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ABSTRACT

VISUALIZING DATA WITH FORMAL CONCEPT ANALYSIS

CAGRI DINER
M.Sc., Department of Mathematics
Supervisor: Asst. Prof. Dr. Andreas TIEFENBACH

SEPTEMBER 2003, 64 pages

In this thesis, we wanted to stress the tendency to the geometry of data.
This should be applicable in almost every branch of science, where data are
of great importance, and also in every kind of industry, economy, medicine
etc. Since machine’s hard-disk capacities which is used for storing data and
the amount of data you can reach through internet is increasing day by day,
there should be a need to turn this information into knowledge. This is one
of the reasons for studying formal concept analysis.

We wanted to point out how this application is related with algebra and
logic. The beginning of the first chapter emphasis the relation between clo-
sure systems, Galois connections, lattice theory as a mathematical structure
and concept analysis. Then it describes the basic step in the formalization:
An elementary form of the representation of data is defined mathematically.

Second chapter explains the logic of formal concept analysis. It also shows

how implications, which can be regard as special formulas on a set, between

il



attributes can be shown by fewer implications, so called generating set for
implications.

These mathematical tools are then used in the last chapter, in order to
describe complex 'concept’ lattices by means of decomposition methods in
examples.

Keywords: Formal Concept Analysis, data analysis, lattice theory, closure

systems, implications, decompositions.
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VERILERIN GEOMETRISI

CAGRI DINER
Yiksek Lisans, Matematik Bolimu

Tez Yoneticisi: Y. Doc. Dr. Andreas TIEFENBACH
BEylil 2003, 64 sayfa.

Bu tezde verilerin geometrisine olan artan ilgiliyi vurgulamak istedik. Bu
konu, verilerin oldugu her bilim ve endiistri dalinda uygulama alani bulabilir.
Giiniimiizde bilgisayarlarin gitgide biiyliyen hafizalart ve internet iizerinden
ulagabilecegimiz verilerin ¢coklugu bu verilerin bir gekilde bilgiye doniismesine
ihtiya¢ dogurmugtur. Kavram analizinin calisilmasinin sebeplerinden biri de
budur.

Tiim bu uygulamalarin cebir ve mantik bilimiyle nasil ilgili oldugunu an-
latmaya ¢aligtik. Birinci konunun baglarinda kapali sistemler, Galois baglantilari,
matematiksel bir yap1 olan kafes teorisi ve kavram analizinin arasindaki
baglar1 gosterdik. ilerleyen kisimlarda verilerin gosterilmesinde kullanilan
tablolarin matematiksel olarak nasil tanimlandigini ve temel tanimlar: verdik.

ikinci konu kavram analizinin mantik temelleri iizerine oldu. Veri anal-
izinde onemli bir yere sahip olan ¢ikarimlarin daha az sayida cikarim kul-

lanilarak nasil ifade edilebileceginin teorisini gosterdik.



En son konuda tiim bu matematiksel tanimlar ve teorileri kullanarak,
karmasik ve biiyiik kafes diagramlarinin nasil daha kiiciik parcalara ayrilabilecegini
ve ifade edilebilecegini ispatladik.

Anahtar kelimeler: Formel kavram analizi, veri analizi, cikarimlar, kapah

sistemler, kafes teorisi
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CHAPTER 1

Mathematical Background

1.1 Introduction to Lattices

In the first chapter we will introduce formal concept analysis which is mainly
based on lattice theory. First we will define the elementary form of repre-
sentation of data (the cross table) mathematically, which is called formal
context. Then a formal concept of such a data context is explained. Next we
will prove that these concepts form a mathematical structure called concept
lattices. So that all concepts of a data can be represented in a diagram.

Before starting formal concept analysis, we will remind some basic definitions

and results in lattice theory and closure systems.

Definition 1 Let (M, <) be an ordered set and A be a subset of M. A lower
bound of A is an element s of M with s < a for alla € A. An upper
bound of A is defined dually. If there is a largest element in the set of all
lower bounds of A, it is called the infimum of A and is denoted by \ A;
dually, a least upper bound is called supremum of A and is denoted by \/ A

Definition 2 An ordered set V : = (V,<) is a lattice, if for any two

elements x and y in V the supremum x V y and the infimum x Ay always



exist. V is called a complete lattice, if the supremum \/ X and the infimum

N\ X ezist for any subset X of V

Definition 3 [5] A congruence relation of a complete lattice V is an

equivalence relation © on 'V satisfying:

2,0y, forte T = (/\ 7)0( /\ yi) and ( \/ ) O( \/ Yt)

tc T tc T tc T tc T

, where T is any nonempty index set.
We define
[#]0:= {ye V |20y}

which 1s the equivalence class of © containing x. The factor lattice
V/o:= {[z]© |ze V}

has the order defined by
[2]© < [y]© = 20(z A y)

Definition 4 For an element v of a complete lattice 'V, we call it \/-
wrreducible if v cannot be represented as the supremum of strictly smaller
elements.  Dually, we define \-irreducible. A set X C V is called
supremum-dense in V, if every element from V can be represented as
the supremum of a subset of X and dually infimum-dense if v = A{z €
X |v<z} forallve V.

1.2 Closure Systems and Galois Connections

Definition 5 {1 C B(G) is called a closure system on a set G if

2



1. Ge U

2.XCU=NXe U

The map ¢ : P(G) — P(G) is a closure operator on G if

1. XC Y= (X)C ) (monotony)
2. X C Y(X) (extensity)
3. Y((X) =y(X) (idempotency)

Examples. For many mathematical structures, the system of substructures

important examples are

1. Subspaces: For any vector space V, the system $1(V) of all subspaces

is a closure system.

2. Subgroups: For any group G, the set {(G) of all subgroups of G is a

closure system.

3. Equivalence Relations: For a set M, the set (M) of all equivalence

relations on A is a closure system on M x M.
Theorem 1 If U is a closure system on G then
Yu(X):= [[{Ae 8| X C 4}
defines a closure operator on G. Conversely, the set
U= {YX) | XS G}

of all closures of a closure operator i is always a closure system, and

Yy, = ¥ as well as thy, = U



Proof. 1y is a closure operator : First, we will prove that it satisfies
monotony. Let a € (X), thena € A forall A € 4 and X C A
Soa€ Bforall Be and Y C Bsince X C Y. Hence a € ¢(Y).
Extensity is trivial.

For idempotency,

da(a(X)) = [[{A€ U] u(X)C A} = hy(X)

since 1y (X) € U by definition.
i, is a closure system: Firstly, G € i, = {¢(X) | X C G} because
G € 9(G) implies ¥(G) = G. To prove that set of subsets of G is closed

under intersection, we will show that

x = »((%)

, where X C 4l,. Now (X C ¢([) X) by extensity.

a € w(ﬂ%):ae P(X), forany X € X

since (1X € X = ¢(NX) € +(X) by monotony. This implies
a € X, forany X € X because X € i, means X = ¢(Y) for some ¥ C
G and ¥(X) = YY) = ¢¥(Y) = X by idempotency.

= ac ()%
= (1% C x

4



= (%) =[x

= (X (X)X C G} = 4.
For the last part of the theorem, we have

Xetl & X =[{de d|XC 4}
& Py(X) = X

& X e Uy,

this proves that ¢y, = . For A € U, X C Ais equivalent to »(X) C A.

Hence

Y, (X) = [J{A€ gy | X C A}
= [J{Ae [ ¢(X)C 4}
= (X)), since Y(X) € Uy.

Definition 6 A Galois connection between the sets A and B is a pair of
maps
¢ : B(A) = PB(B) and ¢ : P(B) — P(A)

such that for all X, X' C A and all Y,Y' C B the following conditions are
satisfied:

L. XC X' =3¢(X)C ¢(X)and Y C V' = p(Y') C p(Y)
2. X C (d(X)) and Y € ¢(y(Y))

The two maps then are called dually adjoint to each other.



Lemma 1 [2] Let ¢ and ¢ be a Galois connection between the sets A and B.
Then

o(1(9)) = ¢ and Y(d(¥)) = ¢

Proof. Let X C A. By the second Galois connection property, we have
X C 9(¢(X)). By applying ¢ to this gives ¢(1/(¢(X))) € ¢(X). But we
also have ¢(X) C &(¥(¢(X))), by the second property of Galois connection
applied to the set ¢(X). This gives us ¢(X) = &(¢(4(X))). The second

equality is proved similarly. °

Lemma 2 [2] ¢ and ¢ of maps form a Galois connection between A and B

if and only if
VC ¢(X)e X CyP(Y), for al XC AandY C B

Proof. Suppose Y C ¢(X), then ¥(¢(X)) € (YY) by the first property
of Galois connection. Since X C (¢(X)) by the second property of Galois
connection, we have X C (Y'). The other direction can be shown similarly.
Conversely, from ¢(X) C (X)) we have X C (¢(X)). If X C X', where
X, X" C A, we can deduce that X C 9(¢(X’)) and by the premise we get

P(X') C $(X). .

Proposition 1 If the maps ¢ : P(A) — B(B) , ¢ : V(B) — B(A) form a
Galois connection
o(| ) A) = [) #(A), holds for all A, C A
te T te T

The same property holds for 1.



Proof.

ze [ ¢(A) & {2} C o(4),Vte T
s A C Y({z}),Vt € T, by lemma 2
A U A C Y({z})

tc T

& {z} € o(|J Ay, by lemma 2

tc T

s xe o[ J4)

tc T

[ J
Galois connections are also related to closure operators, as the following

proposition shows.

Theorem 2 Let the pair (¢,v) with ¢ : P(A) — P(B), ¢ : RB(B) — P(A)
be a Galois connection between the sets A and B. Then ¢ and ¢y are

closure operators on A and B, respectively.

Proof. Monotony :

XCVY = ¢)C ¢X)
= P(p(X)) C %(p(Y)), forall X, ¥ C A

Extensity: X C  ¢(¢(X)), which is exactly second condition for Galois
connection.

Idempotency: By lemma 1 we have ¢ = ¢1p¢. Applying ¢ to this equation,
we get idempotency. Similarly, one can prove that ¢ is a closure operator

on B. .



Now we will see the relation between Galois connections and binary

relations.

Theorem 3 For every binary relation R C M x N, there is a Galois con-

nection (dr, Yr) between M and N defined by

or(X): = X®(= {ye€ N|zRy, foralzc X})

Yr(Y):= Y®(= {z € M |zRy, forallye Y})

,2where X and 'Y are subsets of M and N respectively.
If, conversely, (¢,v) is a Galois connection between M and N, then

Rgyy: = {lz,y)€ MxN|ze v({y})}
= {(z,y)e MxN|yec ¢o({z})}

is a binary relation between M and N . In addition, ¢r,

¢, Rigpan) = R

Proof. To show that (¢g, ¥g) forms a Galois connection, we will use lemma
2. Assuming X C ¢g(Y) and y € Y, we get xRy for all z € X by definition

Conversely, if (¢,1) is a Galois connection then

{zy)e MxNlze v({yh)} = {(z,y) € MxN[ye ¢({z})}

by lemma 2 again.

Now it remains to show that

PRy = 9 YRy = Yand Ry = R

8



By proposition 1, we get

o(X) = () ola}

ze X

= ﬂ ¢R(¢,w>{x}7 since ¢R(¢,w>{x} = {ye N|zRy} = ye ¢{z}

ze X

= PRy (X)

de ¢r,, = ¢ andsimilarly ¥g, , = 9.

The last statement Ry, 4, = R follows immediately from the equivalence

z € Yr{y} < zRy. .

1.3 Formal Concept Analysis

Definition 7 A Formal Context K := (G, M, ) consists of two sets G
and M and a relation I between G and M.The elements of G are called the
objects and the elements of M are called the attributes of the context.
The I relation between an object g and an attribute m is written as gIm or
(g,m) € I and read as "the object g has the attribute m”. The relation I is

also called the incidence relation of the context.

A small context can be represented by a cross-table, which is a rect-
angular in shape and the rows of which are headed by the ob-
ject names and the columns headed by attribute names. A cross

in row g and column m means that object g has the attribute m.



[

Margherita

Napoletana

Veneziana

X | X | X [X

Mushroom

quattro formaggi

X

La reine

Fiorentina

Pizza Allo Noci

Caprina

Sloppy Giuseppe

Soho Pizza

American

Giardiniera

Siciliana

Capricciosa

X | X | X [X

Four Seasons

American Hot

XX [X [ XX [X|X[|X]|X

Cajun

XXX [ XX [X[|X[X[X]|X[X|X|X|[X]|X[X]|X[X[X]w
X

Neptune

Jun
[}
Jun
-3

18 19 20 21 22 23 24 25 26 27 28 29 30 31

Margherita

Napoletana

Veneziana

Mushroom

quattro formaggi

La reine

Fiorentina X
Pizza Allo Noci X

Caprina X X

Sloppy Giuseppe X X

Soho Pizza X X

American X

Giardiniera X X X X

Siciliana «

Capricciosa X

Four Seasons X

American Hot X X

Cajun X X X

Neptune X

, where the objects set consists of the special pizzas in a restaurant and
the attributes are the ingredients for the pizzas. So (g,m) is in the relation
I C G x M if the pizza ¢ has the ingredient m.

The numbers in the attribute set corresponds to: 1)mozzarella 2)tomato

3)capers 4)anchovies 5)olives 6)onions 7)pine kernels 8)sultanas 9)mush-

10



rooms 10)four cheese 11)ham 12) spinach 13)free range egg 14)garlic 15)wal-
nut halves 16)gorgonzola 17)sun dried tomato 18)goat’s cheese 19)hot beef
20)green peppers 21)rocket 22)parmesan 23)peperon 24)sliced tomato 25)red
peppers 26)leeks 27)petits pois 28)artichokes 29)prawns 30)tobasco pepper

sauce 31)tuna
Definition 8 In a context (G, M, I), for a set A C G of objects we define
A= {me M| gIm for all g€ A}

(the set of attributes common to the objects in A). Correspondingly, for a set
B of attributes we define

B := {g€ G|glm for all m € B}

(The set of objects which have all attributes in B) For an object g € G we
write g’ instead of {g} for the object intent {m € M | gIm} of the object

g. Correspondingly, m’ : = {g € G | gIm} is the attribute extent of the

attribute m. We call the operators ’ as deriwation operators.

Definition 9 A formal concept of the context (G, M, I) is a pair (A, B) with
AC G, BC M, A = Band BS = A. We call A the extent and B
the intent of the concept (A, B). B(G, M, I) denotes the set of all concepts
of the context (G, M, I).

Example 1 Some concepts in our pizza example are ( Mushroom, Lareine,
Giardiniera, Four Seasons; mozzarella, tomato, mushroom), (Sloppy

Giuseppe, Veneziana, Cajun, Nepture; tomato, onions ), { Fiorentina, Soho

11



Pizza, Pizza Allo Noci, Siciliana; tomato, garlic ) and ( Giardiniera; moz-

zarella,olives,mushroom, tomato, red peppers, sliced tomato, leeks, petits

pois).
Concept operators form a Galois connection between G' and M.

Proposition 2 If (G, M, 1) is a context, A, A1, Ay C G are sets of objects
and B, B1, By C M are sets of attributes, then

2. AC Aand BC B”
Proof.

1. Let m € A, then gIm , for all g € Ay by definition of A,. This

implies gIm , for all g € A; since A; C Ay. Som € Al.

2. If g € A then g/m for all m € A’ , which implies ¢ € A", since
A" = {ge G|glm forallme A'}.

[
This proposition shows that the two derivation operators form a Galois con-
nection between GG and M. Hence we obtain two closure systems on G and M,
whose closure operators are maps assigning a closure A” C G and B" C M
to each subset A C G and B C M. By definition A is an extent if and only
if A = A”. So extents of the concepts of the context (G, M, I) form a clo-
sure system corresponding to the closure operator. Hence A” is the smallest
extent of the concept (A", A’) containing A. Note that A’ = A" by propo-

sition 2, so (A", A") is always a concept. The same is true for intents, i.e.

12



(B', B") is always a concept. We call the concept (¢”,¢’) as object concept
and (m/,m") as attribute concept.

Since extents and also intents form a closure system on G and M, re-
spectively intersection of any number of extents(intents) is always an ex-

tent(intent). Moreover we have :

Proposition 3 If T is an index set and, for evertt € T, A, C G is a set

of objects, then

(U At)l = ﬂA;

te T te T
The same holds for the sets of attributes.

Proof. Since the derivation operators form a Galois connection between the

sets GG and M, by proposition 1 we get the equality. °

Definition 10 A context K: = (G, M, 1) is called clarified if for any objects
g, he G fromg = h' it always follows that ¢ = h and, correspondingly,

m' = n' impliesm = n forallm,ne M.

Remark: Obviously if we merge one of the objects, with the same intent,
from the context then the structure of the concept lattice remains un-
changed. The same is true for merging one of the attributes with the same

intent.

Example 2 In our pizza example, the context is not clarified because

{prawns} = {tobascopeppersauce}’ but they are not the same thing
obviously.  Also {leeks} = {petitspois} = {slicedtomato},
{sundriedtomato} = {goat'scheese} {walnuthalves} = {gorgonzola}’

13



Apinekernels} = {sultanas}’

So the context can be clarified if when we exclude one of the attributes with
the same extents. Two ingredients with the same extent means that they are
always contained in the same pizzas. Note that the objects are already clari-
fied, which means that there are no pizza’s which have the same ingredients,

and it 18 obviously an expected result.

Theorem 4 The concepts of the context (G, M, I) form a complete lattice,
denoted by B(G, M, I) in which infimum and supremum are given by :

s - ()

tetl teT tetl
\/ (At; Bt) — ((U At7) j m Bt)
teT teT teT

A complete lattice 'V is isomorphic to B(G, M, I) if and only if there are
mappings ¥ : G — V and i : M — V such that ¥(G) is supremum-dense
in 'V, u(M) is infimum-dense in 'V and gIm is equivalent to vg < pm for
all g € G and allm € M. In particular, V. = B(V,V, <)

Proof. We define the order of the concepts as follows
(A, By) < (A9, By) & AL C Ay & By C By

It is clearly reflexive, antisymmetric and transitive. And the last equivalence
follows from the facts that A = By, A, = B, and the derivation operator
is a Galois connection.

Now we’ll prove that infimum and supremum are well defined.

(na(us)) = ((us) (ur))

14



by proposition 7.

Since it has the form (X" X'), it is a concept.

This is also the largest common subconcept of the concepts (A, By), follows
from the fact that the extent of this concept is exactly the intersection of the

extents of (A;, By). For the supremum,

\ (4,B) = U 4. ,ﬂBt>

teT teT teT
n
_ !
= (U4 )N At)
ter terT

- UAt7 ’ (mAt) )
teT teT

So it’s a concept and also the smallest one which is greater than each of the
concepts (Ay, By) since its extent is the closure of the union of the extents
A;. Thus we have proven that B(G, M, I) is a complete lattice.

Now we prove firstly the special case V. = B(G, M, I) if and only if
there are mappings 7 and i with the required properties, then generalize to

show that the same holds for V = B(G, M, I). We set

¥ = (gt {g}) forge G

po= ({my Am}") forme M

ype{gt' € {mf e {m}" C {g} eme {g} < gIm

Furthermore, on account of the formulas proved above

V {g}' Aet) = (4,B) = N\ (m}, {m}")

geA meB

15



since

V (gt {gY) =

geA

So (U{g}")" = A since B =
similarly.

Hence 7(G) is supremum-dense and (M) is infimum dense in B(G, M, I).
More generally if V =2 B(G, M, I) and ¢ : B(G,M,I) — V is an isomor-

phism, we define 7 and i by

¥ = Y({g}" {g}) forge G
por= p{m},{m}") forme M

The properties claimed for these mappings are proved in a similar fashion.

If, conversely, V is a complete lattice and
vy:G@—=>Vadp: M -V
are mappings with the properties stated in the theorem, then let’s define

W:B(G, M, 1) >V

Y(4,B): = \/{A(9) | g€ A}

16



1 is well-defined since V is a complete lattice. Now, we will show that ¢ is
an isomorphism.

1 is an order embedding : (A, By) < (Ag, B) = (A1, By) = V{7(g) |g €
A} C V{lg) g€ A} = ¢(Ag, By) since A; C A,. It remains to show
that ¥(Ay, By) < ¢¥(Ay, Bs) = (A1, B1) < (Ag, Bs). Before proving this

implication, we’ll show that

V9 lge A} = Afa(m) [me A%

Since (M) is dense in 'V, we get

\/ﬁ(g) lge A} = /\ w(m) for some NC M

me N
V{39 | g€ A} <fi(m) for any me N
Y(g) < film) for anyme Nandge A
glm, foranyme Nandge A

N = A

Vi) g€ 4} = AGiitm) | me 4}

Using this fact,

e

W(ALB) = /{9 [ge A} < Ali(m) |me Ay} = ¢(A2, By)

Now, let a € A;, then
¥(a) < (A1, Br) < ¢(Ag, By) < pi(m), for any m € A,
= alm, for any m € Aj
= ac Ag = AQ

17



Hence (Al,Bl) S (AQ,BQ).
isa l-1: Let ¢(A;, By) = ¥(Ay, By). By using the fact above, that is,

VW) lge A} = A{am) [me A} = A{am) [me Ay}
(9) < fi(m) for anym € A, = By and g€ A;
gIm, for anym € A, = By andg € A

All = BQ and Al = B;

ol

Al == AQ CLTLdBl == BQ

¥ is onto: Let v € V), then since ¥(G) is supremum dense in V. v =
Ve 47(g), for some A C G. We have to show that A is an extent. But
v = V,ca79) = Anepn(m), for some A C G and B C M implies
Y(g) < p(m) for anym € Band g€ A. Hence A/ = Band B’ = A. e

Definition 11 We call m € M reducible attribute if there exist X C M
with m ¢ X and m' = X'. Similarly we define reducible object.

Definition 12 A clarified context (G, M,I) is called row-reduced if every
object concept is \/-irreducible and column reduced if every attribute concept
is \-irreducible. A context which is both row-reduced and column-reduced is

called reduced.

So if we exclude reducible attributes and reducible objects from the context,

it becomes reduced.

Example 3 The reduced attributes in the pizza context are ;

Tomato, pine kernels, hot beef, sliced tomato, artichokes, prawns and tuna.

18
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R (\» 7
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Neptlne o [weneziana : Fizza llo Noci | 2 [Sioppy Giuseppe
,’,: pine kernels i gorgdnzola I hot bheef Ir sundriedtomato
| ‘ : b goat's chesse

La reing Giardiniera | 7 Capricciosa Siciliana

sliced tumato‘ 1 artichokes
leelks | {

[ petits pois | [FourSeasons Fiorentina

sultanas walnut halves

f' ,I Cajun 3 ruattro formadgai
i L——‘
four chease
/] prawns | American Hot | [JoUzoBRRe

tohasco pepper sauce
Ve

Figure 1.1: The concept lattice: Pizzas

And reduced objects are ;
Margherita, Napoletana, American.

If we take out these objects and attributes from the context then the structure

of the lattice will not change.

The attribute pine kernel is reducible because

{pinekernel}’ = {onions, mozzarella, tomato, olive, capers}’

Actually, it means that any pizza containing onions, mozzarella, tomato, olive

and capers will also contain pine kernel.

It is even simpler to see reducible attributes in the lattice diagram.

Corollary 1 The removal of reducible attributes and reducible objects from
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the context has no influence on the structure of the concept lattice, i.e.
B(G, M, 1) = B(G\H, M\N, 1N (G\H x M\N))

,where H # G s the set of reducible objects and N # M 1is the set of reducible

attributes.

Proof. Let V = B(G,M,I[)and ¥ : G — V , u : M — V are defined
as in the proof of the basic theorem. Let ¥|q\n , fi|ar\n are restriction maps
of ¥ and 71 respectively.

Now, Vh € H,h' = X', for some X C G\H, this implies ¥|;\g(X) =
(X", X") = F(h) = (W', K). So ¥ e\w(G\H) is supremum-dense in V.
Similarly one can prove that |y n(M\N) is infimum-dense in V.

Clearly we have

gIm < F|au(g) < plann(m), for all g € G\H and m € M\N

since they’re restriction maps.
Hence by the basic theorem B(G, M, I) = B(G\H, M\N,IN(G\H x M\N))

Definition 13 if (G, M,I) is a context, g € G an object and m € M an

attribute, we write

g Im and
g m:&
if ¢ Ch but ¢ £ R implies him
m and
g ‘m:& 91

if m' Cn' but m' £ n' implies gIn

g,/ *m:<sg ./ mandg, m
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Thus, ¢ ./ m if and only if ¢’ is maximal among all object intents which
do not contain m. In other words, the object concept v(g) = (¢”,¢') is
minimal among concepts whose intent does not contain m.

Similarly ¢  m if and only if (m/, m") is maximal among concepts whose
extent does not contain g.
The significance of the arrow relations for the reduction of a context is shown

by the next proposition.

Proposition 4

v(g) is V -irreducible < there is an m € M with g,/ m

p(g) is A -irreducible <& there isa g€ G withg /~'m

Furthermore, the following statements hold for every finite context.

v(g) isV -irreducible <  There is an m € M with g /*m

p(g) is A -irreducible <  There is a g € G with g /*m

Proof. (g) is V-irreducible means (v(g)). = V{(4,B) | (A, B) <v(g9)} #
v(g). Since y(g) > (v(g))«, there exist m which is an element of the intent of
(7(9))« but not y(g). Also the fact that (y(g)). is the largest of the concepts

which are smaller than v(g) contains m, i.e. g ./ m.
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Conversely, if g ,/ m for some m € M and ~y(g) is not V-irreducible then

v(g) = (¢".9) = \/(At,Bt),for some concepts of(G, M, I)

te T
- (Wyar.na)
te T te T

Now, m € By for every t € T since g / m implies m is element of
every intent of the concepts which are smaller than (g), and obviously
(Ay, By) <(g), foreveryt € T. Som € (), ;- B; implies m € ¢’ which is
a contradiction.

Similarly one can prove the second statement.

In a finite context we can always find a maximal m’ with g /" m. We
claim that ¢ / m. Suppose there exist m’ C m) and m; [g then ¢' C A/
implies Alm, so himy since m’ C m/. Hence g /" my . But this contradicts
with the maximality of m'. So m' C m| implies g/m,, that is ¢ * m.
Therefore g ,/* m.

Similarly, we can prove the second statement. °

Now we will define a special context, which can be a substituted for

the finite condition in proposition 4.

Definition 14 A context (G, M, I) is called doubly founded, if for every
object g € G and every attribute m € M with g /Im, there is an object
h € G and an attribute n € M with

g *nandm' Cn' aswell ash , m and g CH
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CHAPTER 2

Logical Background

2.1 Introduction

In boolean algebra, we use symbols to represent things and classes of things
as subjects of human conceptions, and signs of operations to combine or
resolve conceptions so as to form new conceptions.

But Boole introduced a class, called ”the Universe”, consisting of all the
individuals that exist in any class, whereas in Contextual Attribute Logic
we restrict ourselves in a context. So it may be considered as a contextual
version of the Boolean Logic. Tools for the analysis of such local logics may
be taken from mathematical logic.

The central task of the Contextual Attribute Logic is the investigation of
the 7logical relations” between the attributes of the context, more generally
between combinations of attributes, such as implications.

The logical relationships between formal attributes will be expressed via
their extents. For example, we will say that an attribute m implies an at-

tribute n if m’ C n'.

Definition 15 A compound attribute of a formal context (G, M, I) is induc-

tively defined by the following rules
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1. If m is an attribute, then we define its negation, —m, to be a compound

attribute, which has the extent G\m/'.

2. For each set A C M of attributes, we define conjunction, A\ A, and the
disjunction, \| A, to be compound attributes, where the extent of \ A
is ({m' | m € A} and the extent of \| A is {m' | m € A}.

3. Iteration of the above compositions leads to the further compound at-

tributes, the extents of which are determined in the obvious manner.

2.2 Basic Definitions

Definition 16 Two compound attributes are said to be extensionally equiv-

alent in (G, M, I) if they have the same extent in (G, M, I).

Definition 17 Two compound attributes are said to be globally equivalent if

they have the same extent in any context with attribute set M.

Theorem 5 Two compound attributes of an attribute set M are globally

equivalent if and only if they are extensionally equivalent in (P(M), M, >).

Proof. Let A and B are two compound attributes and 7 be any truth
assignment such that 7(A) = 1. We will show that 7(B) = 1 holds too.
This truth assignment corresponds to a characteristic subset of M which we
call a model of A. Since A and B are extensionally equivalent in (B(M), M, €
), M is also a model B. Hence 7(B) = 1. Without loss of generality we can
say that A and B are logically equivalent. Hence they’re globally equivalent.
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Definition 18 A sequent (A, S) over M is a compound attribute, represented
by two sets A, S C M, that is globally equivalent to the compound attribute

V(Su{-m|me A}

Remark : Such expressions are called clauses in Mathematical Logic. We
call a sequent disjoint if AN.S = (. In this paper, we will assume that all
sequents are disjoints. An object ¢ is in the extent of (4,.5) if and only if
(g,m) € I for at least one m € S or (g, m) €1 for at least one m € A. We
write

(Al,Sl) < (AQ,SQ) <= A1 C A2 and Sl C SQ

A sequent is fullif ANS = M.

Lemma 3 The extent of a full sequent (A, M\A) in the test context
(B(M), M, ) M is P(M)\{A}.

Proof. The sequent (A, M\ A) is globally equivalent to
\ (M\AU{-m | me A})

So any element, say K, of PB(M), which does not contain A, is clearly an
extent of (A, M\A) since there exist a € A such that ¢« € K which is
equivalent to saying R is an extent of —a. Hence it is also an extent of
V(M\AU{-m | m € A}). But any subset of M, which contains A, is an

extent of one of the elements of M\ A unless it’s equal to A. .

Lemma 4 The extent of a conjection of a full sequents (A;,, M\A,),t € T
is BAM)\{A, [t e T}
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Two compound attributes are extensionally equivalent in the context

(B(M), M, ) means that they’'ve the same models.

Theorem 6 FEvery compound attribute set is globally equivalent to a unique

conjunction of full disjoints sequents.

Proof. For any compound attribute take the subsets of M, say A;’s, which
are not extents of the attribute in (P(M), M,>). Then we can write the
extent of the attribute in the form P(M)\{A; | t € T} which is exactly the

extent of conjunction of full sequents (A, M\ A4;),t € T. o

Definition 19 A compound attribute is all-extensional in (G, M,I) if its
extent is the set G of all objects. A sequent (A, S) may be interpreted as an

implication

/\ A— \/ S
The compound attribute \ A implies \/ S in (G, M, I) if and only if the se-

quent (A, S) is all-extensional.

Definition 20 A clause set over M is a set of sequents over M. The clause
logic of a formal context (G, M,I) is the set of all sequents that are all-
extensional in (G, M, I).

Definition 21 A clause set € is reqular if it satisfies the following conditions
1. If (A,S) € € and (A, S) < (B,T) then (B,T) € €
2. If for each sequent (B,T) satisfying (A,S) < (B,T) there is some

sequent (C,U) € € with (B,T) < (C,U) then (A4,5) € €
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Proposition 5 Two conditions of reqularity are equivalent to the condition

(A,9) € € o VX CM((4,S) < (X, M\X) = (X, M\X) € ¢)

Proof. Suppose (A4,S) € €and (4, 5) < (X, M\X), for any X C M. Then
by condition 1, obviously (X, M\X) € €. Assuming (X, M\X) € € and
(A, S) < (X, M\X) we get (4,S5) € € by condition 2.

For the converse, assume (A4,S) € € and(A,S) < (B,T). Then choose
X C M such that BC X and TNX = (. We can choose such an X since
we assume B and T are disjoint. Then (X, M\X) € € will imply (B,T) € €
because (B, T) < (X, M\X).

Similarly, for condition 2, if there is some sequence (C,U) € € with (B,T) <
(C,U) then we can find (X, M\ X) such that (C,U) < (X, M\X) and hence
(X, M\X) € €. But this will also imply that (A4,5) € € since (A,S5) <
(X, M\X). o

Proposition 6 Two reqular clause sets containing the same full sequents

are equal.

Proof. By the previous proposition we can say that (A,S) belongs to €.
Hence if full sequents are equal in two regular clause set then all of the

sequences will be the same. °

Theorem 7 [/] A clause set is reqular if and only if it is the clause logic of

some formal context.

Proof. It is easy to verify that the clause logic of any formal context satisfies

the two conditions of regularity. To construct a context for a given regular
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clause set € let {A; | t € T} denote the set of first components of full
sequents (A, M\A;) in € and let

6= PM)\{A | te T}

& is the extent of the conjunction of these full sequents in the test context.
Therefore these full sequents are exactly the ones which are all-extensional
in (8, M,3). By the preceding proposition, the clause logic of this context
is equal to €. °
Actually this theorem is not new. In the language of propositional logic, the
elements of ® would correspond to those truth assignments that make all

clauses in & true.

Proposition 7 A compound attribute is all-extensional in (G, M, I) if and
only if the object intents of (G, M, I) are the extents of the compound attribute

in the test context.

Proof. Let ¢ be a compound attribute which is all-extensional in (G, M, I),
then by theorem 1 we can represent ¢ as a conjunction of full disjoint se-
quents, say c¢ is globally equivalent to (A;,S1) A(As, So) A ... A(4n, Sn). So
it’s extensionally equivalent to this conjunction in (G, M, I).

Let g be any element of GG. Since c¢ is all-extensional, g is in the extent of the
compound attribute. The extent of ¢ in the test context are the sets which
satisfies the sentence :

If X CPB(m) contains A; then X contains at least one of the elements of S;,
foralli = 1.n

Since g is an extent of ¢ in (G, M, I), ¢' satisfies the above sentence. .
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Definition 22 We call the extent of a compound attribute ¢ (or of the con-
Junction of a clause set €) in the test context as free extent of c(or of

¢).

The elements of the free extent of ¢(or of €) are the smallest subsets consis-
tent with the attribute c(or of the clause set €).

So from above propositions, we can deduce that A C M is consistent with
the clause set € if and only if the sequent (A, M/A) is not contained in the
regular closure of €, since & : = P(M)\{A; | t € T}, where & is the extent
of the conjunction of full sequents (A;, M/A;) in the test context.

Proposition 8 The reqular clause sets form a closure system.

Proof. Let €; be a family of regular clause sets, (4,5) € N 7¢;, and
(X, M/X) be a full sequent that contains (A4,S). Since (A4,5) € &, for
every t € T, (X, M/X) also belongs to every &; since they are regular clause
sets. So arbitrary intersection of regular clause sets is regular. Obviously,
the set of all sequents is also a regular clause set. Actually it is the clause
logic of the formal context (@, M,0). Hence the regular clause sets form a
closure system. e So each clause set is contained in a smallest regular one.
We call this regular clause set generated by given one, or its regular closure.
For reasons of simplicity it’s often of interest to describe a regular clause set
by few clauses.

Our main theorem will introduce this generating set. It consists of cumulated
clauses, which are compound attributes of the form

A=V A4

tc T
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, where T is some index set and A, A, are subsets of M. On the first glance
these expressions may seem complicated but it’s easy to describe their
extents: An object ¢ € G is in the extent if and only if it satisfies the

following condition:

If ¢ has all the attributes from A, then ¢ has all the attributes from

at least one A;,t € T.

This generating set has some disadvantages:
e It may be difficult to find
e There may be smaller generating sets
But it has also some advantages
e [t is always irreduntant

e Because of its recursive nature it can be used for knowledge acquisition

algorithms.

The theory generated by a set £ of formulas is Th(Mod(£)). £ is called
irreduntant if it does not contain a smaller generating set,i.e. if for each
A€ £ we have Mod(£/{\}) # Mod(L).

To each set A C M of attributes we can associate a cumulated clause ¢4

in (G, M, I), namely

AA=VAN/ATAC YY)
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It’s easy to observe that c4 is all-extensional in (G, M, I). Because for any
g € G,glaforalla € Athatis A C ¢ then obviously glz for all x € ¢'/A.

Hence ¢ is an extent of c4.

Definition 23 Let (G, M, I) be a formal context with finite attribute set M.
A pseudo object intent of (G, M, 1) is a subset P C M having the following

properties:
1. P is not an object intent of (G, M, I)

2. For each pseudo object intent Q C P with QQ # P there exist some
object g € G with Q C ¢ C P.

Theorem 8 The set of cumulated clauses
B:= {cp | PC M pseudo object intent }
is an irreduntant generating set for the clause logic of (G, M,T).

Lemma 5 The object intents of a context (G, M, I) are precisely the subsets
P C M satisfying the sentence: For each pseudo object intent () C P there
is some object intent ¢' with QQ C ¢’ C P.

Proof. If P is an object intent then take ¢’ = P so it satisfies our sentence.

Observe that the sets, which satisfies the second condition of pseudo object

intent definition, are either object intents or pseudo object intents. Because

But pseudo objects intent cannot satisfy our sentence because if we choose
P = () then we cannot find an object intent with Q C ¢" C P. So the

subsets which satisfies the sentence are objects intent of (G, M, I). o
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Lemma 6 If P and Q are pseudo object intents of (G, M,I) then P is a
model of cq if and only if P # Q).

Proof. P is a model of ¢y obviously implies P # (). If P #  then
assuming that P and@ are pseudo object intents of (G, M, I) we get either
@ C P or not. If not then it is a model of ¢g. If P contains () then since
there exist an object intent ¢ € G with @ C ¢’ C P. Hence P is a model of

CQ. [ ]

Proof.(of the theorem) By proposition 7 the free extent of the clause
logic of (G,M,I) are the object intents of the formal context. Let
§ C B(M) be the object intents of the context (G, M, I). B generates the
clause logic of (G, M, I) means Th(Mod(8)) = Th(F).

So we have to show that every model of 8 is an object intent of the context
(G, M, I). Let X be a model of 98, and let P C X be a pseudo object intent
of (G,M,I). Then X is a model of cp € B. So there must be an object
intent ¢" with P C ¢’ C X. Thus X fulfills the sentence in the lemmal, and
consequently X € F.

To see that the set B is irreduntant according to lemmaZ2 each pseudo object
intent P is a model of B/cp. e This
generating system is not minimal, in the sense that, there may be other gen-

erating set for the clause logic of (G, M, I') whose order is less than the set B.

However, in the case of implicational logic, that is, instead of consid-
ering the sequents in (G, M, I), if we take the set of implications of a context

(G, M, I) then it turns out that the generating set is minimal.
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2.3 Implications

Implications are natural to describe classifications because objects are
usually grouped according to their common attribute. In such situation,
implications encode expressions of the form ”each object with attributes

”»

aj, as, .., G, also has the attributes by, bs,.., b,.

However, the system of all implications between attributes which hold
in a context tend to be very large and contain many trivial implications. In
this section, we try to find subsystem which suffice to describe the system
of all implications.

Let’s start with basic definitions.

Definition 24 An implication is a pair of sets, denoted by A — B. In the

language of propositional logic it is denoted by

/\A—>/\B

For example, in our pizza menu we may classify pizzas whether they contain
garlic or onions. We can deduce from the lattice that there is no pizza which
contains both. The pizzas that has spinach in it would be a classification
inside the garlic pizzas, because there is an implication spinach — garlic

which means that every pizza containing spinach also contain garlic.

Definition 25 A subset T C M respects an implication A — B if AZ T
or B CT. T respects a set £ of implications if T respects every single
implication in L.

A — B holds in a set {T1,Ts, ...} of subsets if each of the subsets T; respects
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the implication A — B
A — B holds in a context (G, M,I) if it holds in the system of objects

intents. We also say A — B is an implication of the context (G, M, ).

Proposition 9 An implication A — B holds in a context in (G, M, I) if and
only if B C A”. It then automatically holds in the set of all concept intents

as well.

Proof. Suppose A — B holds in (G, M,I) and m € B. Let g € G and
A C ¢, then B C ¢, which is equivalent to say g € A’ implies ¢ € B/,
because A C ¢’ = g € ¢" C A'. Since m € B we get ¢ € m/. Hence
A" € m/. Therefore {m} C m"” C A", which says m € A”".

For the second sentence of the proposition, we’ll use the fact that every

concept intent is the intersection of its object intents, that is,

X' = ﬂ ¢', where X is a concept extent
ge X

So,if AC X" = [,c x¢'s then A C g, for every g € X. By the previous

observation B C ¢, for every ¢ € X. Hence B C X'. .

Definition 26 An implication A — B follows from a set £ of implications
between attributes if each subset of M respecting £ also respects A — B. A
famaly of implications £ s called closed if every implication following from
£ s already contained in £.

A set £ of implications of a context (G, M,I) is called complete if every
implication of (G, M, I) follows from L.

The closed sets of implications lend themselves to a syntactic characteriza-

tion.

34



Theorem 9 A set £ of implications on M is closed if and only if the fol-
lowing conditions are satisfied for all W, X, Y, 7 C M:

. X—=-Xec &
2.X—->Ye £ thenX|JZ—-Y e £

3. X—=Ye LandYUZ—-We £ then X UZ W e L

Lemma 7 If we assume that £ satisfies these three conditions then (X —

P € S(deg—>PQE 2):>X1UXQ—>P1UPQE £

Proof. X; - P € £ = X;JXo — P, € £ by 2. Similarly,
X\UX, - P € £and PUP, » PUP, € £by 1. Soby3
X UX.Ur =P URe £

Now, X; | JXo — P € £ and X JXoUUPL — PIUP, € £ implies
XiUXs = PLUP, € £by3, where X\ JX, = X,P, = Y,Z =
X\ UXe,W = PP .

Lemma 8 X Y e £=X =Y € £ whereY CVY.

Proof. YV 5 VY' e £=Y Y € £byland2 X - Y e £ and
Y=Y e £=X—->Y € L£by3. .

Lemma 9 Let £ be a set of implications on M, satisfying conditions 1,2,3.
Define £(A) = HY | X =Y € £ X C A} if P C £(A) then there exist
X C A such that X — P e £.

Proof. Since P C £(A), there exist X;’s such that X; C A and X; —

P,, where P C |J!_ | P, for some n. By lemma 7, we have |J!_ | X; —
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Ui_  Pe Landbylemma8J]_ ,X;— Pe £ where J]_ | X; C A o
Proof.(of the theorem) Let A — B follows from £. We will show that
A— B e £ Now,suppose P— Q € Land P C £(A). Then X - P € £
where X C A, by lemma 9. So P - (Q € £ and X — P € £ implies

X — @ € £ by condition 3. Therefore @ C £(A). This implies £(A)

respects £.
Hence it respects A — B. Since A C £(A), we have B C £(4). So X —
B e £ where X C A. By condition1 A — B € £. °

Definition 27 A set £ of implications of a context is called non-

redundant if none of the implications follows from the others.

Definition 28 P C M is called the pseudo-intent of (G, M, I) if and only
if P # P" and Q" C P holds for every pseudo-intent Q C P, Q) # P.

Theorem 10 [1] The set of implications
£:={P — P" | Ppseudo — intent}
18 non-redundant and complete.

Proof. Evidently, £ holds in (G, M, I). In order to show that £ is complete,
we have to show that every set 7' C M respecting £ is an intent. Each such
set in particular in particular respects all implications @Q — ", where @ is
a pseudo-intent and Q C 1. If we assume that 1" # T",T itself satisfies the
definition of a pseudo-intent and the implication 7" — 17" is in £ but is not,
respected by 7', a contradiction.

In order to show that £ is non-redundant, we consider an arbitrary pseudo-

intent P and show that P respects the set £/{P — P"}. In fact, if @ — Q"
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is an implication in £/{P — P"} with @ C P, then Q" C P must hold, since
P is a pseudo-intent. °

Now we will state a very simple but useful proposition.

Proposition 10 [1] If P and Q are concept or pseudo-intents with P ¢ Q
and Q@ € P, then P\ Q is an intent.

Proof. P as well as @ and thus P[] @ respect all implications in £ with the
possible exception of P — P" and Q — Q". f P # P Q # @, then P Q
also respects these implications, i.e., it is an intent. °
The following proposition shows among other things that there can be no

complete set, which contains fewer implications than pseudo-intents.

Proposition 11 [1] Every complete set > of implications contains an im-

plication A — B with A" = P" for every pseudo-intent P.

Proof. A pseudo-intent P is always not equal P”. Therefore, provided that
> is complete, there must be at least one implication A — B in Y which
leads out P.i.e., with A C P and B € P. On account of B C A", we get
A" ¢ P, and thus A" P cannot be a concept intent. By the previous
proposition this yields P C A” and thus P" = A”. °

37



CHAPTER 3

Decompositions of Concept Lattices

3.1 Subdirect Decomposition

In this chapter, our aim is to split up a lattice into simpler parts so that
the new diagrams reflect the structure of the lattice better. To do so, we’ll
try to apply some well-known mathematical theories in algebra and express
these results also in contextual language. The relation between lattices as an
algebra and the contexts leads to powerful algorithmic tools. Because it is
easier to have an algorithm in the context structure.

In this section, we’ll state specialized version, actually lattice version, of
G.Birkhoff’s fundamental theorem: ”Every non-trivial algebra is isomorphic
to a subdirect product of subdirectly irreducible algebras.” which is ”Every
doubly founded complete lattice has a subdirect decomposition into subdi-
rectly irreducible factors.” Then we will try to separate our lattice into its
factors. Now, let’s give definitions of subdirect decompositions and subdi-

rectly irreducible lattices.

Definition 29 Let T' be an arbitrary index set. For a family (Vi) v of a
complete lattices, the product is defined to be

Xee Vi = (Xee Vi, <)
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with

(@ )te 7 < Welte 7 2 Sy, forallt e T

The lattices Vi, t € T are the factors of the product, and the maps
T+ Xy TVt — Vs

with
Ts((Te)e ) 1 = @
defined for s € T are the canonical projections.

Without difficulty one can prove that

Theorem 11 [1] Every product of complete lattices is a complete lattice.
The infimum and the supremum can be formed componentwise. The canonical

projections are surjective homomorphism.

Definition 30 A subdirect product of complete lattice is a complete sublattice
of the direct product for which the canonical projection maps onto the factors

are all surjective.

Definition 31 A subdirect decomposition of a complete lattice V is a family

O,,t € T, of complete congruence relations of V. with

e =24

,where /\ denotes the trivial congruence /\ : = {(z,z) | z € V}. The
lattices V /O, t € T, are called the factors of the subdirect decomposition.
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Definition 32 A complete lattice V is called subdirectly irreducible if V is
wsomorphic to a subdirect product of lattices Vi, t € T then V s canonically

1somorphic to one of the factors V,

Fortunately, the examination of subdirect decomposition and subdirectly ir-
reducibility can be carried out directly on the context. So that by considering
the context we will be able to understand whether the given lattice is sub-
directly irreducible or not and whether the given congruence relations are
subdirect decompositions. But before stating these theorems we have to

introduce some special subcontexts.

Definition 33 If (G, M,I) is a context and if H C G and N C M, then
(H,N,INH x N) is called a subcontezt of (G, M,I).

Definition 34 A subcontext (H, N,INH x N) is called compatible if the pair
(ANH, BN N) is a concept of the subcontext for every (A, B) € B(G, M, I).

Definition 35 A subcontext (H, N,INH xN) of a clarified context (G, M, I)

18 arrow closed if the following holds

eh /  mandhe H=me N
e g,/ nandne N=ge H

Proposition 12 [1] Every compatible subcontext is arrow-closed.

Every arrow-closed subcontext of a doubly founded context is compatible.

(The proof of this proposition contains lots of technicalities so we will not go
into details.)
The following proposition shows the relation between compatible subcontext

and homomorphism.
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Proposition 13 [1] A subcontext (H, N, INHxN) of (G, M, I) is compatible
if and only if

mun(A,B): = (ANH,BNN), forall (A,B) e B(G,M,I)
defines a surjective complete homomorphism
man B(G, M, I)— B(H,N,INH X N)

Proof. According to the definition of compatibility, (H, N, INH x N) is com-
patible if and only if 7y v is a map. The fact that this map must necessarily
be infimum-preserving can be recognized by examining the extents: The map
A — (AN H) is evidently N — preserving, and the infimum of concepts is de-
fined in terms of the intersection of their extents. Dually, we infer that 7y x
is supremum-preserving. The surjectivity can be seen as follows: if (C, CNN)
is a concept of (H,N,INH x N), then 7y x(C",C") = (C"NH,C'NN) is
a concept with the same intent, i.e., the same concept. °
The homomorphism theorem is like a bridge between congruence relations

and compatible subcontext with the above proposition.

Theorem 12 (Homomorphism Theorem) [5] If © is a complete congruence
relation of a complete lattice V, then © — [x]© is a complete homomorphism
of V onto V/O. If, conversely, & : Vi — Vs is a surjective complete

homomorphism between complete lattices, then

kerg: = {(z,y) € Vi x V| d(z) = ¢(y)}

18 a complete congruence relation of Vi, besides,

[z]ker¢ — ¢(x)

describes an isomorphism of V1 /ker¢ onto V.
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By the proposition, the compatible subcontext defines a homomorphism, and
homomorphism theorem says that with the kernel of this homomorphism,

Op N, we get
B(H,N,INHxXxN)=B(G,M,I)/Ogn
with
(AL, B)Oun(As, By) & A\NH = A,nH & BNN = ByNN

Remark : We can deduce that every compatible subcontext induces a con-
gruence, but it’s still unanswered that when a congruence © is induced by a

subcontext.

Definition 36 We say that a complete congruence © 1is induced by a sub-

context if a compatible subcontext (H, N,I N H x N) with © = Opn.
Now we will state a theorem without proof.

Theorem 13 [1] If B(G, M, I) is doubly founded, then every complete con-
gruence relation 1s induced by a subcontext.
Moreover, if (G, M, I) is reduced then this subcontext is uniquely determined

by the congruence.

Thus, in this case the arrow-closed subcontexts correspond bijectively to the
complete congruences whenever the context (G, M, I) is reduced and doubly
founded.

Coming back to the relation between subdirect decomposition and arrow-

closed subcontext :
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Proposition 14 If (G, M, ) is reduced context of a doubly founded con-
cept lattice, then the subdirect decompositions of B(G, M, I) correspond bi-
jectively to the families of arrow-closed subcontext (Gy, My, I NGy x M) with
Uie +G: = GandJ,. M, = M.

Proof. The order of the congruence relations is also reflected by the arrow-

closed subcontext.If © and ¢ are two congruences of V, then

OCy & (4,B)0(C,D)= (A,B)y(C,D), forall (A,B),(C,D)e V
& ANGe = CNGe=ANGy = CNGy and
BNMe = DNMe=BnNM, = DNM,;
for all (A, B),(C,D) e V
& GyGo C Go and M, C Mg

Hence, if we order the subcontext by
(Hl,Nl,Iﬂ H1 X Nl) < (HQ,NQ,]HHQ X Ng)

= Hy C Hy and Ny C NQ,

under the conditions specified, the ordered set of the arrow-closed subcontext
is dually isomorphic to the lattice of congruences. So, (), ;0 = A
holds for a family ©,,¢t € T of congruences if and only if | J,. ,G: = G
and |J,. M, = M holds for the corresponding arrow-closed subcontext

(Gt,Mt,_[mGt X Mt) L]

Definition 37 A context is called 1-generated if there is an object g such

that the smallest arrow-closed subcontext containing g is the context itself.
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Proposition 15 A doubly founded reduced context is 1-generated if and only
if B(G, M, I) is subdirectly irreducible.

Proof. For every subdirect decomposition of B(G, M, I), there is corre-
sponding arrow-closed subcontexts (G, My, I NGy x My) with U, G = G
and |J,. »M; = M. Since (G,M,I) is arrow-closed there exist t € T
with Gy = G and M; = M, which is equivalent to say that B(G, M, I) is

subdirectly irreducible. The converse is similar. °

Theorem 14 [1] Every doubly founded complete lattice has a subdirect de-

composition into subdirectly irreducible factors.

Proof. Without loss of generality we may assume that V is the concept
lattice of a reduced context (G,M,I). We may then assume that V. =
B(G,M,I). For g € G let (Gy,My,I NG, x M) denote the smallest
arrow-closed subcontext of (G, M, I) containing g. Since U,c oGy = G
and | J ge ¢ My = M the corresponding congruence relations is a subdirect
decomposition and the corresponding lattice of the arrow-closed subcontexts

are subdirectly irreducible because the contexts are 1-generated. .

3.2 An Example

Suppose we have a context:
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Figure 3.1: Concept Lattice

B|C|D|E|F|G J
1| x X
2 X X
3| x| X | X X
4 X X
5| X X | X X
6| x X X
7 X | X X
8| x X X
9 X X

, which is reduced and doubly founded(since finite).

The concept lattice of the context is shown above:
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In this example, our aim is to find a subdirect decomposition of this lat-
tice such that every factor of the congruences will be subdirectly irreducible.
To find this subdirect decomposition we’ll use proposition 14 and proposition
15. Proposition 14 says that arrow-closed subcontexts (G, My, I NGy x M)
with | J,. Gy = G and J,. My = M corresponds to subdirect decom-
position, and proposition 15 guarantees that they are subdirectly irreducible
if 1-generated.

So let’s start with computing 1-generated arrow-closed subcontext. Now,

applying the definition of arrow-closed subcontext
3 "E,3€ H3= F € N;s,

6, E,F € Ny=6¢€ Hs,
6 " J6€ Hy=J¢€& N,
3 "F,3€ Hy=F € N,
F 13, F € N3=13€ Hj
, continuing in this way, we obtain
H; = {3,6,8,9,13}
Ny = {E,F,G,J H}
Observing that 4 ¢ Hjs, let’s start generating a context by 4. We get
Hy, = {4,8,12}

N4 — {B,C, G}
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and also 6,7,8,9,12,13,15 generates subcontexts:

He = {6}

Ng = {J},

Hy = {7,812}
N, = {B,1,G},
Hy = {8)

Ny = {G},
Hy = {9,8,6}
Ny = {H,J G},
Hy, = {12}
Nz = {B},
Hi; = {13,8,6}
Nis = {J, F,G},

H15 == {1578, ]_2}
N15 = {B7D7G}7
But the subcontexts (Hg, Ng, ]ﬁHg X Ng), (Hﬁ, N67 ]ﬂHG X NG); (Hg, Ng, In

Hg X Ng), (ng,ng,I M H13 X ng) are subsets of the context (Hg,Ng,] M
H3 X Ng) and (ng,ng,Iﬂ H12 X N12) is subset of (H7,N7,]ﬂ H7 X N7)

So we do not need to consider them.

The corresponding congruences for the arrow-closed 1-generated subcontexts

look like:
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Figure 3.2: Congruence relation generated by 3

Figure 3.3: Concept lattice of the context generated by 3
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Figure 3.4: Congruence relation generated by 4

Figure 3.5: Concept lattice of the context generated by 4
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Figure 3.6: Congruence relation generated by 7

Figure 3.7: Concept lattice of the context generated by 7
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Figure 3.8: Congruence relation generated by 15

Figure 3.9: Concept lattice of the context generated by 15

o1



Figure 3.10: Concept lattice of the context generated by 7 and 15

So, our lattice is subdirect product of the lattices in figures 3.3, 3.5, 3.7,
3.7. ,where each factor is subdirectly irreducible.
We can also decompose the lattice into two factors, but at least one of the
factors will not be subdirectly irreducible.
The subcontext

H7’15 - {7,8,12,15}
N7,15 — {B7D7G7]}7

corresponds to the congruence ©7 15

and O715(103 = A, so they are subdirect decomposition. Hence we

can deduce that the lattice L is subdirect product of L and Ly 15

3.3 Atlas Decomposition

In the previous section, we used congruence relations to decompose the lattice

into smaller parts. In this section, we will use tolerance relations, which
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is reflexive, symmetric, but not necessarily transitive and compatible with

lattice operations, for an analogous procedure for large unwieldily lattices.

Definition 38 A tolerance relation on 'V is a relation © <V x 'V which is
reflexive, symmetric, and compatible with suprema and infima i.e., for which

the following equation holds

Oy, forallt € T = (ﬂ x4)O( ﬂ y) and ( U x)O( U Ut)

tc T tc T tc T tc T

Definition 39 If © is a tolerance relation on V and a € 'V, we define

ag = ﬂ{x € V| aOz}
and
a® = U{x € V| aOz}
The intervals [alo := [ae, (ae)®], a € V are called the blocks of ©.

Definition 40 The set of all blocks of a tolerance relation of V is denoted
by V /O and ordered by

By < By & mBl SﬂBQ(@UBl SUBQ)

Theorem 15 [1] With the order described above, V /O is a complete lattice
called the factor lattice of V of ©. The followings are the supremum and

nfimum of this lattice.

U B =1UJNBr

te T te T
8= UBle
te T te T
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Definition 41 By a block relation of a context (G, M, I) we mean a relation

J C G x M which satisfies the following conditions
1. 1CJ
2. Vg e G,qg7 is an intent of (G, M, I)

8. Ym e M,m? is an extent of (G, M,I)

The intersection of any number of block relations of (G, M,I) is again a
block relation since ¢™/¢* = Ng’*, and the intersection of intents is always
an intent. Hence the block relations of (G, M, I) form a closure system and

thus a complete lattice.

Theorem 16 [1] The lattice of all block relations of (G, M, 1) is isomorphic
to the lattice of all complete tolerance relations of B(G, M, I). The map 3

assigning to any tolerance relation © to the block relation is defined by

9B(O)m = v(9)0(v(g) A u(m))

18 an isomorphism. Conversely
(A,B)BH(J)(C,D) & Ax DUC xBCJ
yields the tolerance corresponding to a block relation.

Theorem 17 [1] If © is a tolerance relation on B(G, M,I) and J = B(O)

18 the corresponding block relation, then

B(G, M, 1)/ =B(G,M,J)
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and if (C, B) is a concept of (G, M, J) then
(B',B),(C,C")] = B(C,B,INC x B)
for the corresponding block of ©.

With the theorem above, we obtained a strong and a close relation between
tolerances and block relations. Now our aim is to decompose V into blocks
of a tolerance relation and draw the lattice diagram of these blocks by the

help of the block relation J and the corollary.

Definition 42 A tolerance relation © of a lattice V has overlapping neigh-
borhoods if
By < By in ' V/© implies By N By # ()

Let (V) denote the smallest tolerance relation comprising all pairs (x,y)
with x < y in V.In the case of doubly founded lattices, ¥(V) is called the

skeleton tolerance.
Theorem 18 [1] Let (G, M, I) be a doubly founded context and let
Y= X(B(G,M,I))

be the skeleton tolerance. then the following statements hold for the corre-

sponding block relation J : = [(¥):

1. J is the smallest block relation of (G, M,I) containing all pairs (g, m)
with g .,/ m.

2. J contains all pairs (g,m) with g ./~ m or g /* m.
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Definition 43 Let V,,q € Q be a family of doubly founded complete lat-
tices. Let the index set Q) be a lattice of finite length. We call (V, | g€ Q) a
Q-atlas with overlapping neighbour maps, if for each two elements g, € Q)

the following conditions are satisfied:
1.V, CV,=¢q =7

2. if ¢ < r, then V,N'V, is an order filter in V, and an order ideal in
V,.

3. if q is a lower neighbour of r, then V,N'V, # (.
4. The orders of V, and V, coincide on the intersection V, N 'V,.
5. V,NV, CV,,, NV,

6. ¢<r<s=V,NV,CV,

Theorem 19 (main theorem) [1] The sum of a Q-atlas with overlapping
neighbour maps is a complete lattice V. where the summands V,,q € Q) are
precisely the blocks of a complete tolerance relation © and where ¢ — V,
describes an isomorphism of Q onto V /O.

Conversely, in a complete lattice V the blocks of a tolerance © with overlap-
ping neighborhoods, for which @ := V /© is of finite length, always form a

Q-atlas with overlapping neighbour maps whose sum is V.
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3.4 An Example

The concept lattice of the context

112131456789 |10]11]12 13|14 15
1 | x| x X | x| x| X X | X
2 X
3 X
4 X
5 | x X X | X X
6 X | X X X
7 X | X | X
8 X | X | X
9 | x| x X
10 X
11 X
12| x | % X | X | X | X | X X X | X
13 ] x X
14 X X X
15| X [ X | X | x| X | X ]| X]|X X | X | x| x| X

is shown in the below figure:

In this section we will decompose this lattice to smaller and manageable
parts by using atlas decomposition method. Also this method contains the
additional information which show how the individual parts are related.
The main theorem of the last section says that the blocks of a tolerance

relation © with overlapping neighbour form a Q-atlas, where @ : = V/O.
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Figure 3.11: Concept lattice of the above context

But by theorem 17, we do not need to find this relation to get the blocks of ©,
instead it is enough to consider the corresponding block relation J = 3(0O)

since

and every concept (G, M, J) corresponds to the block of © by the equation
[(B',B),(C,C"] = B(C,B,INC x B)

,where (C, B) is a concept of (G, M, J).
To find the corresponding block relation, we will use theorem 18. So we enter

the arrow relations into the context and enrich the relation

J:=1Iuy,/uU
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Then check that whether this relation is a block relation or not. Because
theorem 18 does not guarantee that it is a block relation. The context of

the enriched relation is shown below:

1 (2 (34|56 |7 |89 1011|1213 ]|14]15
1 | x| x| 2l ] x| x| x| x|/ N x| X
2|\ SN xS SN
3| SN SN
L ars A arars ars
S | X WS x| X | xS X
6 || x| x| x| ArardR:
R ararararararearers | X X ] X
8 || X x| X are
9 | x| X ararars X |
10 "7 SN AN SN
NNV A Aarars ars
12| x| x [ SIS X | x| x| x| x X [ x| X
13] x | 7 A x Vs
ISR AR rarars S X
B x| X | x| x| X | x| x| X[| |0 X x]|x]|x]Xx

So J becomes
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—
X
X
X
X
X
X
X
X
X
X
X
X
X

2 X | X X | X | x| % X | X
3 X | X X | X | X | X X | X
4 X | X X | X | X | % X | %
5 X | X | X | X | X | X |X]|x]X X | X | X | X
6 X | X | X | X | X | X|X]|X]X X | X | x| X
T | X | X | X | X | X | X]|X]|Xx]|X X | X | X | X
8 X | X X | X | X | X X | X
9 X | X X | X | X | X X | X
10| x | x X | X | X | X X | X
11 x | x X | X | X | X X | X

b
X
X
X
X
X
X
X
X
X
X
X
X
X

3¢
X
X
X
X
X
X
X
X

[u—
N
X
X

X | X | X | X | X | X | X X X X X

I5 | X | X | X | X | X | X | X | X|X| X | X | X| x| x/|X

Now, it can be easily checked that .J satisfies the definition of block relation.
Hence it is the corresponding block relation of the skeleton tolerance.
According to theorem 17, we obtain the blocks as concept lattices of
subcontext.

There are 3 concepts of the context (G, M,I). The contexts and their

diagram is shown below.

15| X | X | X | X | X | x| x| X X | X | x| x| X
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Figure 3.12: First Block

51678 12|13 |14 | 15
1 X | X | x| X X | X
5 X X | X X
6 X X
7 X | X | X
12 X | X | x| X X X | X
14 X X
15 X | X | X | X X | X | x| X
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—
X
X
X
X
X
X
X
X

2 X

3 X

4 X

5 | x X X
6 X X X
7 X | X
8 X | x| X

9 | x| x X

10 X

11 X

o
x
X
x
X
X
x
X
x

—
o
X
X

[u—
N

X X X

5| X | X | X | X | X | x| x| X

These methods provide us to navigate through lattice and make it more
manageable so that creating knowledge and obtaining results from the lattice
of data would be easier. But we should admit that these tools do not always
work practically. So as a future work, we can study some other decomposition

methods by using algebraic facts.
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