuffer

entry position. After loading this part, the robot gets its waiting position. The

robot does this after every load/unload operation. The conveyor rotates by one

cup for indexing the part to the CNC1 entry position. The robot loads/unloads

CNC1 only from this entry. The capacity of the CNC1 is limited by one part.

Therefore, when robot tries to load CNC1, it must be free. After the robot puts

the part into it, it gets its waiting position and CNC1 starts to process the part.

When CNC1 finishes its job, the robot takes the part from it and puts onto the

cup at the CNC1 entry position of the conveyor. Then, the conveyor rotates by

3 cups to fix the part to the CNC2 entry position, because CNC2 and CMM are

loaded/unloaded by using this entry position. The robot takes its position on the

right side of the cell and puts the part into the CNC2. After CNC2 finishes

processing the part, the robot takes it from CNC2 and puts onto the cup at the

CNC2 entry position again. Then, to put the part into the CMM machine, it

takes the part from this position. Also, CNC2 and CMM must be free, when the

robot tries to load them; because their capacities are limited by one part, too.

After measured by CMM, the part is taken and reloaded on the cup at CNC2

entry position. Then, the conveyor rotates by 10 cups to fix the part to the

iobuffer entry position. The robot comes on the left side of the cell and puts the

part onto the output buffer. This means that the part exits the cell.

The important points from the above paragraph are:

• First of all, the cell does not perform any useless operation: Any action

of a component contributes the fulfillment of some request.

• Robot loads/unloads the buffers and the machines always from the

conveyor. It is not possible to directly carry a part from one machine or

buffer to the other.

 30

• The conveyor has three machine matching positions. The robot uses

iobuffer entry position for unloading input buffer and loading output

buffer. It uses CNC1 entry position for loading/unloading CNC1, and

CNC2 entry position for loading/unloading CNC2 and CMM.

• The capacity of the conveyor is 14, however for CNC1, CNC2 and

CMM, it is one. These machines can process only one part at the same

time. Also, the robot can carry only one part. The input and output

buffers are assumed to have infinite capacities.

• In a carrying operation of the robot, the source must be full, and the

target must be empty.

3.3.3 Simulation Model

The simulation model of METUCIM Lab has been built according to the

outside observation as discussed above with some assumptions. The actual cell

performs sequential processing, i.e. after one part is manufactured in the cell,

the other enters. In the simulated cell, multiple parts can be processed in

parallel. However, it capacity is limited; at the same time, there can be at most

14 parts in the cell; it does not accept the fifteenth one until any part leaves the

cell.

The robot is the moving component of the cell, so the requests coming from the

other components are evaluated only by the robot. The requests can be one of

the below ones:

a. IOBUFFER : take part from IOBUFFER and load it onto conveyor

b. CNC1 : take part from CNC1 and load it onto conveyor

c. CONVEYOR_IOBUFFER : take part from conveyor and load it

onto output buffer

 31

d. CONVEYOR_CNC1 : take part from conveyor and load it into

CNC1

e. CONVEYOR_CNC2 : take part from conveyor and load it into

CNC2

f. CONVEYOR_CMM : take part from conveyor and load it into

CMM

g. CNC2 : take part from CNC2 and load onto conveyor

h. CMM : take part from CMM and load onto conveyor

Three part types are defined since there are two CNC machines in this cell:

a. type 1 : This part type is processed first by CNC1 and then CNC2.

b. type 2 : This part type is processed by only CNC1.

c. type 3 : This part type is processed by only CNC2.

All parts are measured by CMM before leaving the system and all of them

leave the system whether they are manufactured correctly or not. Although

there are three output buffers according to the result of the CMM, Accept,

Reject and Rework buffers, it is assumed that they are combined into one. Parts

are processed according to their types. Parts of the same type are considered

identical. The system processed the first nearest part on the conveyor.

Therefore, there is a possibility that the first entering part of the run can be

rotate over the conveyor by many without processed until the run ends and it

can be the last part leaving the system. Also, for the runs with multiple parts,

the movement of the conveyor is such that if the robot wants to put a part onto

the conveyor and that specific cup is full, conveyor rotates to index the first

free cup to that entry. If the requested part type is not on that specific cup, then

the conveyor rotates to fix the nearest cup with a part of requested type to that

index. Finally, the cell starts to run with no parts, and it runs for 7 hours

without any failure (particularly, no component breaks down), and after that

 32

duration, it stops accepting new parts; it only tries to manufacture the

remaining parts. After all parts exit, then it stops in an idle state.

3.3.3.1 Use Case, Class and Sequence Diagrams

This model was implemented by using Java, because of the MaC’s tool. In this

simulation model, multithreading system has been used. There are nine classes

four of which, namely Customer, IOBuffer, Robot and Cnn_Cmm classes,

extend the thread class. The classes of the model are described in detailed

below:

1. Request : It has been created to define the attributes of a request.

2. RequesterQueue : All requests made while the system runs is kept in this

queue as a ‘first in first out’ manner. Only the robot is allowed to perform a

dequeue operation on this queue.

3. METUCIM : This class starts a simulation run.

4. Customer : This class puts new parts onto the input buffer at certain time

instants, and signals this buffer of the system.

5. IOBuffer : The raw parts and the manufactured parts are put into this

buffer. It uses the special entry of the conveyor: IOBuffer entry.

6. Robot : This class is the core of the system. Robot evaluates the requests.

If it cannot fulfill this request then it reinserts the request into the queue,

else it signals the machine in which the part will be processed. For

example, if the current request is CONVEYOR_CNC1, but CNC1 is full,

then the robot reinserts this request into the queue. Each time this request is

evaluated by the robot, it is reinserted until CNC1 becomes empty.

 33

7. Conveyor : According to the requests evaluated by the robot, it rotates by

certain cups to fix a free cup or the first part, which matches the request.

8. Cnc_Cmm : The behavior of CNC1, CNC2 and CMM is all same.

Therefore, this is the general class of the machines processing the parts. To

represent these three machines, this class used as a parent class and three

new classes inherit this one. However, they can be ignored while counting

the number of classes for the model. The main working concept behind

these classes is that they all wait for the signal, which will be coming from

the robot. There are two specific conveyor entries for transferring parts

between these and the conveyor. CNC2 and CMM machines use the same

entry.

9. Signal : Because there are thread classes, this class controls and arranges

the all system signals.

The use case diagram of the model is in Figure 3.3 and the class diagram is in

Figure 3.4. In the class diagram, CNC1, CNC2 and CMM are seen as different

classes, which inherit the Cnc_Cmm class. In fact, because of the MaC’s

limitations, the Cnc_Cmm class has been erased, and three exact copies of

classes whose names are Cnc1, Cnc2 and Cmm have been created. However, the

diagrams for the simulation are created before starting to use MaC.

The sequence diagrams of each part type are in figures 3.5 through 3.7.

 34

Figure 3.3 Use Case Diagram for METUCIM Lab Simulation Model

CNC1

Customer

Load new
parts

Unload
parts

Load
manufactured

parts

Load/Unload
parts

Input

Output Robot

CMM

Conveyor

Request
part or
free cup

CNC2

 35

Figure 3.4 Class Diagram for METUCIM Lab Simulation Model

1
14

1

0..200 1

1

1

1

1

1

1

1

1

 1

1

 1 1

 1

1

1

1

1

1

1

1

1

Robot

x_request_type
x_part_type
x_from
val_full
after_turn

enqueue_request()
find_part()
from_conveyor_to_m()
find_free_cup()
from_m_to_conveyor()

Signal

value

send()
receive()

RequesterQueue

reqQueue

dequeue()
enqueue()

METUCIM

val_count_enter_parts
val_count_exit_parts
simulation_end
end_threads

IOBuffer

iobufferQueue
first_element
next

dequeue()
enqueue()
getNext() Customer

part
aWhile

Conveyor

IOBUFFER_entry
CNC1_entry
CNC2_entry
val_full

findEntry()
turn()
assign_wait_for()
signalConveyor()

Cnc1

machine_type

Cnc2

machine_type

Cmm

machine_type

Cnc_Cmm

part_type
part_id
val_full

Request

part_type
request_type
part_id

Cup_Entry

id
part_type
wait_for
val_full
from

 36

a new part

load part

Customer IOBuffer CNC1 CNC2 CMM

enqueue : unload

dequeue

load

end of rotate

take part

rotate
by one

load part into CNC1

enqueue : unload part from

enqueue : take part

and load intoCNC1

dequeue

unload part from CNC1

RequesterQueueRobot

take part

Conveyor

dequeue

Figure 3.5 Sequence Diagram of Part Type 1

 37

CNC2 CMM

enqueue : take part

and load intoCNC2

dequeue

rotate by
three cups

end of rotate

take part

load part into CNC2

enqueue : unload part from CNC2

dequeue

load part

enqueue : take part

and load into CMM

dequeue

unload part from CNC2

Customer IOBuffer CNC1RequesterQueueRobot Conveyor

Figure 3.5 Sequence Diagram of Part Type 1 (continued)

 38

dequeue

rotate by
ten cups

end of rotate

take part

load part into CMM

enqueue : unload part from CMM

dequeue

load part

enqueue : take part and
load into IOBuffer

unload part from CMM

take part

load part into the Output Buffer

CMM Customer IOBuffer CNC1 CNC2 RequesterQueue Robot Conveyor

Figure 3.5 Sequence Diagram of Part Type 1 (continued)

 39

a new part

load part

enqueue : unload part

dequeue

load

dequeue

end of rotate

take part

rotate by
one cup

load part into CNC1

enqueue : unload part from CNC1

enqueue : take part
and load into CNC1

dequeue

unload part from CNC1

take part

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor

Figure 3.6 Sequence Diagram of Part Type 2

 40

enqueue : take part and
load into IOBuffer

enqueue : take part and
load into CMM

dequeue

rotate by
three cups

end of
rotate

take part

dequeue

load part

dequeue

unload part from CMM

load part into CMM

enqueue : unload part from CMM

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor

Figure 3.6 Sequence Diagram of Part Type 2 (continued)

 41

rotate by

thirteen cups

end of
rotate

take part

load part into Output Buffer

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor

Figure 3.6 Sequence Diagram of Part Type 2 (continued)

 42

a new part

load part

enqueue : unload part

dequeue

load part

dequeue

end of rotate

take part

rotate by four
cups

load part into CNC2

enqueue: unload part from CNC2

enqueue : take part
and load into CNC2

dequeue

unload part from CNC2

take part

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor

Figure 3.7 Sequence Diagram of Part Type 3

 43

enqueue : take part
and load into CMM

dequeue

rotate by
three cups

end of
rotate

take part

dequeue

load part

dequeue

unload part from CMM

load part into CMM

enqueue : unload part from CMM

enqueue : take part and
load into IOBuffer

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor

Figure 3.7 Sequence Diagram of Part Type 3 (continued)

 44

rotate by ten
cups

end of
rotate

take part

load part into Output Buffer

Customer IOBuffer CNC1 CNC2 CMM RequesterQueueRobot Conveyor

Figure 3.7 Sequence Diagram of Part Type 3 (continued)

 45

CHAPTER 4

VALIDATION STUDY

According to the MaC architecture, requirement specifications have been

produced as a result of analyzing the structure and operations of the cell at

METUCIM Lab. Our aim is to compare the simulated model with the real

world via these requirements, which are extracted from the real system. And

again according to the MaC framework, in system design phase, the

requirements are also changed into low level.

4.1 Validation Requirements

Validation requirements of the METUCIM Lab have been defined group by

group to eliminate the repetition. In this way, there are 10 groups of

requirements for validating a single run. These are explained in more detail

below:

4.1.1 Group 1: Preservation of Parts

There must be at most 14 parts in process at a time. This is because of the

limited capacity of the conveyor; it has only 14 cups. Also, the exiting part

count of the system must be less than or equal to the entering part count. And,

the difference of these two must be equal to the current part count of the

system. While the current part count of the system can be found in this way,

there is another way to control it: the sum of all the parts in the machines, robot

 46

and conveyor must give the existing part count of the system. At the end of the

simulation run, the entering part count must be equal to the leaving part count.

This group has 5 validation requirements, three of which are safety properties,

and the other two are defined as alarms. The first one checks if the count of

entering parts is greater than or equal to the count of exiting parts. In the

second one, the difference of the incoming part count from the leaving part

count must always give the existing part count. The third one checks if the

current part count, which is evaluated according to the entering part and exiting

part events, is equal to the total part count in the machines, at the mount of the

robot and on the conveyor. The forth one gives alarm if its defined event

occurs, which is that at the end of the simulation run, the entering part count is

not equal to exiting part count. In fact, it must be equal, all entering parts must

exit the system at the end. Therefore, if the event checker catches this event,

MaC issues an alarm. The last one is again an alarm, but which should not be

hold during the run. In this one, the capacity of the system, which must not

exceed 14, is controlled.

1. property part_count_safe1

2. property part_count_safe2

3. property part_count_safe3

4. alarm part_out_count_error

5. alarm capasity_exceeded

Also, this group has other safety properties and alarms. These are similar to the

above ones, but in this time the preservation is checked according to each part

type. If there is something wrong with the part count in the run, one of the

below violations must occur. However, the same is not true for the above ones.

1. property part_count_safe1_type1 (for part type 1)

2. property part_count_safe1_type2 (for part type 2)

3. property part_count_safe1_type3 (for part type 3)

 47

4. property part_count_safe2_type1 (for part type 1)

5. property part_count_safe2_type2 (for part type 2)

6. property part_count_safe2_type3 (for part type 3)

7. property part_count_safe3_type1 (for part type 1)

8. property part_count_safe3_type2 (for part type 2)

9. property part_count_safe3_type3 (for part type 3)

10. alarm part_out_count_error1 (for part type 1)

11. alarm part_out_count_error2 (for part type 2)

12. alarm part_out_count_error3 (for part type 3)

4.1.2 Group 2: Request-Process Consistency

Eight processes in the system have been focused on at the design phase. While

defining them, the movement of the robot and its position are taken as a start

point. The first four are defined according to the first position of the robot,

which is at the CNC1, while the second four are defined according to the

second position of it, which is at the CNC2. The processes are also used for the

requests of the system. The requests are done according to these processes.

The requests are evaluated by the robot and if there is something wrong to

process them, system gives at least one of the below alarms. According to the

name of each implied, they control the eight defined processes. These alarms

depend on the events that are monitored in the event recognizer part of the

MaC.
1. alarm wrong_IOBUFFER_process_alarm

2. alarm wrong_CNC1_process_alarm

3. alarm wrong_CNC2_process_alarm

4. alarm wrong_CMM_process_alarm

5. alarm wrong_CONVEYOR_IOBUFFER_process_alarm

6. alarm wrong_CONVEYOR_CNC1_process_alarm

7. alarm wrong_CONVEYOR_CNC2_process_alarm

8. alarm wrong_CONVEYOR_CMM_process_alarm

 48

4.1.3 Group 3: Part Routes Consistency

There are 3 part types of the system and their routes in the system are shown

clearly by using their sequence diagrams given in the previous chapter. These

part types are chosen according to the number of CNC machines of the system.

In METUCIM Lab, there are two such machines. Therefore, we have three part

types and three part routes to be checked. These are controlled by the alarms

listed below. The events used to describe the alarm are defined in the event

recognition part of the system.
1. alarm wrong_part1_request

2. alarm wrong_part2_request

3. alarm wrong_part3_request

4.1.4 Group 4: Limited hardware capacity

All hardware of the system has a limited capacity. Robot can hold only one

part at the same time. CNC1, CNC2 and CMM machines process only one part.

Finally, the conveyor has only 14 cups, and each cup can carry only one part.

Because of the MaC’s limitations, which will be described in the following

part, entries of the conveyor cannot be monitored one by one. Therefore, only

the specific three entries are controlled, which are IOBuffer entry, CNC1 entry

and CNC2 entry. As a result, if there is a capacity overflow problem, one of the

below alarms is given by the event checker.
1. alarm robot_capacity_exceeded

2. alarm cnc1_capacity_exceeded

3. alarm cnc2_capacity_exceeded

4. alarm cmm_capacity_exceeded

5. alarm conveyor_capacity_exceeded

6. alarm iobuffer_entry_capacity_exceeded

7. alarm cnc1_entry_capacity_exceeded

8. alarm cnc2_enrty_capacity_exceeded

 49

4.1.5 Group 5: Already empty hardware

If robot tries to unload a part from an already empty cup, or machine, the

system gives one of the alarms below. At that point, the event checker catches

the unloading event, and decreases the part count of that hardware by one.

Therefore, the part count of the hardware starts to have a minus value, which

must not happen while the system is running. It can have values only between

0 and the maximum capacity of that hardware. The maximum capacity

exceeded control is also done by the previous group.
1. alarm robot_process_error

2. alarm cnc1_process_error

3. alarm cnc2_process_error

4. alarm cmm_process_error

5. alarm conveyor_process_error

6. alarm iobuffer_entry_already_empty

7. alarm cnc1_entry_already_empty

8. alarm cnc2_entry_already_empty

4.1.6 Group 6: Visitation Consistency

This group is defined to control the visitation consistency of the three

machines, which are CNC1, CNC2 and CMM. Incoming parts of the system

has three types. According to their types, the total visitation number of the

machines can be evaluated. At the end of the simulation run, if these machines

are really used as that number then this means everything is satisfied according

to this requirement. But, if there is something wrong and the evaluated total is

not equal to the total working count then system gives at least one of the alarms

below. The alarms are defined as the above logic. When a new part enters the

system, the event checker calculates how many times the machines will be

used. Also, it keeps other variables to calculate how many times the machines

really have been used. At the end of the run, it compares these two values,

which are expected to be equal.

 50

1. alarm CNC1_visitation_inconsistent

2. alarm CNC2_visitation_inconsistent

3. alarm CMM_visitation_inconsistent

4.1.7 Group 7: Time Consistency

Like group 6, the working time of the machines, which are CNC1, CNC2 and

CMM, must be consistent at the end of the run. If there is a new incoming part,

the system evaluates how long the machines will be used. And it also controls

and keeps the working duration of those machines while system is running. At

the end, it compares these values to check inconsistency. The difference of this

group from the other inconsistency checking ones, there is an error in these

calculations because of using the system clock for simulation time. Therefore,

the below alarms are given if the working duration of the machines exceeds the

error bounds. According to the many runs, the error bound is found as

approximately ±5% for CNC1 and CNC2, and for CMM, it is found as

approximately ±10%, since CMM processes more parts then the others so the

error fraction is relatively larger.
1. alarm cnc1_time_problem

2. alarm cnc2_time_problem

3. alarm cmm_time_problem

4.1.8 Group 8: Conveyor Rotation

If conveyor turns by more than 13 cups then this will be an useless rotate,

because it has only 13 cups. If an order comes to rotate, but no rotate is needed,

then this is also an useless order for rotate. Also, if there is something wrong

and rotating order comes with a minus rotate number, then this situation must

be hold by the event checker. For all of these cases, an alarm is given by the

system, which is copied below.

1. alarm conveyor_rotate_problem

 51

4.1.9 Group 9: Robot sides

The processes, which are also the requests of the system, have been defined

according to the robot movements and the position of the robot, which is

mentioned above. There are two position of the robot in this manufacturing

cell. Four processes must be done in the first position, and the other second

must be done at the second side. If the robot seems operating at the wrong side,

the below alarm is given by the system.
1. alarm robot_at_wrong_side

4.1.10 Group 10: Minimum time between two consecutive
exits

If any manufactured part exits from the system, then the second exiting part

must leave the system after minimum 30000ms. This is the total time of the

following sequential works:

1. Robot gets its normal position after putting the first part onto the output

buffer.

2. The request for the second part comes to the robot and robot wants this part

from the conveyor. Conveyor rotates by one cup (the second part must be

on the next cup of the first one to calculate the minimum time).

3. Robot takes the part from the conveyor.

4. Robot puts the second part onto the output buffer.

The defined alarm for this group is below:
1. alarm min_time_difference

 52

4.2 MaC Scripts

According to the MaC framework, the validation requirements are defined

while the system requirements are worked on. After the design phase of the

simulation development, these high-level requirements are changed into low-

level information by using the variables of the designed system.

First, the primitive-event definitions are written, this is the only script, which

communicates with the simulation run. The variables of the simulation code

can only be seen by this script, so in this one, most of the events and conditions

depending on the different state of the object attributes can be defined.

The second script, written by using the meta-event definition language, imports

the necessary events and conditions. In this script, auxiliary variables can be

defined and are used to keep historical information about the system. New

events and conditions can be defined by using these auxiliary variables,

imported events and conditions. The conditions are used to define the safety

conditions of the system, and the events are used to define the alarms.

4.2.1 Limitations and Problems with MaC Tool

While writing and testing the scripts, lots of problems and limitations were

encountered such that sometimes finding the source of the error took one

month, sometimes it was impossible to find the error, so other ways, which

were not practical, were followed to get around it. The problems and

limitations are written below one by one, with necessary explanations, or

examples.

1. In the PEDL script, an array entry cannot be monitored. Because of this

limitation, the conveyor array of the simulation code cannot be written in

this script to be monitored. To get around this limitation, three same classes

with different names have been defined (the answer of “why not one class”

 53

is another item of the problems). Each of them is corresponding to the each

three specific entry of the conveyor. The name of these classes are:

a. IOBUFFER_Cup_Entry

b. CNC1_Cup_Entry

c. CNC2_Cup_Entry

When an assignment is done to one of the three entries of the conveyor, it is

also done to the corresponding class instant. Consequently, in the PEDL

script, these three classes are monitored instead of the conveyor itself.

2. At the beginning of the work, experience with MaC was done with

programs that had one or two classes some of which had threads. Also,

some changes were done on the examples of the MaC’s itself, and they

were tried to run, and success was obtained. After writing the first codes of

METUCIM Lab simulation with 10 classes, and a small script to only see

the monitoring was ok, the event recognizer of MaC gave run-time errors.

Several things done; at the end, “return;” was added at the end of all void

functions and it started to work. However, it is so misleading that for the

programs with one or two classes, it does not require such a thing.

3. It does not allow use of named constants. Therefore, instead of constants,

literals are used. For example, for the request named by IOBUFFER, the

literal value, 1, is used.
condition IOBUFFER = (Robot.x_request_type == 1);

4. The conditions and the events were written group by group, each group was

tested before to sure they were correct. Some strange things happened

again. When a group of three conditions are defined, it gave run-time error

again. These conditions are:

 54

 condition part_cnt_control1 = (METUCIM.val_part_cnt_control == 0) ||

 ((Robot.val_full + Cnc1.val_full + Cnc2.val_full +

 Cmm.val_full + Conveyor.val_full) <= 14);

 condition part_cnt_control2 = ((METUCIM.val_part_cnt_control == 0) ||

 ((Robot.val_full + Cnc1.val_full + Cnc2.val_full +

 Cmm.val_full + Conveyor.val_full) ==

 (METUCIM.val_count_enter_parts - METUCIM.val_count_exit_parts)));

 condition part_cnt_control3 = METUCIM.val_count_enter_parts >=

 METUCIM.val_count_exit_parts;

After several tries, it was found out that, the source of the run-time error is

that the condition 2 and condition 3 could not written together, so the

condition 3 was commented out and rewritten at the back of condition two

by using “&&”.

At first, the source of the error can be seen that using same monitored

variables can cause a run-time error. But, this is not true, anyway condition

1 and 2 use same variables, also when the below condition was added

which liked the third one, the recognizer gave no error:

condition part_cnt_control4 = (METUCIM.val_count_enter_parts –

 METUCIM.val_count_exit_parts) >

METUCIM.CONVEYOR_CUP_NUMBER;

But the problem in this case was the event checker. Although, while the

condition 4 was tried by alone, there was no run-time error, when it was

used together with the condition 1 and 2, event checker gave run-time error.

This problem was managed (after found out) in a same way such that the

condition 4 was also commented out and added to the back of condition 1

with “&&”.

 55

Also, note that, these ones are not used the last version of the scripts. The

controls done by using them is now the function of the events defined in

MEDL script, by the help of the auxiliary variables.

5. When the input buffer size was increased from 200 to 2000, event checker

gave run-time error.

6. Inheritance cannot be used. When an attribute of such a class is wanted to

be monitored, the event recognizer does not see it from the child class, or

the parent class.

While defining the conditions, if end(condition) statement is used then one must

be more careful. This statement means that when the condition becomes false,

this is caught by using end predefined function. The problem is that, at

beginning of the simulation run, this condition is undefined and it catches this

event. When a predefined function definition is used, like end(defined(condition)),

it still behaves in the same way.

7. After importing lots of events from PEDL script, MEDL script started not

use the imported conditions. Importing could be done, but when the

imported conditions were tried to be used in MEDL script, event checker

gave run-time error.

8. It did not see a local variable of a method while instrumenting the class of

this method. Before that, at the first experience of MaC, such a thing could

be done. While the code of the script gets large, it may give these errors.

9. If the simulation classes are instrumented, the daemon property of the

thread classes does not do their jobs, which are that when the main function

ends, if this property has been set, the thread must end also.

 56

4.2.2 Primitive Event Definition Script of the Simulation

The primitive event definition script is in Appendix A. In this section, the

monitored objects and methods are explained.

1. Monitored Attributes:

METUCIM.val_part_cnt_control : This attribute helps control the time of

transferring a part between the robot and the hardware. When the value of this

attribute is not 1, the part count controls are not done. Since at the time of

getting or putting a part, it cannot be determined to which hardware the part

belongs, because of the two consecutive assignment statements, first of which

makes the robot full or empty. If this control is not in effect at that time then

the part cannot be seen in the system, or it can be seen as double.

METUCIM.end_threads : By using this monitored object, the end of the run can

be detected.

Robot.val_full, Cnc1.val_full, Cnc2.val_full, Cmm.val_full : These attributes are used

to check that hardware is full or empty.

Cnc1.part_type, Cnc2.part_type, Cmm.part_type : To get the type of the part inside

these machines, these attributes are monitored.

Cnc1.start_work, Cnc2.start_work, Cmm.start_work : By these objects, how long

these machines process the parts can be obtained.

IOBUFFER_Cup_Entry.val_full, CNC1_Cup_Entry.val_full, CNC2_Cup_Entry.val_full :
These classes are created to monitor the three specific entry index of the

conveyor. These attributes show that whether the entry is empty or not.

 57

IOBUFFER_Cup_Entry.part_type,

 CNC1_Cup_Entry.part_type,

CNC2_Cup_Entry.part_type : Also, knowing the type of the parts on these entries

is important.

Robot.x_request_type, Robot.x_part_type, Robot.x_from : These are attributes of

the request, which is deleted by the robot from the requester queue to be

processed. Robot will operate according to the request type, so it wants the first

matching part type from the system. Also, the system must know where the

part has been lastly; because there can be several parts of same type, which are

not at that step of their manufacturing processes.

Robot.after_turn : To watch the steps of the robot process, this attribute is used.

Before dequeueing the first request, its value is 0. Then, the part is made ready

for taking by the robot. Now, its value is 1. After robot takes the part, it is 2.

Finally, after robot puts the part, it is 3.

Robot.robot_place : To track the robot movement on the phenoumetic buffer,

this attribute is monitored.

Conveyor.turn_number : This is monitored to check whether there is an abnormal

rotate of conveyor or not.

Conveyor.turn_flag : If this flag is set, this means that the conveyor rotates.

IOBuffer.first_element : Robot can always take the first element of the input

buffer. This attribute value is controlled for this requirement.

 58

2. Monitored Methods:

METUCIM.main(String[]) : Start of the simulation run is important to set all

auxiliary variables of MEDL script. Therefore, start of this method is

monitored.

4.2.3 Meta Event Definition Script of the Simulation

In this script, the alarms, which must never raise, and the safe conditions,

which must always hold true, are defined. The necessary events, which depend

on the monitoring object values, are imported. There is no imported conditions

since there is a problem in the MaC tool with using them. The meta event

definition script of this simulation is at Appendix B.

4.3 Fault Injected Simulations

After the METUCIM Lab simulation has been completed, series of test runs

have been performed according to the specified requirements told above. MaC

tool has not given any error against the validation rules written in the script. By

being sure of that this is the true simulation code according to the wanted

requirements, it is rewritten to test the validation groups. In total, 27 scenarios

have been worked on. The scenarios that have been though as if someone

misunderstood the requirements, or coded something wrong. Afterwards, the

true simulation code is changed into its fault injected versions, the count of

which are 47. These are told below one by one with necessary explanations.

First the scenario is described. Afterwards, expected alarms and violated

properties are written before the real alarms and violated properties, which are

given by MaC while running this fault injected simulations. There can be

differences between them. In some cases, there can be extra violations, of

whose occurrences are impossible, given by the system beside the expected

ones, like the compiler errors, and they might be called “superfluous alarms”.

In some cases, even expected violations are not raised by the checker because

the system cannot reach that state. The reasons of these are explained at the end

of each scenario.

 59

4.3.1 Scenario 1: Using IOBuffer entry instead of CNC1
entry

CNC1 and the IOBuffer entries are two consecutive cups on the conveyor. In

this scenario, CNC1 entry was ignored and all jobs using this entry were

rewritten to use IOBuffer entry instead.

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

After execution:
1. wrong_CONVEYOR_CNC1_process_alarm (2.group)

2. wrong_CNC1_process_alarm (2.group)

3. part_count_safe3 (1.group)

4. part_count_safe3_type2 (1.group)

5. part_count_safe3_type1 (1.group)

6. conveyor_capacity_exceeded (4.group)

Although the third and the forth alarms were not expected, they were given

because of the monitor does not see the from_conveyor event which is defined

according to the emptiness of the entries. In this case, CNC1 entry is still full,

while robot takes the part from IOBuffer entry. Therefore, from_conveyor event

does not work. However, while putting the part onto IOBuffer entry, because

the CNC1 entry is full, it recognizes onto_conveyor event. This means that there

is part count inconsistency in the run, and finally, the conveyor capacity is

greater than 14.

4.3.2 Scenario 2: Directly loading parts into CMM from
CNC2

The parts are loaded into the machines or iobuffer from always conveyor. No

directly transfer is allowed from one machine to another. In this scenario, this

 60

requirement is violated such that robot loads the part into CMM after taking it

from CNC2.

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

After execution:
1. wrong_CNC2_process_alarm (2.group)

2. part_count_safe3 (1.group)

3. part_count_safe3_type1 (1.group)

4. part_count_safe3_type3 (1.group)

5. conveyor_capacity_exceeded (4.group)

The explanation of the unexpected violations is that while the part is loaded

into CMM, if the CNC2 entry is empty then the event recognizer sees this as

onto_conveyor event. However, since CONVEYOR_CMM request never

comes, the corresponding from_conveyor event does not occur. Therefore, when

CNC2 request comes to the cell, if its entry is empty then the part count on the

conveyor always increases, and as a result, event recognizer gives the second

and the third violations. The reason that the second expected alarm does not

occur is that the CONVEYOR_CMM request never comes to the robot because

the job as a result of this request is done by CNC2 request.

4.3.3 Scenario 3: Parts are not measured

All parts are measured by CMM before leaving the system. In this scenario, the

parts exit the system without loading into CMM.

Example for the Violation of Requirement Groups:
1. Group 3 : Part Routes Consistency

2. Group 6 : Visitation Consistency

3. Group 7 : Time Consistency

 61

After execution:
1. wrong_ part1_request (3.group)

2. wrong_ part2_request (3.group)

3. wrong_ part3_request (3.group)

4. cmm_visitation_inconsistency (6.group)

5. cmm_time_problem (7.group)

All expected alarms are issued and no superfluous alarms are given in this test.

All of the third group violations occur since all routes are wrong and at the end

of the simulation run, the CMM visitation is inconsistent.

4.3.4 Scenario 4: Loading second part into the machines

The capacities of the machines are limited by 1. This means that there can be

only one part at the same time to be manufactured or the machine must be

empty. In this scenario, the robot tries to load second parts while the machines

are already full.

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 4 : Limited Hardware Capacity

After execution:
1. wrong_CONVEYOR_CNC1_process_alarm (2.group)

2. wrong_CNC1_process_alarm (2.group)

3. cnc1_capacity_exceeded (4.group)

4. wrong_CONVEYOR_CNC2_process_alarm (2.group)

5. wrong_CNC2_process_alarm (2.group)

6. cnc2_capacity_exceeded (4.group)

7. wrong_CONVEYOR_CMM_process_alarm (2.group)

8. wrong_CMM_process_alarm (2.group)

9. cmm_capacity_exceeded (4.group)

 62

The simulation does not end because when robot loads second part into any

machine, the previous part is erased from the system according to this fault-

injected simulation. Therefore, the expected violations at end of the simulation

do not occur. Also, the reason to take the process errors although there seems

no process error is that, the checker controls the part type from which the

request comes. If it is not same as the part type in the machine, the process

alarms of group 2 raise.

The interesting thing in this scenario is that while the parts get lost in the

system, the last expected violation does not occur. This is because of the

limited defined events for event recognizer. At the design phase, handling all

faults like this scenario is impossible, so the events are defined according to the

normal running situation of the system. Therefore, by the guide of the

assumption, no part gets lost in the system, machines’ part counts are always

increased, and everything seems proper to that safety property, although the

machines’ capacities are exceeded. Anyway, this is caught by the violation

group 4.

4.3.5 Scenario 5: Robot drops the parts

The parts in the system should not get lost while simulation running. In this

scenario, this requirement violation is tested again. While the robot loading or

unloading a part, it drops the part. This scenario is detailed one by one for each

machine and the conveyor.

For this test group, the general expected violations controlled at the end of the

simulation are written below and the explanation about them will be done here.

1. Group 1 : Preservation of Parts

2. Group 6 : Visitation Consistency

3. Group 7 : Time Consistency

 63

None of the simulations of 5th scenario ends its run, because of losing the parts

in the cell. The cell does not end until it manufactures all entered parts.

Therefore, the simulations described below do not reach at these violation

states.

1. Robot drops the part while loading into CNC1:

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

2. Group 2 : Request-Process Consistency

 After execution:
1. wrong_CONVEYOR_CNC1_process_alarm (2.group)

2. part_count_safe3 (1.group)

3. part_count_safe3_type1 (1.group)

4. part_count_safe3_type2 (1.group)

For the first case, expected violations, except from the general ones, occur.

Robot drops the part while loading, so CNC1 does not know that there is a

part wanted to be loaded into itself. Everything goes on as nothing happens,

but only the current part count of the system decreases which also causes

violation.

2. Robot drops the part while loading into CNC2:

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

2. Group 2 : Request-Process Consistency

 After execution:
1. wrong_CONVEYOR_CNC2_process_alarm (2.group)

2. part_count_safe3 (1.group)

 64

3. part_count_safe3_type1 (1.group)

4. part_count_safe3_type3 (1.group)

The same things described for the first one is valid for this test case. In this

case, CNC2 does not know that there is a part, which is to be loaded into

itself. The part is dropped and CNC2 does not sense anything. However,

the existing part count is not equal to the part count calculated according to

the incoming and outgoing part numbers.

3. Robot drops the part while loading into CMM.

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

2. Group 2 : Request-Process Consistency

 After execution:
1. wrong_CONVEYOR_CMM_process_alarm (2.group)

2. part_count_safe3 (1. group)

3. part_count_safe3_type1 (1.group)

4. part_count_safe3_type2 (1.group)

5. part_count_safe3_type3 (1.group)

The first three fault injections are same as each other, so the results and the

explanation of those results are almost same. In this case, robot drops the

part while putting into CMM and no hardware of the system is effected

from this.

4. Robot drops the part while loading onto conveyor:

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

2. Group 2 : Request-Process Consistency

 65

 After execution:
1. wrong_IOBUFFER_process_alarm (2.group)

2. wrong_CNC1_process_alarm (2.group)

3. wrong_CNC2_process_alarm (2.group)

4. wrong_CMM_process_alarm (2.group)

5. wrong_CONVEYOR_CNC1_process_alarm (2.group)

6. wrong_CONVEYOR_CNC2_process_alarm (2.group)

7. wrong_CONVEYOR_CMM_process_alarm (2.group)

8. iobuffer_entry_already_empty (5.group)

9. cnc1_entry_already_empty (5.group)

10. cnc2_entry_already_empty (5.group)

11. conveyor_process_error (5.group)

12. part_count_safe3 (1.group)

13. part_count_safe3_type1 (1.group)

14. part_count_safe3_type2 (1.group)

15. part_count_safe3_type3 (1.group)

This case is different from the first three since for this fault it is assumed

that the conveyor does not sense whether there is a part or not on its

specific cup. Robot cannot load the part, but it suggests that the part has

been put, so the requests have been done for that dropped part and

everything gets mixed while the run goes on. The difference is that the

machines sense whether there is a part inside itself or not, so according to

this they start to work, however, conveyor is controlled by the robot. If

robot does a wrong thing and does not notice like this situation, conveyor

cannot handle this error.

5. Robot drops the part while unloading from CNC1

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

2. Group 2 : Request-Process Consistency

 66

 After execution:
1. wrong_CNC1_process_alarm (2.group)

2. wrong_CONVEYOR_CNC2_process_alarm (2.group)

3. wrong_CONVEYOR_CMM_process_alarm (2.group)

4. conveyor_process_error (5.group)

5. robot_process_error (5.group)

6. cnc1_entry_already_empty (5.group)

7. cnc2_entry_already_empty (5.group)

8. part_count_safe3 (1.group)

9. part_count_safe3_type1 (1.group)

10. part_count_safe3_type2 (1.group)

The main reason of the superfluous alarms are explained at the end of the

previous fault injected case. The reason is that the conveyor does not sense

whether the part is put onto it successfully or not, so the consecutive alarms

raise. The parts are not put onto conveyor, but the system continues to run,

and makes requests for this parts. Therefore, although the entries are empty,

robot tries to take the part. Also, robot tries to put a part while there is no

part at its mount. All of these raise the half of the group 5 alarms.

6. Robot drops the part while unloading from CNC2:

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

2. Group 2 : Request-Process Consistency

 After execution:
1. wrong_CNC2_process_alarm (2.group)

2. wrong_CMM_process_alarm (2.group)

3. wrong_CONVEYOR_CMM_process_alarm (2.group)

4. conveyor_process_error (5.group)

5. robot_process_error (5.group)

6. cnc2_entry_already_empty (5.group)

 67

7. iobuffer_entry_already_empty (5.group)

8. part_count_safe3 (1.group)

9. part_count_safe3_type1 (1.group)

10. part_count_safe3_type3 (1.group)

The same explanation as in fifth one can be done for this case since only

the machine is different. However, in this one, the same entry cnc2 entry is

used for also loading the CMM, so CMM process is effected from this

situation.

7. Robot drops the part while unloading from CMM:

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

2. Group 2 : Request-Process Consistency

 After execution:
1. wrong_CNC2_process_alarm (2.group)

2. wrong_CMM_process_alarm (2.group)

3. wrong_CONVEYOR_CMM_process_alarm (2.group)

4. conveyor_process_error (5.group)

5. robot_process_error (5.group)

6. cnc2_entry_already_empty (5.group)

7. iobuffer_entry_already_empty (5.group)

8. part_count_safe3 (1.group)

9. part_count_safe3_type1 (1.group)

10. part_count_safe3_type2 (1.group)

11. part_count_safe3_type3 (1.group)

This is not also different from the above one. Robot uses the same entry for

loading or unloading CNC2 and CMM, so both are effected from this case.

 68

8. Robot drops the part while unloading from conveyor

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

2. Group 2 : Request-Process Consistency

 After execution:
1. wrong_CONVEYOR_CNC1_process_alarm (2.group)

2. wrong_CONVEYOR_CNC2_process_alarm (2.group)

3. robot_process_error (5.group)

4. part_count_safe3 (1.group)

5. part_count_safe3_type1 (1.group)

6. part_count_safe3_type2 (1.group)

7. part_count_safe3_type3 (1.group)

In this case, some of the expected violations do not occurred because

system losts the parts immediately after they enter the system either

unloading to put into CNC1 or CNC2. The parts of types 1 or 2 get lost

after CNC1 request, and the parts of type 3 get lost after CNC2 request.

They cannot reach to CMM and the output buffer.

4.3.6 Scenario 6: Wrong part routes

There are three part types defined for the system. The process routes of each

are certain. In this case, these routes are changed. Three different scenarios are

worked on for handle all three paths.

1. The parts of type 1 do not make a request to be manufactured in CNC1:

Example for the Violation of Requirement Groups:
1. Group 3 : Part Routes Consistency

2. Group 6 : Visitation Consistency

 69

3. Group 7 : Time Consistency

 After execution:
1. wrong_part1_request (3.group)

2. CNC1_visitation_inconsistent (6.group)

3. cnc1_time_problem (7.group)

The parts of type 1 should firstly processed by CNC1. They skip this

machine, so the evaluated visitation number is not consistent after the

simulation ends.

2. The parts of type 2 are only manufactured by CNC2:

Example for the Violation of Requirement Groups:
1. Group 3 : Part Routes Consistency

2. Group 6 : Visitation Consistency

3. Group 7 : Time Consistency

 After execution:
1. wrong_part2_request (3.group)

2. CNC1_visitation_inconsistent (6.group)

3. CNC2_visitation_inconsistent (6.group)

4. cnc1_time_problem (7.group)

The parts of type 2 are only manufactured by CNC1. In such a scenario,

CNC1 is omitted from the route, and instead CNC2 is used. Therefore,

CNC1 is not used as expected as, while CNC2 is used more than evaluated

visitation count. However, for part type 2, CNC2 does not work, it does not

know this part type, so the time problem for this machine does not raise.

 70

3. The parts of type 3 are manufactured both by CNC1 and CNC2:

Example for the Violation of Requirement Groups:
1. Group 3 : Part Routes Consistency

2. Group 6 : Visitation Consistency

3. Group 7 : Time Consistency

 After execution:
1. wrong_part3_request (3.group)

2. CNC1_visitation_inconsistent (6.group)

This type of parts are only processed by CNC2. In this case, they also

request to be manufactured by CNC1, so CNC1 visitation inconsistency

occurs at the end of the simulation run.

4.3.7 Scenario 7: Taking a part from an empty machine

Robot cannot try to take a part from an already empty machine. In this

scenario, this requirement is violated. In the simulation code, after each request

evaluated by robot, the system automatically creates the proper request

according to the machine if that machine is empty.

1. Robot tries to take a part from CNC1 while CNC1 is already empty:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

 After execution:
1. wrong_IOBUFFER_process_alarm (2.group)

2. wrong_CNC1_process_alarm (2.group)

3. wrong_CNC2_process_alarm (2.group)

 71

4. wrong_CMM_process_alarm (2.group)

5. iobuffer_entry_capacity_exceeded (4.group)

6. cnc1_entry_capacity_exceeded (4.group)

7. cnc2_entry_capacity_exceeded (4.group)

8. conveyor_capacity_exceeded (4.group)

9. cnc1_process_error (5.group)

10. part_count_safe3 (1.group)

11. part_count_safe3_type1 (1.group)

12. part_count_safe3_type2 (1.group)

The code of evaluating the requests, which come from the machines in the

correct simulation code, has not changed. In normal run, this cannot be

happen, so the emptiness of the machines are not controlled in the code.

However, if it is changed to create this scenario, there are lots of

superfluous violations. This is because of that robot does not control

whether there is a part in the machine or not, it supposes to take the part

and to put it onto the conveyor, and the system continues to run as nothing

happens. This is same as the scenario(5.4) of dropping part while putting it

onto the conveyor.

2. Robot tries to take a part from CNC2 while CNC2 is already empty:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

 After execution:
1. wrong_CNC1_process_alarm (2.group)

2. wrong_CNC2_process_alarm (2.group)

3. cnc1_entry_capacity_exceeded (4.group)

4. cnc2_entry_capacity_exceeded (4.group)

5. conveyor_capacity_exceeded (4.group)

6. cnc2_process_error (5.group)

 72

The same explanation of the previous one is valid for this case. However,

in this one the count of raised violations is less because the system starts to

run incorrectly after the first machine, so the states, which cause the

violations, have less time to occur. This reason decreases the number of

violation variety.

3. Robot tries to take a part from CMM while CMM is already empty:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

 After execution:
1. wrong_CMM_process_alarm (2.group)

2. part_count_safe3 (1.group)

3. part_count_safe3_type1 (1.group)

4. part_count_safe3_type2 (1.group)

5. part_count_safe3_type3 (1.group)

6. conveyor_capacity_exceeded (4.group)

7. cmm_process_error (5.group)

The decrease in the violation count continues in this case, because CMM is

the last machine. This scenario has less time to reach the violated states

than the previous scenario.

None of the simulations has ended in this scenario because of the improper

work of the system and as a result of meaningless requests.

 73

4.3.8 Scenario 8: Taking a part from an empty cup

Robot cannot try to take a part from an already empty cup of the conveyor.

This scenario looks like the previous one. But, in this one the violations raised

are different. To handle them separately, this is handled as a new scenario.

1. Robot tries to take a part from IOBUFFER entry while IOBUFFER

entry is already empty:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

After execution:
1. wrong_CONVEYOR_IOBUFFER_process_alarm (2.group)

2. wrong_part2_request (3.group)

3. wrong_part3_request (3.group)

4. iobuffer_entry_already_empty (5.group)

To implement this scenario, CONVEYOR_IOBUFFER process has

been changed in the code of the robot. In the correct one, if this request

comes, robot tries to find the first nearest same typed part, waiting for

this request. However, in this scenario, it tries to find the first empty

cup index. Also, when this request comes, the part that makes the

request should be measured by CMM. This is also controlled by the

event checker. The empty cup cannot have this information, so the

3.group violations occur. Type 1 is different from type 2 and 3, while

they are manufactured only by one machines, type 1 is processed by

both of them, so to reach the violation state about the route of type 1 is

hard than the others.

 74

2. Robot tries to take a part from CNC1 entry while CNC1 entry is

already empty:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

 After execution:
1. wrong_CONVEYOR_CNC1_process_alarm (2.group)

2. wrong_part2_request (3.group)

3. cnc1_entry_already_empty (5.group)

Same as the previous one, the process for CONVEYOR_CNC1 request

of robot has been changed. While in the correct code, robot tries to find

a part that matches the request, in this fault-injected simulation, it only

finds the first empty cup. Also, event checker controls that from where

the part comes, in this one, it must comes from IOBuffer, but in an

empty cup, checker can not reach this information, so the route error

raises.

3. Robot tries to take a part from CNC2 entry while CNC2 entry is

already empty:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

 After execution:
1. wrong_CONVEYOR_CNC2_process_alarm (2.group)

2. cnc2_entry_already_empty (5.group)

3. wrong_part3_request (3.group)

 75

This entry is used by both CNC2 and CMM, so the change in the code

is done for both requests, CONVEYOR_CNC2 and

CONVEYOR_CMM. However, the run does not reach the state

where the violation occurs for CONVEYOR_CMM request.

None of the runs has ended in this scenario, so the checker cannot control the

violations that can be happen at the end of the simulation.

4.3.9 Scenario 9: Loading an already full cup

Robot cannot load a part onto the conveyor entry, which has already full. This

scenario is split into three cases because there are three specific entries on the

conveyor.

1. Robot tries to put a part into the IOBUFFER entry while

IOBUFFER entry is already full:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 4 : Limited Hardware Capacity

 After execution:
1. wrong_IOBUFFER_process_alarm (2.group)

2. iobuffer_entry_capacity_exceeded (4.group)

To implement this scenario, in the code of the robot, the process for

IOBUFFER request has been changed. In the correct one, if this

request comes, robot tries to find the nearest free cup. However, in

this scenario, it doe not try to find an empty cup, so while putting the

part onto this entry, this entry may already have a part.

 76

2. Robot tries to put a part into the CNC1 entry while the CNC1

entry is already full:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 4 : Limited Hardware Capacity

After execution:
1. cnc1_entry_capacity_exceeded (4.group)

2. wrong_CNC1_process_alarm (2.group)

Same as the previous one, the process for CNC1 request of robot has

been changed. While in the correct code, robot tries to find the first

empty cup, in the fault injected one, it directly loads the part onto this

entry.

3. Robot tries to put a part into the CNC2 entry while the CNC2

entry is already full:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 4 : Limited Hardware Capacity

After execution:
1. cnc2_entry_capacity_exceeded (4.group)

2. wrong _CNC2_process_alarm (2.group)

3. wrong _CMM_process_alarm (2.group)

This entry is used by both CNC2 and CMM, so the change in the code

is done for both requests, CNC2 and CMM. Robot directly puts the

part onto this entry, without controlling whether it is full or empty.

 77

None of the runs has ended because when the robot puts the part over another,

the first part on the cup is erased and only the new part is seen by the system.

4.3.10 Scenario 10: Problem in conveyor rotation

Conveyor always rotates by exactly how many cups wanted. In this scenario,

conveyor rotates by fourteen cups more. Therefore, when robot wants a free

cup, or a cup with a part matching the request, the system finds the exact index

of that entry, but the conveyor rotates one more tour to indexing that cup.

Example for the Violation of Requirement Groups:
1. Group 8 : Conveyor Rotation

After execution:
1. conveyor_rotate_problem (8.group)

For this one, only conveyor_rotate_problem alarm raises, and because of the

extra turns, the incoming part count decreases approximately by half.

4.3.11 Scenario 11: Robot at wrong side

Robot has two position in the cell and it carries out half of the defined

processes on the left side, and on the right side, it performs the others. Robot’s

start position is left side. In this scenario, robot can not move from its start

position to the right side of the system.

Example for the Violation of Requirement Groups:
1. Group 9 : Robot sides

After execution:
1. robot_at_wrong_side (9.group)

 78

In the validated simulation code according to the specified validation

requirements, the side of the robot is not controls while the robot performs the

request. Because this fault injected one is the new version with comments at

robot movement code, everything seems ok, but not in the point of the checker.

4.3.12 Scenario 12: Problem in the direction of conveyor
rotation

The conveyor rotates in the clockwise direction. In this scenario, the only

change is that the conveyor turns in the counter-clockwise direction.

1. The system finds the part matching the currently processed request

in the correct direction and evaluates by how many cups the

conveyor must rotate, but the conveyor turns in the wrong direction:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

After execution:
1. wrong_IOBUFFER_process_alarm (2.group)

2. wrong_CNC1_process_alarm (2.group)

3. wrong_CNC2_process_alarm (2.group)

4. wrong_CMM_process_alarm (2.group)

5. wrong_CONVEYOR_CNC1_process_alarm (2.group)

6. wrong_CONVEYOR_CNC2_process_alarm (2.group)

The process of finding out the requested part is done in the clockwise

direction, but the conveyor rotate in the counter clockwise direction, so

the correct parts or free cups wanted cannot be indexed correctly. Two

of the expected alarms do not raise because the system cannot reach at

those violated states.

 79

2. At this time, also the requested parts and the free cups are found out

in the reverse direction on the conveyor, and conveyor rotates in

this direction:

Example for the Violation of Requirement Groups:
1. No violation

After execution:
1. No violation

Since this state does not effect the correct run of the system, there is no

violation. Only the entering part count of the system decreases because

rotating in the reverse direction means rotating by more cups than in the

normal turn.

4.3.13 Scenario 13: Not processing some parts

All three part types defined for this the system must be manufactured by at

least one CNC. Afterwards, they are measured by CMM. In this scenario, some

parts are measured without processed by any CNC.

Example for the Violation of Requirement Groups:
1. Group 3 : Part Routes Consistency

2. Group 6 : Visitation Consistency

3. Group 7 : Time Consistency

After execution:
1. wrong_part1_request (3.group)

2. wrong_part2_request (3.group)

3. wrong_part3_request (3.group)

4. cnc1_time_problem (7.group)

5. cnc2_time_problem (7.group)

 80

6. CNC1_visitation_inconsistent (6.group)

7. CNC2_visitation_inconsistent (6.group)

All expected violations occur for this scenario. The part routes are not correct

so the third group alarms raise. CNC1 and CNC2 are not used as evaluated

according to the part types when a new part enters the system. Therefore, time

problem and visitation inconsistency problem for their usage happen.

4.3.14 Scenario 14: Directly loading parts into CNC1 from
IOBuffer

The parts cannot be transferred directly from one machine or input buffer to

another machine or output buffer. In all transfers, conveyor must be used even

directly putting the part has shorter way. In this scenario, the robot unloads the

parts of the type 1 or 2 from input buffer and directly loads them into the

CNC1.

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 3 : Part Routes Consistency

After execution:
1. wrong_part1_request (3.group)

2. wrong_part2_request (3.group)

3. wrong_IOBUFFER_process_alarm (2.group)

4. part_count_safe3 (1.group)

5. part_count_safe3_type1 (1.group)

6. part_count_safe3_type2 (1.group)

7. conveyor_capacity_exceeded (4.group)

At the end of the IOBUFFER request, the checker wants to see that the

IOBuffer is full with the carried part. Because it is empty at the end of the

 81

process, wrong_IOBUFFER_process_alarm raises. If by wrongly, this entry is full

(because the conveyor does not rotate to index a free cup to that entry), then

onto_conveyor event is recognized by the event recognizer, then the count of

current parts on the conveyor increases which causes the last two violations.

4.3.15 Scenario 15: Loading parts onto the wrong cups

There are three specific positions for the conveyor according to the machines,

conveyor fixes its entries to these positions and robot can load or unload only

the parts on the indexed entries. In this scenario, robot loads the part onto the

just one front cup of the indexed one.

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 4 : Limited hardware capacity

After execution:
1. part_count_safe3 (1.group)

2. part_count_safe3_type1 (1.group)

3. part_count_safe3_type2 (1.group)

4. part_count_safe3_type3 (1.group)

5. cnc1_entry_capacity_exceeded (4.group)

The run gets stuck at the beginning, because the system indexes the first free

cup to the IOBuffer entry, but the robot puts the part into the CNC1 entry.

Therefore, the capacity of CNC1 entry exceeds. The other expected violations

do not occur, since the system does not com into those violated states.

 82

4.3.16 Scenario 16: Changing CNC places

CNC1 is on the left of the cell, and CNC2 is on the right. In this scenario, the

places of these two machines are changed, CNC2 is on the left, CNC1 is on the

right. Robot starts position is still left side.

Example for the Violation of Requirement Groups:
1. Group 3 : Part Routes Consistency

After execution:
1. wrong_part1_request (3.group)

The position of the two machines are changed, but the flow concept is not

disturbed. Therefore, the only problem for this scenario is with the parts of type

1. In normal flow, these parts, manufactured in the left machine and then in the

right machine. Now, they first processed by CNC2, and then manufactured by

CNC1.

4.3.17 Scenario 17: Conveyor rotation by 1, 3 or 10 cups only

Conveyor can rotate by at least one cup and at most 13 cups. It may rotate by

more than 13 cups, but this is not an acceptable situation. In this, scenario, it

rotates only by 1 cup, 3 cups or 10 cups. When the part enters to the system, it

is on the IOBuffer entry. When the conveyor rotates by one cup, it is at the

CNC1 entry index; from this point, when the conveyor rotates by three cups,

the parts is at the CNC2 entry index. Finally, after conveyor rotates by ten

cups, the part is at the starting index position, which is the IOBuffer entry.

Example for the Violation of Requirement Groups:
1. No violation

 83

After execution:
1. No violation

The simulation does not end, also the checker does not give any violation since

the system cannot be in a state, which violates the validation rules. For this

scenario, where the error is done cannot be found by monitoring MaC, because

there is no specific validation rule has though for such a situation.

4.3.18 Scenario 18: Stop working after 7 hours

The working duration of the system is 7 hours. After this duration, system

continues to run until the last part leaves the system. In this scenario, after 7

hours, system stops to run with a number of unprocessed parts.

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

2. Group 6 : Visitation Consistency

3. Group 7 : Time Consistency

After execution:
1. CNC1_visitation_inconsistent (6.group)

2. CNC2_visitation_inconsistent (6.group)

3. CMM_visitation_inconsistent (6.group)

4. cmm_time_problem (7.group)

5. part_out_count_error (1.group)

6. part_out_count_error1 (1.group)

7. part_out_count_error2 (1.group)

8. part_out_count_error3 (1.group)

All the expected violations, which raise at the end of the simulation run is

caught by the checker. Machines are not used by evaluated times, so visitation

inconsistency occurs. However, there is a problem with the usage time of cnc1

 84

and cnc2. Although, there must be a time inconsistency for these machines

because of the error bounds, it seems everything is ok. Also, the entering part

count is not equal to the exiting part count at the end of the run.

4.3.19 Scenario 19: Processing the parts according to their
IDs

The parts are processed according to their types. If there is a request, then the

system finds the first matching part with this request on the conveyor. Also, the

parts have identification numbers, which are not used in the correct simulation

code. However, for this scenario, these identification numbers are used, so

which ID makes the request, that part is processed.

Example for the Violation of Requirement Groups:
1. No violation

After execution:
1. No violation

There is no violation at the end of the simulation run, only the entering part

count slightly decreases. This is because of that the rotate duration of the

conveyor increases to index the cup with specific ID. While there may be a part

matching with this request is too near, it must turn for that ID.

4.3.20 Scenario 20: Rerotation of incorrectly manufactured
parts

All the parts leave the cell after manufactured, no matter whether they are

processed correctly or not. The result of CMM is ignored, because the

assumption is that, if a part is not manufactured correctly, it is put into the

output buffer as the others and if the customer decides that it must be

 85

reprocessed, he can put it into the input buffer again. This is same as the

current of METUCIM Lab for such a situation. In this scenario, the wrongly

manufactured parts rerotate to be remanufactured in the cell.

Example for the Violation of Requirement Groups:
1. Group 3 : Part Routes Consistency

2. Group 6 : Visitation Consistency

3. Group 7 : Time Consistency

After execution:
1. CNC1_visitation_inconsistent (6.group)

2. CNC2_visitation_inconsistent (6.group)

3. CMM_visitation_inconsistent (6.group)

4. cnc1_time_problem (7.group)

5. cnc2_time_problem (7.group)

6. cmm_time_problem (7.group)

7. wrong_part1_request (3.group)

8. wrong_part2_request (3.group)

9. wrong_part3_request (3.group)

Because of the rerotation, the three machines, CNC1, CNC2 and CMM, are

used more than evaluated. The reason is that the evaluation is done only when

the parts are put on the conveyor from the input buffer, which means that a new

part enters to the system. Also, all parts must leave the system after measured

by CMM. In this case, they do not leave, so they violate their process routes.

4.3.21 Scenario 21: Robot can not take parts

The assumption is that, since the duration is 7 hours, which is a short time,

there is nothing wrong for any run. In this scenario, the robot cannot take the

parts. Parts stay in machines or on the input buffer or on the conveyor cups. To

avoid to stuck the run at some point, these are handled one by one.

 86

1. Robot can not take part from CNC1:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

 After execution:
1. part_count_safe3 (1.group)

2. part_count_safe3_type1 (1.group)

3. part_count_safe3_type2 (1.group)

4. part_count_safe3_type3 (1.group)

5. wrong_CNC1_process_alarm (2.group)

6. wrong_CONVEYOR_CMM_process_alarm (2.group)

7. cnc2_entry_already_empty (5.group)

8. robot_process_error (5.group)

Robot cannot take the part, but it goes on doing its job without knowing

this, so the CNC1 entry behaves like that there is a part on it. This causes

the other following violations while the simulation run is continuing.

2. Robot can not take part from CNC2:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

 After execution:
1. part_count_safe3 (1.group)

2. part_count_safe3_type1 (1.group)

3. part_count_safe3_type2 (1.group)

4. part_count_safe3_type3 (1.group)

5. wrong_CNC2_process_alarm (2.group)

6. wrong_CMM_process_alarm (2.group)

 87

7. robot_process_error (5.group)

The reason of these violations is same as the previous one. Also, the robot

tries to put a part while there is no part at the mount of itself, which causes

robot_process_error alarm to be raised like the above scenario again.

3. Robot can not take part from CMM:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

 After execution:
1. part_count_safe3 (1.group)

2. part_count_safe3_type1 (1.group)

3. part_count_safe3_type2 (1.group)

4. part_count_safe3_type3 (1.group)

5. cnc2_entry_capacity_exceeded (4.group)

6. wrong _CNC2_process_alarm (2.group)

7. robot_process_error (5.group)

Since the robot uses the same entry for CNC2 and CMM requests, although

CNC2 is left behind, the process error of this raises. The other reasons

mentioned above for the previous two scenarios are still valid for this one.

4. Robot can not take part from the conveyor:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

 88

 After execution:
1. part_count_safe3 (1.group)

2. part_count_safe3_type1 (1.group)

3. part_count_safe3_type2 (1.group)

4. part_count_safe3_type3 (1.group)

5. wrong_CONVEYOR_CNC1_process_alarm (2.group)

6. wrong_CONVEYOR_CNC2_process_alarm (2.group)

7. robot_process_error (5.group)

This scenario means that no parts can be processed by the machines, all

parts entering the system stay on the conveyor, so they cannot reach even to

CMM.

5. Robot can not take part from the input buffer:

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 5 : Already empty hardware

 After execution:
1. part_count_safe3 (1.group)

2. part_count_safe3_type1 (1.group)

3. part_count_safe3_type2 (1.group)

4. part_count_safe3_type3 (1.group)

5. wrong_IOBUFFER_process_alarm (2.group)

6. robot_process_error (5.group)

No part can enter the system, but the event recognizer sees the

onto_conveyor event, and it increases the count of the entering parts to the

system. This causes the first violation.

 89

4.3.22 Scenario 22: Not starting in a cold start situation

When the cell begins to run, it must be in a cold start situation, which means

that there must not be any part at the cell, all hardware must be empty. In this

scenario, however, it starts while there are several parts on the conveyor.

Example for the Violation of Requirement Groups:
1. Group 2 : Request-Process Consistency

2. Group 4 : Limited hardware capacity

After execution:
1. wrong_IOBUFFER_process_alarm (2.group)

2. iobuffer_entry_capacity_exceeded (4.group)

The system does not know the type of the parts, which are on the cell when the

run starts. The system can know the part types, only when it places that part

onto any hardware. Therefore, while processing the requests, it behaves like

that there is no part on that cup. This is because the first simulation code has

been written according to the correct situations, and this scenario is the

rewritten version of that one with fault.

4.3.23 Scenario 23: Entering more than 14 parts

The capacity of the system, while it is running, is fourteen, this means that

there can be at most fourteen parts in the cell at any time. In this scenario, the

cell accepts new parts without controlling the current part count.

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

After execution:
1. capacity_exceeded (1.group)

 90

The simulation run does not end, because exceeding capacity means, free cups

can be found to put processed parts by the machines. Therefore, a deadlock

occurs.

4.3.24 Scenario 24: Problem with two consecutive exit
events

For validation rule group 10, this scenario is written. After the robot puts the

part onto the output buffer, it tries to process the same job again. System

behaves as the part is still on the conveyor to reach such a violated state located

in group 10.

Example for the Violation of Requirement Groups:
1. Group 10 : Minimum time difference between two consecutive exit events

After execution:
1. min_time_difference (10.group)

2. wrong_CONVEYOR_IOBUFFER_process_alarm (2.group)

3. wrong_part2_request (3.group)

4. wrong_part3_request (3.group)

5. iobuffer_entry_already_empty (5.group)

As expected, the min_time_difference violation occurs. This scenario is an

example of that, in the system, the minimum duration between any two jobs

can be checked. The superfluous alarms raises because the system is forced to

reach that state. Normally, if the entry is empty, it does not do anything, but in

this situation, robot still tries to get a part from an empty cup, which is emptied

by itself, a little ago.

 91

4.3.25 Scenario 25: New parts entered by the customer

The parts are normally loaded onto the IOBuffer entry from the input buffer by

robot. In this scenario, it is assumed that the customer does this job instead of

the robot.

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

2. Group 2 : Request-Process Consistency

After execution:
1. wrong_IOBUFFER_process_alarm (2.group)

2. part_count_safe1 (1.group)

3. part_count_safe1_type1 (1.group)

4. part_count_safe1_type2 (1.group)

5. part_count_safe1_type3 (1.group)

6. part_count_safe3 (1.group)

7. part_count_safe1_type1 (1.group)

8. part_count_safe1_type2 (1.group)

9. part_count_safe1_type3 (1.group)

Event recognizer can not see a new part entering the system event because this

event is defined as a robot dependent event. Therefore, the exiting part count of

the system is always greater than the entering part count, which causes the

violation.

4.3.26 Scenario 26: Conveyor does not rotate

In this scenario, the “rotate” action of the conveyor is forgotten in the

implementation, but this is not noticed.

Example for the Violation of Requirement Groups:
1. Group 4 : Limited hardware capacity

 92

2. Group 5 : Already empty hardware

After execution:
1. wrong_IOBUFFER_process_alarm (2.group)

2. wrong_CONVEYOR_CMM_process_alarm (2.group)

3. wrong_CONVEYOR_CNC1_process_alarm (2.group)

4. wrong_CONVEYOR_IOBUFFER_process_alarm (2.group)

5. wrong_CONVEYOR_CNC2_process_alarm (2.group)

6. iobuffer_entry_capacity_exceeded (4.group)

7. wrong_part1_request (3.group)

8. wrong_part2_request (3.group)

9. wrong_part3_request (3.group)

10. cnc1 _entry_already_empty (5.group)

11. cnc2_entry_already_empty (5.group)

“The conveyor does not rotate” means that the parts are put onto the cup at the

iobuffer entry position, so the capacity of this cups exceeds. Also, the program

continues to run as if there is no such problem, so the robot tries to get a part

from the empty hardware of the cell.

4.3.27 Scenario 27: Changing the type of a part

There must be part consistency according to types as the type of a part does not

change. In this scenario, the type of some part is 2 and, it becomes type 1 at

some instant of its processing.

Example for the Violation of Requirement Groups:
1. Group 1 : Preservation of Parts

After execution:
1. part_count_safe3_type1 (1.group)

2. part_count_safe3_type2 (1.group)

3. part_out_count_error1 (1.group)

 93

4. part_out_count_error2 (1.group)

5. part_count_safe1_type1 (1.group)

6. CNC2_visitation_inconsistent (6.group)

7. cnc2_time_problem (7.group)

In this scenario, the preservation of the parts according to their types are

checked. There is no change in the count of the parts in the cell. However, the

type of any part is changed. This situation can not be caught by the

preservation of parts according to only their counts. Therefore, the same

preservation events, conditions, alarms and safety properties are defined for

each part type.

 94

CHAPTER 5

CONCLUSION AND DISCUSSION

In this work, we studied the assertion checking method, and tried to use it as a

validation technique. Finding an example from the real world should be

effective to demonstrate the results of the application of assertion checking

method for validation. Therefore, we have modeled the METUCIM

Laboratory, which is a single manufacturing cell. The model is process

oriented, and is implemented by using Java thread library. The simplicity of

this example chosen made our work have been understood clearly. Also, we

found luckily, MaC tool, which serves our aim. At the beginning, it seemed

that MaC would make our life easier, because it exactly fit our work; however,

the problems with MaC made this work much slower. Finally, the simulation

was finished, and the working version of the MaC scripts including all

validation requirements were written. The last missing thing was the

demonstration of correctness of the simulation runs with respect to the

validation requirements of the real world. For this, we created a lot of

scenarios. Each scenario was simulated and their runs were monitored and

checked by using the MaC scripts.

It should be emphasized that we do not try to validate the simulation model, we

only validate the current run of the simulation against a set of validation

requirements. This is because of that we use the assertion checking method to

 95

achieve this, which is one of the dynamic V&V techniques, and in dynamic

techniques run-time monitoring is required. One of the limitations of run-time

monitoring is that it is virtually impossible to monitor all possible runs of a

model. Thus, it is practical to validate a simulation model itself in this way.

In this thesis, one person has done all the steps, analyzed the system, extracted

the validation requirements, made the design, wrote the simulation code, and

the MaC scripts. If all jobs are done by one person, the mistake or

misunderstanding is repeated at all steps of the work. One person can make a

wrong analyses, and by this wrong result, he/she builds the wrong system and

writes wrong validation scripts. As a result, nothing can be caught, everything

looks like working properly. It seems a chaos at first glance, but if we think of

a project team with at least two people, this work gets much more meaning. If

one makes a mistake or misunderstands something, at the other side of the

project (the simulation code side or monitoring and checking side), it can be

realized that either the simulation model or code is not right, or there is

something wrong with the defined validation requirements. In fact, model

development and derivation of assertions are independent processes, best

performed by different persons.

In this work, we tried to show that assertion checking can be used as a

validation method. This approach can be effective for run-time validations of

discrete event simulation model in general. Of course, the validation

requirements and necessary tools must be tailored for each specific application.

For this aim, we used a run-time monitoring and checking tool, MaC version

0.99. Because, we encountered some limitations and problems with MaC, to

overcome them, the validation requirements were defined in a limited way,

such as defining three same classes for the three entries of the conveyor. For

the advanced versions of the MaC tool, this work can be more improved. This

 96

is a core study, and it shows that with a more mature tool, more complex

simulations and requirements can be handled easily.

Consequently, as the results of the test studies show that, the aim gains success,

except from the time consistency of machines. This is because of using the

system clock and sleep method of threads. This problem can be handled in a

mature tool or again with MaC, seeing this problem, instead of making the

threads sleep, other ways can be used. However, this missing was tried to close

by another assertion validation, visitation consistency. In generally, the results

are successful and show that, by using assertion checking, no mistake can be

escaped from the system. Although there can be superfluous violations, the

important thing here is that if there is a violation the system warns the user,

since it is not intended to provide diagnostics for locating errors. Also,

although the case study is based on an actual system (METUCIM Lab), the

method is applicable to hypothetical systems as well. Because, the validation is

performed with respect to a conceptual model.

 97

REFERENCES

1. Sargent, R. G., Simulation Model Verification and Validation, Proc. of the

2000 Winter Simulation Conf., 2000.

2. Balci, O., Verification, Validation, and Accreditation, Proc. of the 1998

Winter Simulation Conf., 1998.

3. Preece, A., Evaluating Verification and Validation Methods in Knowledge

Engineering.

4. Whitner, R.B., Balci, O., “Guidelines for selecting and using simulation

model verification techniques” in E.A. MacNair, K.J. Musselman, &

P.Heidelberger (Eds.), Proceeding of the 1989 Winter Simulation

Conference, pp. 559-568, IEEE, Piscataway, NJ, 1989.

5. Defense Modeling and Simulation Office, DoD VV&A Recommended

Practices Guide (RPG Build 2) “V&V Techniques”, 15 August 2001.

6. Harmon, S.Y., Gross, D. C., Youngblood, S. M., “Why Validation,” 1999

Summer Computer Simulation Conference (SCSC) Proceedings, Chicago,

IL, July 1999.

7. Defense Modeling and Simulation Office, DoD VV&A Recommended

Practices Guide (RPG Special Topic) “Validation”, 30 November 2000.

 98

8. Ronsse, M., Maebe, J., Bosschere, K.D., Software Instrumentation Using

Dynamic Techniques.

9. DeMillo, R.A., McCracken, W.M., Martin, R.J., Passafiume, J.F., Software

Testing and Evaluation, 1987.

10. Monitoring and Checking Framework, http://www.cis.upenn.edu/~rtg/mac/

11. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Java-MaC: a Run-time

Assurance Tool for Java Programs, 2001, available from URL in [10].

12. Languages in the MaC prototype implementation, MaC Research,

University of Pennsylvania, , available from URL in [10].

13. Pinedo, M., “Scheduling, theory, algorithms, and systems”, Prentice Hall,

p. 25, 1995.

14. Candar, T., Development of an Agent Based Flexible Manufacturing Cell

Controller Using Distributed Internet Applications, MS Thesis, Middle East

Technical University, Ankara, 2000.

15. Luggen, W. W., Flexible Manufacturing Cells and Systems, Prentice Hall,

p. 19, 378, year 1991.

16. Encyclopedia of Production and Manufacturing Management,

http://reference.kluweronline.com.

17. http://manta.cs.vt.edu/cs6204/Assignments/Presentations/Mirza.ppt

 99

APPENDIX A

PEDL SCRIPT OF METUCIM LAB

MonScr METUCIM

 //exported events for defining high-level events and conditions more easily

 export event startPgm,
 robotFull_event, robotEmpty_event,
 robotFull_event1, robotEmpty_event1,
 robotFull_event2, robotEmpty_event2,
 robotFull_event3, robotEmpty_event3,
 cnc1Full_event, cnc1Empty_event,
 cnc1Full_event1, cnc1Empty_event1,
 cnc1Full_event2, cnc1Empty_event2,
 cnc1Full_event3, cnc1Empty_event3,
 cnc2Full_event, cnc2Empty_event,
 cnc2Full_event1, cnc2Empty_event1,
 cnc2Full_event2, cnc2Empty_event2,
 cnc2Full_event3, cnc2Empty_event3,
 cmmFull_event, cmmEmpty_event,
 cmmFull_event1, cmmEmpty_event1,
 cmmFull_event2, cmmEmpty_event2,
 cmmFull_event3, cmmEmpty_event3,
 cnc1_start_work, cnc2_start_work, cmm_start_work,
 cnc1_stop_work, cnc2_stop_work, cmm_stop_work,
 IOBufferEntryFull_event, IOBufferEntryEmpty_event,
 IOBufferEntryFull_event1, IOBufferEntryEmpty_event1,
 IOBufferEntryFull_event2, IOBufferEntryEmpty_event2,
 IOBufferEntryFull_event3, IOBufferEntryEmpty_event3,
 cnc1EntryFull_event, cnc1EntryEmpty_event,
 cnc1EntryFull_event1, cnc1EntryEmpty_event1,
 cnc1EntryFull_event2, cnc1EntryEmpty_event2,
 cnc1EntryFull_event3, cnc1EntryEmpty_event3,
 cnc2EntryFull_event, cnc2EntryEmpty_event,
 cnc2EntryFull_event1, cnc2EntryEmpty_event1,
 cnc2EntryFull_event2, cnc2EntryEmpty_event2,
 cnc2EntryFull_event3, cnc2EntryEmpty_event3,
 from_conveyor, onto_conveyor, from_conveyor1, onto_conveyor1,

 100

 from_conveyor2, onto_conveyor2, from_conveyor3, onto_conveyor3,
 new_part, exit_part , exit_part1 , exit_part2 , exit_part3 ,
 control_start, control_end, abnormal_rotate,
 part1_path_event, part2_path_event, part3_path_event,

 CNC1_will_used, CNC2_will_used, CMM_will_used,
 CNC1_has_used, CNC2_has_used, CMM_has_used,
 wrong_IOBUFFER_process, wrong_CNC1_process,

 wrong_CNC2_process, wrong_CMM_process,
 wrong_CONVEYOR_IOBUFFER_process,

 wrong_CONVEYOR_CNC1_process,
 wrong_CONVEYOR_CNC2_process,
 wrong_CONVEYOR_CMM_process,

 new_part_type1, new_part_type2, new_part_type3,
 wrong_robot_place,endPgm;

 //Monitored attributes of the classes
 monobj int METUCIM.val_part_cnt_control;
 monobj int METUCIM.mac1;
 monobj boolean METUCIM.end_threads;
 monobj int Robot.val_full;
 monobj int Cnc1.val_full;
 monobj int Cnc2.val_full;
 monobj int Cmm.val_full;
 monobj int Cnc1.part_type;
 monobj int Cnc2.part_type;
 monobj int Cmm.part_type;
 monobj int Cnc1.start_work;
 monobj int Cnc2.start_work;
 monobj int Cmm.start_work;
 monobj int IOBUFFER_Cup_Entry.val_full;
 monobj int IOBUFFER_Cup_Entry.part_type;
 monobj int CNC1_Cup_Entry.val_full;
 monobj int CNC1_Cup_Entry.part_type;
 monobj int CNC2_Cup_Entry.val_full;
 monobj int CNC2_Cup_Entry.part_type;
 monobj int Robot.x_request_type;
 monobj int Robot.x_part_type;
 monobj int Robot.x_from;
 monobj int Robot.after_turn;
 monobj int Robot.robot_place;
 monobj int Conveyor.turn_number;
 monobj int Conveyor.turn_flag;
 monobj int IOBuffer.first_element;

 //Also, the main method is monitored
 monmeth void METUCIM.main(String[]);

 //Current request in the cell
 condition IOBUFFER = (Robot.x_request_type==1);
 condition CNC1 = (Robot.x_request_type==2);
 condition CONVEYOR_IOBUFFER = (Robot.x_request_type==3);
 condition CONVEYOR_CNC1 = (Robot.x_request_type==4);
 condition CONVEYOR_CNC2 = (Robot.x_request_type==5);
 condition CONVEYOR_CMM = (Robot.x_request_type==6);

 101

 condition CNC2 = (Robot.x_request_type==7);
 condition CMM = (Robot.x_request_type==8);

 //which component of the system makes that request,
 //this means that the part lastly in that component
 condition from_IOBUFFER = (Robot.x_from==1);
 condition from_CNC1 = (Robot.x_from==2);
 condition from_CNC2 = (Robot.x_from==7);
 condition from_CMM = (Robot.x_from==8);

 //while robot puts a part, or gets a part,
 //to control that to which component the part belongs
 condition control_ok = (METUCIM.val_part_cnt_control == 1);
 condition end_control = (METUCIM.val_part_cnt_control == 0);

 event control_start = start(control_ok);
 event control_end = start(end_control);

 //start of the simulation
 event startPgm = StartM(METUCIM.main(String[]));

 //simulation ends
 event endPgm = start(METUCIM.end_threads==true);

 //a new part is loaded into the cell
 event new_part = start(IOBUFFER && robotFull_cond);

 //what is the type of this new part?
 event new_part_type1 = start(IOBUFFER && robotFull_cond &&

Robot.x_part_type==1);
 event new_part_type2 = start(IOBUFFER && robotFull_cond &&

Robot.x_part_type==2);
 event new_part_type3 = start(IOBUFFER && robotFull_cond &&

Robot.x_part_type==3);

 //part exit from the cell
 event exit_part = start(CONVEYOR_IOBUFFER && (Robot.after_turn==3) &&

robotEmpty_cond && IOBufferEntryEmpty_cond);
 event exit_part1 = start(CONVEYOR_IOBUFFER && (Robot.after_turn==3) &&

robotEmpty_cond && IOBufferEntryEmpty_cond)
when Robot.x_part_type==1;

 event exit_part2 = start(CONVEYOR_IOBUFFER && (Robot.after_turn==3) &&
robotEmpty_cond && IOBufferEntryEmpty_cond)

when Robot.x_part_type==2;
 event exit_part3 = start(CONVEYOR_IOBUFFER && (Robot.after_turn==3) &&

robotEmpty_cond && IOBufferEntryEmpty_cond)
when Robot.x_part_type==3;

 //the below components become full or empty
 event robotFull_event = start(robotFull_cond);
 event robotFull_event1 = start(robotFull_cond) when Robot.x_part_type==1;
 event robotFull_event2 = start(robotFull_cond) when Robot.x_part_type==2;
 event robotFull_event3 = start(robotFull_cond) when Robot.x_part_type==3;

 102

 event robotEmpty_event = start(robotEmpty_cond);
 event robotEmpty_event1 = start(robotEmpty_cond) when Robot.x_part_type==1;
 event robotEmpty_event2 = start(robotEmpty_cond) when Robot.x_part_type==2;
 event robotEmpty_event3 = start(robotEmpty_cond) when Robot.x_part_type==3

 event cnc1Full_event = start(cnc1Full_cond);
 event cnc1Full_event1 = start(cnc1Full_cond) when Robot.x_part_type==1;
 event cnc1Full_event2 = start(cnc1Full_cond) when Robot.x_part_type==2;
 event cnc1Full_event3 = start(cnc1Full_cond) when Robot.x_part_type==3

 event cnc1Empty_event = start(cnc1Empty_cond);
 event cnc1Empty_event1 = start(cnc1Empty_cond) when Robot.x_part_type==1;
 event cnc1Empty_event2 = start(cnc1Empty_cond) when Robot.x_part_type==2;
 event cnc1Empty_event3 = start(cnc1Empty_cond) when Robot.x_part_type==3

 event cnc2Full_event = start(cnc2Full_cond);
 event cnc2Full_event1 = start(cnc2Full_cond) when Robot.x_part_type==1;
 event cnc2Full_event2 = start(cnc2Full_cond) when Robot.x_part_type==2;
 event cnc2Full_event3 = start(cnc2Full_cond) when Robot.x_part_type==3

 event cnc2Empty_event = start(cnc2Empty_cond);
 event cnc2Empty_event1 = start(cnc2Empty_cond) when Robot.x_part_type==1;
 event cnc2Empty_event2 = start(cnc2Empty_cond) when Robot.x_part_type==2;
 event cnc2Empty_event3 = start(cnc2Empty_cond) when Robot.x_part_type==3

 event cmmFull_event = start(cmmFull_cond);
 event cmmFull_event1 = start(cmmFull_cond) when Robot.x_part_type==1;
 event cmmFull_event2 = start(cmmFull_cond) when Robot.x_part_type==2;
 event cmmFull_event3 = start(cmmFull_cond) when Robot.x_part_type==3

 event cmmEmpty_event = start(cmmEmpty_cond);
 event cmmEmpty_event1 = start(cmmEmpty_cond) when Robot.x_part_type==1;
 event cmmEmpty_event2 = start(cmmEmpty_cond) when Robot.x_part_type==2;
 event cmmEmpty_event3 = start(cmmEmpty_cond) when Robot.x_part_type==3

 event IOBufferEntryFull_event = start(IOBufferEntryFull_cond);
 event IOBufferEntryFull_event1 = start(IOBufferEntryFull_cond)

when Robot.x_part_type==1;
 event IOBufferEntryFull_event2=start(IOBufferEntryFull_cond)

when Robot.x_part_type==2;
 event IOBufferEntryFull_event3=start(IOBufferEntryFull_cond)

when Robot.x_part_type==3

 event IOBufferEntryEmpty_event = start(IOBufferEntryEmpty_cond);
 event IOBufferEntryEmpty_event1 = start(IOBufferEntryEmpty_cond)

when Robot.x_part_type==1;
 event IOBufferEntryEmpty_event2 = start(IOBufferEntryEmpty_cond)

when Robot.x_part_type==2;
 event IOBufferEntryEmpty_event3 = start(IOBufferEntryEmpty_cond)

when Robot.x_part_type==3
 event cnc1EntryFull_event = start(cnc1EntryFull_cond);
 event cnc1EntryFull_event1 = start(cnc1EntryFull_cond)

when Robot.x_part_type==1;

 103

 event cnc1EntryFull_event2 = start(cnc1EntryFull_cond)
when Robot.x_part_type==2;

 event cnc1EntryFull_event3 = start(cnc1EntryFull_cond)
when Robot.x_part_type==3;

 event cnc1EntryEmpty_event = start(cnc1EntryEmpty_cond);
 event cnc1EntryEmpty_event1 = start(cnc1EntryEmpty_cond)

when Robot.x_part_type==1;
 event cnc1EntryEmpty_event2 = start(cnc1EntryEmpty_cond)

when Robot.x_part_type==2;
 event cnc1EntryEmpty_event3 = start(cnc1EntryEmpty_cond)

when Robot.x_part_type==3;

 event cnc2EntryFull_event = start(cnc2EntryFull_cond);
 event cnc2EntryFull_event1 = start(cnc2EntryFull_cond)

when Robot.x_part_type==1;
 event cnc2EntryFull_event2 = start(cnc2EntryFull_cond)

when Robot.x_part_type==2;
 event cnc2EntryFull_event3 = start(cnc2EntryFull_cond)

when Robot.x_part_type==3;

 event cnc2EntryEmpty_event = start(cnc2EntryEmpty_cond);
 event cnc2EntryEmpty_event1 = start(cnc2EntryEmpty_cond)

when Robot.x_part_type==1;
 event cnc2EntryEmpty_event2 = start(cnc2EntryEmpty_cond)

when Robot.x_part_type==2;
 event cnc2EntryEmpty_event3 = start(cnc2EntryEmpty_cond)

when Robot.x_part_type==3;

 //the below components start and finish operation,
 event cnc1_start_work = start(Cnc1.start_work==1);
 event cnc1_stop_work = end(Cnc1.start_work==1);
 event cnc2_start_work = start(Cnc2.start_work==1);
 event cnc2_stop_work = end(Cnc2.start_work==1);
 event cmm_start_work = start(Cmm.start_work==1);
 event cmm_stop_work = end(Cmm.start_work==1);

 //robot can move from one side to the other in the cell
 //it must be at the right side while operates a request
 event wrong_robot_place = start((Robot.robot_place==1 &&

Robot.x_request_type > 4 && robotFull_cond) ||
 (Robot.robot_place==2 &&

Robot.x_request_type < 5 && robotFull_cond));

 //conveyor must rotate by at least 1, at most 13 cups
 event abnormal_rotate = start(Conveyor.turn_flag==1 &&

 ((Conveyor.turn_number >0 && Conveyor.turn_number > 13) ||
 (Conveyor.turn_number <0 && Conveyor.turn_number+14 <=0) ||
 Conveyor.turn_number==0));

 //the below components are full or empty
 condition robotFull_cond = (Robot.val_full==1);
 condition robotEmpty_cond = (Robot.val_full==0);

 104

 condition cnc1Full_cond = (Cnc1.val_full==1);
 condition cnc1Empty_cond = (Cnc1.val_full==0);

 condition cnc2Full_cond = (Cnc2.val_full==1);
 condition cnc2Empty_cond = (Cnc2.val_full==0);

 condition cmmFull_cond = (Cmm.val_full==1);
 condition cmmEmpty_cond = (Cmm.val_full==0);

 condition IOBufferEntryFull_cond = (IOBUFFER_Cup_Entry.val_full==1);
 condition IOBufferEntryEmpty_cond = (IOBUFFER_Cup_Entry.val_full==0);

 condition cnc1EntryFull_cond = (CNC1_Cup_Entry.val_full==1);
 condition cnc1EntryEmpty_cond = (CNC1_Cup_Entry.val_full==0);

 condition cnc2EntryFull_cond = (CNC2_Cup_Entry.val_full==1);
 condition cnc2EntryEmpty_cond = (CNC2_Cup_Entry.val_full==0);

 //control if there is something wrong with the routes of the parts
 condition part1_path = !control_ok && !(Robot.x_part_type!=1 ||

(Robot.x_part_type==1 && (IOBUFFER ||
 (CONVEYOR_CNC1 && from_IOBUFFER) || CNC1 ||
 (CONVEYOR_CNC2 && from_CNC1) || CNC2 ||
 (CONVEYOR_CMM && from_CNC2) || CMM ||
 (CONVEYOR_IOBUFFER && from_CMM))));

 condition part2_path = !control_ok && !(Robot.x_part_type!=2 ||

(Robot.x_part_type==2 && (IOBUFFER ||
 (CONVEYOR_CNC1 && from_IOBUFFER) || CNC1 ||
 (CONVEYOR_CMM && from_CNC1) || CMM ||
 (CONVEYOR_IOBUFFER && from_CMM)) &&
 !CONVEYOR_CNC2 && !CNC2));

 condition part3_path = !control_ok && !(Robot.x_part_type!=3 ||

(Robot.x_part_type==3 && (IOBUFFER ||
 (CONVEYOR_CNC2 && from_IOBUFFER) || CNC2 ||
 (CONVEYOR_CMM && from_CNC2) || CMM ||
 (CONVEYOR_IOBUFFER && from_CMM)) &&
 !CONVEYOR_CNC1 && !CNC1));

 event part1_path_event = start(part1_path);
 event part2_path_event = start(part2_path);
 event part3_path_event = start(part3_path);

 //the useage of the machines,
 //how many times they will be used, and
 //how many times they have been used.
 event CNC1_will_used = new_part && start(Robot.x_part_type!=3);
 event CNC2_will_used = new_part && start(Robot.x_part_type!=2);
 event CMM_will_used = new_part;
 event CNC1_has_used = end(Cnc1.val_full==1);
 event CNC2_has_used = end(Cnc2.val_full==1);
 event CMM_has_used = end(Cmm.val_full==1);

 105

 //control whether something wrong with processing of the requests
 event wrong_IOBUFFER_process = start(control_ok && IOBUFFER &&
 !((Robot.after_turn==0) ||

((Robot.after_turn==1) &&
robotEmpty_cond && IOBufferEntryEmpty_cond &&
(IOBuffer.first_element==Robot.x_part_type)) ||

 ((Robot.after_turn==2) &&
robotFull_cond && IOBufferEntryEmpty) ||

 ((Robot.after_turn==3) &&
robotEmpty_cond && IOBufferEntryFull_cond &&
(IOBUFFER_Cup_Entry.part_type==Robot.x_part_type))));

 event wrong_CNC1_process = start(control_ok && CNC1 &&
 !((Robot.after_turn==0 && cnc1Full_cond) ||
 ((Robot.after_turn==1) &&

robotEmpty_cond && cnc1EntryEmpty_cond &&
cnc1Full_cond && (Cnc1.part_type==Robot.x_part_type)) ||

 ((Robot.after_turn==2) &&
robotFull_cond && cnc1EntryEmpty_cond &&
cnc1Empty_cond) ||

 ((Robot.after_turn==3) && robotEmpty_cond &&
cnc1EntryFull_cond && cnc1Empty_cond &&
(CNC1_Cup_Entry.part_type==Robot.x_part_type))));

 event wrong_CNC2_process = start(control_ok && CNC2 &&
 !((Robot.after_turn==0 && cnc2Full_cond) ||
 ((Robot.after_turn==1)

&& robotEmpty_cond && cnc2EntryEmpty_cond &&
cnc2Full_cond && (Cnc2.part_type==Robot.x_part_type)) ||

 ((Robot.after_turn==2) &&
robotFull_cond && cnc2EntryEmpty_cond &&
cnc2Empty_cond) ||

 ((Robot.after_turn==3) && robotEmpty_cond &&
cnc2EntryFull_cond && cnc2Empty_cond &&
(CNC2_Cup_Entry.part_type==Robot.x_part_type))));

 event wrong_CMM_process = start(control_ok && CMM &&
 !((Robot.after_turn==0 && cmmFull_cond) ||
 ((Robot.after_turn==1) &&

robotEmpty_cond && cnc2EntryEmpty_cond &&
cmmFull_cond && (Cmm.part_type==Robot.x_part_type)) ||

 ((Robot.after_turn==2) &&
robotFull_cond && cnc2EntryEmpty_cond &&
cmmEmpty_cond) ||

 ((Robot.after_turn==3) &&
robotEmpty_cond && cnc2EntryFull_cond &&
cmmEmpty_cond &&
(CNC2_Cup_Entry.part_type==Robot.x_part_type))));

 event wrong_CONVEYOR_IOBUFFER_process =

start(control_ok && CONVEYOR_IOBUFFER &&
 !((Robot.after_turn==0) ||
 ((Robot.after_turn==1) &&

 robotEmpty_cond && iobufferEntryFull_cond &&

 106

(IOBUFFER_Cup_Entry.part_type==Robot.x_part_type)) ||
 ((Robot.after_turn==2) &&

robotFull_cond && iobufferEntryEmpty_cond) ||
 ((Robot.after_turn==3) &&

robotEmpty_cond && iobufferEntryEmpty_cond)));

 event wrong_CONVEYOR_CNC1_process =

start(control_ok && CONVEYOR_CNC1 &&
 !((Robot.after_turn==0) ||
 ((Robot.after_turn==1) &&

robotEmpty_cond && cnc1EntryFull_cond &&
cnc1Empty_cond &&
 (CNC1_Cup_Entry.part_type==Robot.x_part_type)) ||

 ((Robot.after_turn==2) &&
 robotFull_cond && cnc1EntryEmpty_cond &&
 cnc1Empty_cond) ||

 ((Robot.after_turn==3) &&
robotEmpty_cond && cnc1EntryEmpty_cond &&
cnc1Full_cond &&
(Cnc1.part_type==Robot.x_part_type))));

 event wrong_CONVEYOR_CNC2_process =

start(control_ok && CONVEYOR_CNC2 &&
 !((Robot.after_turn==0) ||
 ((Robot.after_turn==1) &&

robotEmpty_cond && cnc2EntryFull_cond && cnc2Empty_cond
&& (CNC2_Cup_Entry.part_type==Robot.x_part_type)) ||

 ((Robot.after_turn==2) &&
robotFull_cond && cnc2EntryEmpty_cond &&
cnc2Empty_cond) ||

 ((Robot.after_turn==3) &&
robotEmpty_cond && cnc2EntryEmpty_cond &&
cnc2Full_cond && (Cnc2.part_type==Robot.x_part_type))));

 event wrong_CONVEYOR_CMM_process =

start(control_ok && CONVEYOR_CMM &&
 !((Robot.after_turn==0) ||
 ((Robot.after_turn==1) &&

robotEmpty_cond && cnc2EntryFull_cond &&
cmmEmpty_cond &&
(CNC2_Cup_Entry.part_type==Robot.x_part_type)) ||

 ((Robot.after_turn==2) &&
robotFull_cond && cnc2EntryEmpty_cond &&
cmmEmpty_cond) ||

 ((Robot.after_turn==3) &&
robotEmpty_cond && cnc2EntryEmpty_cond &&
cmmFull_cond && (Cmm.part_type==Robot.x_part_type))));

 //a part has been taken from the conveyor
 event from_conveyor = start(Robot.after_turn==2 && robotFull_cond &&

((CONVEYOR_IOBUFFER && IOBufferEntryEmpty_cond) ||
 (CONVEYOR_CNC1 && cnc1EntryEmpty_cond) ||

 (CONVEYOR_CNC2 && cnc2EntryEmpty_cond) ||
 (CONVEYOR_CMM && cnc2EntryEmpty_cond)));

 107

 event from_conveyor1 = from_conveyor when Robot.x_part_type==1;
 event from_conveyor2 = from_conveyor when Robot.x_part_type==2;
 event from_conveyor3 = from_conveyor when Robot.x_part_type==3;

 //a part has been put onto the conveyor
 event onto_conveyor = start(Robot.after_turn==3 && robotEmpty_cond &&

 ((IOBUFFER && IOBufferEntryFull_cond) ||
 (CNC1 && cnc1EntryFull_cond) ||
 (CNC2 && cnc2EntryFull_cond) ||
 (CMM && cnc2EntryFull_cond)));

 event onto_conveyor1 = onto_conveyor when Robot.x_part_type==1;
 event onto_conveyor2 = onto_conveyor when Robot.x_part_type==2;
 event onto_conveyor3 = onto_conveyor when Robot.x_part_type==3;
End

 108

APPENDIX B

MEDL SCRIPT OF METUCIM LAB

ReqSpec METUCIM
 import condition part1_path, part2_path, part3_path;

 import event startPgm,
 robotFull_event, robotEmpty_event,
 robotFull_event1, robotEmpty_event1,
 robotFull_event2, robotEmpty_event2,
 robotFull_event3, robotEmpty_event3,
 cnc1Full_event, cnc1Empty_event,
 cnc1Full_event1, cnc1Empty_event1,
 cnc1Full_event2, cnc1Empty_event2,
 cnc1Full_event3, cnc1Empty_event3,
 cnc2Full_event, cnc2Empty_event,
 cnc2Full_event1, cnc2Empty_event1,
 cnc2Full_event2, cnc2Empty_event2,
 cnc2Full_event3, cnc2Empty_event3,
 cmmFull_event, cmmEmpty_event,
 cmmFull_event1, cmmEmpty_event1,
 cmmFull_event2, cmmEmpty_event2,
 cmmFull_event3, cmmEmpty_event3,
 cnc1_start_work, cnc2_start_work, cmm_start_work,
 cnc1_stop_work, cnc2_stop_work, cmm_stop_work,
 IOBufferEntryFull_event, IOBufferEntryEmpty_event,
 IOBufferEntryFull_event1, IOBufferEntryEmpty_event1,
 IOBufferEntryFull_event2, IOBufferEntryEmpty_event2,
 IOBufferEntryFull_event3, IOBufferEntryEmpty_event3,
 cnc1EntryFull_event, cnc1EntryEmpty_event,
 cnc1EntryFull_event1, cnc1EntryEmpty_event1,
 cnc1EntryFull_event2, cnc1EntryEmpty_event2,
 cnc1EntryFull_event3, cnc1EntryEmpty_event3,
 cnc2EntryFull_event, cnc2EntryEmpty_event,
 cnc2EntryFull_event1, cnc2EntryEmpty_event1,
 cnc2EntryFull_event2, cnc2EntryEmpty_event2,
 cnc2EntryFull_event3, cnc2EntryEmpty_event3,
 from_conveyor, onto_conveyor, from_conveyor1, onto_conveyor1,
 from_conveyor2, onto_conveyor2, from_conveyor3, onto_conveyor3,

 109

 new_part, exit_part , exit_part1 , exit_part2 , exit_part3 ,
 control_start, control_end, abnormal_rotate,
 part1_path_event, part2_path_event, part3_path_event,

 CNC1_will_used, CNC2_will_used, CMM_will_used,
 CNC1_has_used, CNC2_has_used, CMM_has_used,
 wrong_IOBUFFER_process, wrong_CNC1_process,

 wrong_CNC2_process, wrong_CMM_process,
 wrong_CONVEYOR_IOBUFFER_process,

 wrong_CONVEYOR_CNC1_process,
 wrong_CONVEYOR_CNC2_process,
 wrong_CONVEYOR_CMM_process,

 new_part_type1, new_part_type2, new_part_type3,
 wrong_robot_place,endPgm;

 //AuxilliaryVariables
 var int SCALE;
 var int part_count, part_in_cnt, part_out_cnt, exit_part_cnt;
 var int part_count1, part_in_cnt1, part_out_cnt1, exit_part_cnt1;
 var int part_count2, part_in_cnt2, part_out_cnt2, exit_part_cnt2;
 var int part_count3, part_in_cnt3, part_out_cnt3, exit_part_cnt3;
 var int part_in_type1_cnt;
 var int part_in_type2_cnt;
 var int part_in_type3_cnt;
 var int robot_part_count;
 var int robot_part_count1;
 var int robot_part_count2;
 var int robot_part_count3;
 var int cnc1_part_count, cnc2_part_count, cmm_part_count;
 var int cnc1_part_count1, cnc2_part_count1, cmm_part_count1;
 var int cnc1_part_count2, cnc2_part_count2, cmm_part_count2;
 var int cnc1_part_count3, cnc2_part_count3, cmm_part_count3;
 var int iobuffer_entry_part_cnt,cnc1_entry_part_cnt,cnc2_entry_part_cnt;
 var int iobuffer_entry_part_cnt1,cnc1_entry_part_cnt1,cnc2_entry_part_cnt1;
 var int iobuffer_entry_part_cnt2,cnc1_entry_part_cnt2,cnc2_entry_part_cnt2;
 var int iobuffer_entry_part_cnt3,cnc1_entry_part_cnt3,cnc2_entry_part_cnt3;
 var int conveyor_part_count;
 var int conveyor_part_count1;
 var int conveyor_part_count2;
 var int conveyor_part_count3;
 var int cnc1_will_used, cnc2_will_used, cmm_will_used;
 var int cnc1_has_used, cnc2_has_used, cmm_has_used;
 var long time1;
 var long time2;
 var int exit_flag;

 var long cnc1_time, cnc1_time1, cnc1_time2;
 var long cnc2_time, cnc2_time1, cnc2_time2;
 var long cmm_time, cmm_time1, cmm_time2;

 //for calculating the time duration between two exit events
 event exit_part_first = exit_part when exit_flag==1;
 event exit_part_second = exit_part when exit_flag==2;

 //parts has been taken from the below components

 110

 event cnc1Empty = cnc1Empty_event when cnc1_time1>0;
 event cnc2Empty = cnc2Empty_event when cnc2_time1>0;
 event cmmEmpty = cmmEmpty_event when cmm_time1>0;

 event cnc1Empty1 = cnc1Empty_event1 when cnc1_time1>0;
 event cnc2Empty1 = cnc2Empty_event1 when cnc2_time1>0;
 event cmmEmpty1 = cmmEmpty_event1 when cmm_time1>0;

 event cnc1Empty2 = cnc1Empty_event2 when cnc1_time1>0;
 event cnc2Empty2 = cnc2Empty_event2 when cnc2_time1>0;
 event cmmEmpty2 = cmmEmpty_event2 when cmm_time1>0;

 event cnc1Empty3 = cnc1Empty_event3 when cnc1_time1>0;
 event cnc2Empty3 = cnc2Empty_event3 when cnc2_time1>0;
 event cmmEmpty3 = cmmEmpty_event3 when cmm_time1>0;

 //parts has been loaded into the below components
 event cnc1Full = cnc1Full_event;
 event cnc2Full = cnc2Full_event;
 event cmmFull = cmmFull_event;

 event cnc1Full1 = cnc1Full_event1;
 event cnc2Full1 = cnc2Full_event1;
 event cmmFull1 = cmmFull_event1;

 event cnc1Full2 = cnc1Full_event2;
 event cnc2Full2 = cnc2Full_event2;
 event cmmFull2 = cmmFull_event2;

 event cnc1Full3 = cnc1Full_event3;
 event cnc2Full3 = cnc2Full_event3;
 event cmmFull3 = cmmFull_event3;

 //the below machines start and stop to process one part
 event cnc1Stop = cnc1_stop_work when cnc1_time1>0;
 event cnc2Stop = cnc2_stop_work when cnc2_time1>0;
 event cmmStop = cmm_stop_work when cmm_time1>0;

 event cnc1Start = cnc1_start_work;
 event cnc2Start = cnc2_start_work;
 event cmmStart = cmm_start_work;

 //to control the time of transfering a part from one component to the other
 //since at that time, it cannot known that to which component the part belongs
 //two components can be seen full, or both can be seen empty at this time
 //this violates the part count preservation rule
 condition control = [control_start,control_end);

 //Preservation of parts
 property part_count_safe1 = !control || (part_in_cnt>=part_out_cnt);
 property part_count_safe1_type1 = !control || (part_in_cnt1>=part_out_cnt1);
 property part_count_safe1_type2 = !control || (part_in_cnt2>=part_out_cnt2);
 property part_count_safe1_type3 = !control || (part_in_cnt3>=part_out_cnt3);

 111

 property part_count_safe2 = !control || (part_count==part_in_cnt-part_out_cnt);
 property part_count_safe2_type1=!control ||

(part_count1==part_in_cnt1-part_out_cnt1);
 property part_count_safe2_type2=!control ||

(part_count2==part_in_cnt2-part_out_cnt2);
 property part_count_safe2_type3=!control ||

(part_count3==part_in_cnt3-part_out_cnt3);

 property part_count_safe3 = !control ||

(part_count==robot_part_count+cnc1_part_count+cnc2_part_count+
 cmm_part_count+conveyor_part_count);

 property part_count_safe3_type1 = !control ||
(part_count1==robot_part_count1+cnc1_part_count1+cnc2_part_count1+

 cmm_part_count1+conveyor_part_count1);
 property part_count_safe3_type2 = !control ||

(part_count2==robot_part_count2+cnc1_part_count2+cnc2_part_count2+
 cmm_part_count2+conveyor_part_count2);

 property part_count_safe3_type3 = !control ||
(part_count3==robot_part_count3+cnc1_part_count3+cnc2_part_count3+

 cmm_part_count3+conveyor_part_count3);

 alarm part_out_count_error = endPgm when (part_out_cnt!=part_in_cnt);
 alarm part_out_count_error1 = endPgm when (part_out_cnt1!=part_in_cnt1);
 alarm part_out_count_error2 = endPgm when (part_out_cnt2!=part_in_cnt2);
 alarm part_out_count_error3 = endPgm when (part_out_cnt3!=part_in_cnt3);

 alarm capasity_exceeded = start(part_count > 14);

 //Request-process consistency
 alarm wrong_IOBUFFER_process_alarm = wrong_IOBUFFER_process;
 alarm wrong_CNC1_process_alarm = wrong_CNC1_process;
 alarm wrong_CNC2_process_alarm = wrong_CNC2_process;
 alarm wrong_CMM_process_alarm = wrong_CMM_process;
 alarm wrong_CONVEYOR_IOBUFFER_process_alarm =

 wrong_CONVEYOR_IOBUFFER_process;
 alarm wrong_CONVEYOR_CNC1_process_alarm =

wrong_CONVEYOR_CNC1_process;
 alarm wrong_CONVEYOR_CNC2_process_alarm =

wrong_CONVEYOR_CNC2_process;
 alarm wrong_CONVEYOR_CMM_process_alarm =

wrong_CONVEYOR_CMM_process;

 //part routes consistency
 alarm wrong_part1_request = part1_path_event;
 alarm wrong_part2_request = part2_path_event;
 alarm wrong_part3_request = part3_path_event;

 //robot sides
 alarm robot_at_wrong_side = wrong_robot_place;
 //time consistency
 alarm cnc1_time_problem = endPgm when ((0.95*cnc1_time)>cnc1_time2 ||

 cnc1_time2>(1.05*cnc1_time));
 alarm cnc2_time_problem = endPgm when ((0.95*cnc2_time)>cnc2_time2 ||

 112

cnc2_time2>(1.05*cnc2_time));
 alarm cmm_time_problem = endPgm when ((0.90*cmm_time)>cmm_time2 ||

cmm_time2>(1.10*cmm_time));

 //event endPgm_for_cnc1 = endPgm when cnc1_time !=0;
 event end_cnc1_time_cont = endPgm when ((0.95*cnc1_time)>cnc1_time2 ||

cnc1_time2>(1.05*cnc1_time));
 event end_cnc2_time_cont = endPgm when ((0.95*cnc2_time)>cnc2_time2 ||

cnc2_time2>(1.05*cnc2_time));
 event end_cmm_time_cont = endPgm when ((0.90*cmm_time)>cmm_time2 ||

cmm_time2>(1.10*cmm_time));

 //minimum time between two consecutive exits
 alarm min_time_difference = start(time1!=0 && time2!=0 &&

((time1-time2 > 0 && time1-time2 < 30000/SCALE)||
(time2-time1 >0 && time2-time1 < 30000/SCALE)));

 //visitation consistency
 alarm CNC1_visitation_inconsistent=endPgm

when (cnc1_will_used!=cnc1_has_used);
 alarm CNC2_visitation_inconsistent=endPgm

when (cnc2_will_used!=cnc2_has_used);
 alarm CMM_visitation_inconsistent=endPgm

when (cmm_will_used!=cmm_has_used);

 //limited hardware capacity
 alarm robot_capacity_exceeded = start(robot_part_count>1);
 alarm cnc1_capacity_exceeded = start(cnc1_part_count>1);
 alarm cnc2_capacity_exceeded = start(cnc2_part_count>1);
 alarm cmm_capacity_exceeded = start(cmm_part_count>1);
 alarm conveyor_capacity_exceeded = start(conveyor_part_count>14);
 alarm iobuffer_entry_capacity_exceeded = start(iobuffer_entry_part_cnt>1);
 alarm cnc1_entry_capacity_exceeded = start(cnc1_entry_part_cnt>1);
 alarm cnc2_enrty_capacity_exceeded = start(cnc2_entry_part_cnt>1);

 //hardware is already empty
 alarm robot_process_error = start(robot_part_count<0);
 alarm cnc1_process_error = start(cnc1_part_count<0);
 alarm cnc2_process_error = start(cnc2_part_count<0);
 alarm cmm_process_error = start(cmm_part_count<0);
 alarm conveyor_process_error = start(conveyor_part_count < 0);
 alarm iobuffer_entry_already_empty = start(iobuffer_entry_part_cnt<0);
 alarm cnc1_entry_already_empty = start(cnc1_entry_part_cnt<0);
 alarm cnc2_entry_already_empty = start(cnc2_entry_part_cnt<0);

 //conveyor rotation problem
 alarm conveyor_rotate_problem = abnormal_rotate;

 startPgm->{
 part_in_cnt=0;
 part_in_cnt1=0;
 part_in_cnt2=0;
 part_in_cnt3=0;
 part_in_type1_cnt=0;

 113

 part_in_type2_cnt=0;
 part_in_type3_cnt=0;
 part_out_cnt=0;
 part_out_cnt1=0;
 part_out_cnt2=0;
 part_out_cnt3=0;
 part_count=0;
 part_count1=0;
 part_count2=0;
 part_count3=0;
 exit_part_cnt=0;
 exit_part_cnt1=0;
 exit_part_cnt2=0;
 exit_part_cnt3=0;
 robot_part_count=1;
 robot_part_count1=1;
 robot_part_count2=1;
 robot_part_count3=1;
 cnc1_part_count=0;
 cnc1_part_count1=0;
 cnc1_part_count2=0;
 cnc1_part_count3=0;
 cnc2_part_count=0;
 cnc2_part_count1=0;
 cnc2_part_count2=0;
 cnc2_part_count3=0;
 cmm_part_count=0;
 cmm_part_count1=0;
 cmm_part_count2=0;
 cmm_part_count3=0;
 conveyor_part_count=0;
 iobuffer_entry_part_cnt=0;
 cnc1_entry_part_cnt=0;
 cnc2_entry_part_cnt=0;
 conveyor_part_count1=0;
 iobuffer_entry_part_cnt1=0;
 cnc1_entry_part_cnt1=0;
 cnc2_entry_part_cnt1=0;
 conveyor_part_count2=0;
 iobuffer_entry_part_cnt2=0;
 cnc1_entry_part_cnt2=0;
 cnc2_entry_part_cnt2=0;
 conveyor_part_count3=0;
 iobuffer_entry_part_cnt3=0;
 cnc1_entry_part_cnt3=0;
 cnc2_entry_part_cnt3=0;
 exit_flag=1;
 time1=0;
 time2=0;
 cnc1_time=0;
 cnc1_time1=0;
 cnc1_time2=0;
 cnc2_time=0;
 cnc2_time1=0;

 114

 cnc2_time2=0;
 cmm_time=0;
 cmm_time1=0;
 cmm_time2=0;
 cnc1_will_used=0;
 cnc2_will_used=0;
 cmm_will_used=0;
 cnc1_has_used=0;
 cnc2_has_used=0;
 cmm_has_used=0;
 SCALE=100;
 }

 new_part->{ part_in_cnt=part_in_cnt+1;
 part_count=part_count+1; }

 new_part_type1->{ part_in_type1_cnt=part_in_type1_cnt + 1;
 cnc1_time=cnc1_time+203000/SCALE;
 cnc2_time=cnc2_time+109000/SCALE;
 cmm_time=cmm_time+219000/SCALE;
 cnc1_will_used=cnc1_will_used + 1;
 cnc2_will_used=cnc2_will_used + 1;
 cmm_will_used=cmm_will_used + 1;
 part_in_cnt1=part_in_cnt1+1;
 part_count1=part_count1+1; }

 new_part_type2->{ part_in_type2_cnt=part_in_type2_cnt + 1;
 cnc1_time=cnc1_time+103000/SCALE;
 cmm_time=cmm_time+219000/SCALE;
 cnc1_will_used=cnc1_will_used + 1;
 cmm_will_used=cmm_will_used + 1;
 part_in_cnt2=part_in_cnt2+1;
 part_count2=part_count2+1; }

 new_part_type3->{ part_in_type3_cnt=part_in_type3_cnt + 1;
 cnc2_time=cnc2_time+131000/SCALE;
 cmm_time=cmm_time+219000/SCALE;
 cnc2_will_used=cnc2_will_used + 1;
 cmm_will_used=cmm_will_used + 1;
 part_in_cnt3=part_in_cnt3+1;
 part_count3=part_count3+1; }

 robotFull_event-> { robot_part_count=robot_part_count+1; }
 robotEmpty_event->{ robot_part_count=robot_part_count-1;
 robot_part_count1=0;
 robot_part_count2=0;
 robot_part_count3=0; }
 robotFull_event1-> { robot_part_count1=robot_part_count1+1; }
 robotFull_event2-> { robot_part_count2=robot_part_count2+1; }
 robotFull_event3-> { robot_part_count3=robot_part_count3+1; }
 cnc1Full-> { cnc1_part_count=cnc1_part_count+1; }
 cnc1Empty->{ cnc1_part_count=cnc1_part_count-1;
 cnc1_has_used=cnc1_has_used+1;
 cnc1_part_count1=0;

 115

 cnc1_part_count2=0;
 cnc1_part_count3=0;}
 cnc1Full1-> { cnc1_part_count1=cnc1_part_count1+1; }
 cnc1Full2-> { cnc1_part_count2=cnc1_part_count2+1; }
 cnc1Full3-> { cnc1_part_count3=cnc1_part_count3+1; }

 cnc1Start->{ cnc1_time1=time(cnc1Start); }
 cnc1Stop -> { cnc1_time2=cnc1_time2+(time(cnc1Stop)-cnc1_time1); }

 cnc2Full -> { cnc2_part_count=cnc2_part_count+1; }
 cnc2Empty -> { cnc2_part_count=cnc2_part_count-1;
 cnc2_has_used=cnc2_has_used+1;
 cnc2_part_count1=0;
 cnc2_part_count2=0;
 cnc2_part_count3=0;}
 cnc2Full1 -> { cnc2_part_count1=cnc2_part_count1+1; }
 cnc2Full2 -> { cnc2_part_count2=cnc2_part_count2+1; }
 cnc2Full3 -> { cnc2_part_count3=cnc2_part_count3+1; }

 cnc2Start->{ cnc2_time1=time(cnc2Start); }
 cnc2Stop->{ cnc2_time2=cnc2_time2+(time(cnc2Stop)-cnc2_time1); }

 cmmFull-> { cmm_part_count=cmm_part_count+1; }
 cmmEmpty-> { cmm_part_count=cmm_part_count-1;
 cmm_has_used=cmm_has_used+1;
 cmm_part_count1=0;
 cmm_part_count2=0;
 cmm_part_count3=0;}
 cmmFull1 -> { cmm_part_count1=cmm_part_count1+1; }
 cmmFull2 -> { cmm_part_count2=cmm_part_count2+1; }
 cmmFull3 -> { cmm_part_count3=cmm_part_count3+1; }

 cmmStart->{ cmm_time1=time(cmmStart); }
 cmmStop->{ cmm_time2=cmm_time2+(time(cmmStop)-cmm_time1); }

 from_conveyor->{ conveyor_part_count=conveyor_part_count-1; }

 from_conveyor1->{ conveyor_part_count1=conveyor_part_count1-1; }

 from_conveyor2->{ conveyor_part_count2=conveyor_part_count2-1; }

 from_conveyor3->{ conveyor_part_count3=conveyor_part_count3-1; }

 onto_conveyor->{ conveyor_part_count=conveyor_part_count+1; }

 onto_conveyor1->{ conveyor_part_count1=conveyor_part_count1+1; }
 onto_conveyor2->{ conveyor_part_count2=conveyor_part_count2+1; }
 onto_conveyor3->{ conveyor_part_count3=conveyor_part_count3+1; }

 exit_part ->{ part_out_cnt=part_out_cnt+1;
 part_count=part_count-1;
 exit_part_cnt=exit_part_cnt+1; }

 exit_part1 ->{part_out_cnt1=part_out_cnt1+1;

 116

 part_count1=part_count1-1;
 exit_part_cnt1=exit_part_cnt1+1; }

 exit_part2 ->{ part_out_cnt2=part_out_cnt2+1;
 part_count2=part_count2-1;
 exit_part_cnt2=exit_part_cnt2+1; }

 exit_part3 ->{ part_out_cnt3=part_out_cnt3+1;
 part_count3=part_count3-1;
 exit_part_cnt3=exit_part_cnt3+1; }

 exit_part_first ->{ time1=time(exit_part1);
 exit_flag=2; }

 exit_part_second ->{ time2=time(exit_part2);
 exit_flag=1; }

 IOBufferEntryFull_event ->{ iobuffer_entry_part_cnt=iobuffer_entry_part_cnt+1; }
 IOBufferEntryEmpty_event->{ iobuffer_entry_part_cnt=iobuffer_entry_part_cnt-1;
 iobuffer_entry_part_cnt1=0;
 iobuffer_entry_part_cnt2=0;
 iobuffer_entry_part_cnt3=0; }
 cnc1EntryFull_event ->{ cnc1_entry_part_cnt=cnc1_entry_part_cnt+1; }
 cnc1EntryEmpty_event->{ cnc1_entry_part_cnt=cnc1_entry_part_cnt-1;
 cnc1_entry_part_cnt1=0;
 cnc1_entry_part_cnt2=0;
 cnc1_entry_part_cnt3=0;}
 cnc2EntryFull_event ->{ cnc2_entry_part_cnt=cnc2_entry_part_cnt+1; }
 cnc2EntryEmpty_event->{ cnc2_entry_part_cnt=cnc2_entry_part_cnt-1;
 cnc2_entry_part_cnt1=0;
 cnc2_entry_part_cnt2=0;
 cnc2_entry_part_cnt3=0;}

 IOBufferEntryFull_event1 ->{

 iobuffer_entry_part_cnt1=iobuffer_entry_part_cnt1+1; }
 cnc1EntryFull_event1 ->{ cnc1_entry_part_cnt1=cnc1_entry_part_cnt1+1; }
 cnc2EntryFull_event1 ->{ cnc2_entry_part_cnt1=cnc2_entry_part_cnt1+1; }

 IOBufferEntryFull_event2 ->{
iobuffer_entry_part_cnt2=iobuffer_entry_part_cnt2+1; }
 cnc1EntryFull_event2 ->{ cnc1_entry_part_cnt2=cnc1_entry_part_cnt2+1; }
 cnc2EntryFull_event2 ->{ cnc2_entry_part_cnt2=cnc2_entry_part_cnt2+1; }

 IOBufferEntryFull_event3 ->{
iobuffer_entry_part_cnt3=iobuffer_entry_part_cnt3+1; }
 cnc1EntryFull_event3 ->{ cnc1_entry_part_cnt3=cnc1_entry_part_cnt3+1; }
 cnc2EntryFull_event3 ->{ cnc2_entry_part_cnt3=cnc2_entry_part_cnt3+1; }

End

