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ABSTRACT

HARDY SPACES ON HYPERCONVEX DOMAINS

Alan, Muhammed Ali

M.S., Department of Mathematics

Supervisor: Prof. Dr. Aydın Aytuna

July 2003, 82 pages

In this thesis, we give a new definition of Hardy Spaces on hyperconvex

domains in terms of Monge-Ampère measures which unifies the Hardy spaces

on polydiscs and balls. Also we survey Monge-Ampère operators and Monge-

Ampère measures.

Keywords: Hardy Spaces, Monge-Ampère measures, Hyperconvex domains.
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öz

HİPERKONVEKS KÜMELER ÜZERİNDE HARDY

UZAYLARI

Alan, Muhammed Ali

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Aydın Aytuna

Temmuz 2002, 82 sayfa

Bu tezde, hiperkonveks kümeler üzerinde Hardy uzaylarının, Monge-Ampère

ölçümleri yordamıyla yeni bir tanımını veriyoruz. Bu yeni tanım polidiskler

ve toplar üzerindeki Hardy Uzayi tanımlarını birleştirmektedir. Ayrıca Monge-

Ampère operatörleri ve Monge-Ampère ölçümlerinin de bir gözden geçirilmesi

yapılmaktadır.

Anahtar Kelimeler: Hardy Uzaylari , Monge-Ampère Ölçüleri, Hiperkonveks

Kümeler.
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3.2 The Complex Monge-Ampére Operator . . . . . . . . . . . . . 45

3.3 Comparison Theorems . . . . . . . . . . . . . . . . . . . . . . 54

4 HYPERCONVEX DOMAINS AND MONGE-AMPÉRE
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CHAPTER 1

INTRODUCTION

1.1 Notations

Let Ω be an open subset of Cn. We will use Cr(Ω) for functions with con-

tinuous partial derivatives of order r on Ω. C∞(Ω) will be used for infinitely

differentiable functions on Ω. Cr
0(Ω) (C∞0 (Ω)) will be used for functions with

compact support which are in Cr(Ω) (and in C∞(Ω)). Here support of a func-

tion φ is the closure of the set {x ∈ Ω : f(z) 6= 0} and will be shown by

suppφ.

If z ∈ Cn, r > 0, we define the open ball with center z and radius r

B(z, r) = {w ∈ Cn : |z − w| < r}

and if r = (r1, . . . , rn) then we will denote the open polydisc with center z

and polyradius r by

4n(z, r) = {w ∈ Cn : |zi − wi| < ri , j = 1, . . . , n}

For n = 1, B(z, r) and 4n(z, r) coincide and will be shown by 4(z, r)

and will be called disc with center z and radius r.
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In an open set Ω we will denote the set of all differential forms of bide-

gree (p, q) whose coefficients belong to C0(Ω,C) (respectively, C∞0 (Ω,C)) by

Dp,q
0 (Ω) (respectively, Dp,q(Ω)) . See the Section 2.1.2.

D(Ω) is the vector space of test functions.

O(Ω) is the space of all analytic functions on Ω.

H(Ω) is the space of all harmonic functions on Ω.

SH(Ω) is the space of all subharmonic functions on Ω.

PH(Ω) is the space of all pluriharmonic functions on Ω.

PSH(Ω) is the space of all plurisubharmonic functions on Ω.

Lp(Ω) = {f : Ω → R : f is measurable and
∫
Ω
|f |p < ∞}

Lp
loc(Ω) = {f : Ω → R : f is measurable and

∫
K
|f |p < ∞ K ⊂ Ω compact}

L∞(Ω) = {f : Ω → R : f is measurable and supΩ |f | < ∞}
L∞loc(Ω) = {f : Ω → R : f is measurable and supK |f | < ∞ K ⊂ Ω compact}

1.2 Introduction and the Structure of Thesis

The theory of Hardy Spaces started with works of G. H. Hardy, J. E. Little-

wood in 1920’s. And by works of them and I. I. Privalov, F. and M. Riesz, V.

Smirnov and G. Szegö the was theory improved and developed. Their work

was mainly in the unit disc of C.
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Later Hardy Space theory was extended to more general classes of do-

mains such as the ball of Cn, the polydisc, simply connected domains in C,

Smirnov domains, pseudoconvex domains with C2 boundaries.

In the unit disc we have some equivalent forms of Hardy Spaces. The first

form is by means of integral growth over some curves and secondly by means

of harmonic majorants. The extensions of Hardy classes are done mainly by

these two different ways. The first way is by some integral growth condition

over some certain curves or hypersurfaces.

But the main problem arises in domains with non-smooth boundaries. For

instance in several complex variables one of the basic and most important

domain is the polydisc. Here the Hardy Spaces theory differ enormously from

these extensions. In the polydiscs Hardy Spaces are defined by integral mean

over Torus T n which is only a very small part of the boundary. Here also

the definition via majorants changes from harmonic majorants to n-harmonic

majorants.

Our main goal is to unify those theories so that we do not need to give

a definition for all different kinds of domains. Of course what those domains

have in common is that they are all hyperconvex. For the definitions and

properties of hyperconvex domains see Section 4.2.

We define Hardy Spaces in this thesis on a hyperconvex domain Ω as the

set of all analytic functions on Ω such that they satisfy following integral
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growth condition:

sup
r<0

∫

S(r)

|f(z)|pdµr,a < ∞.

(For the details and definitions see section 5.2.)

Unfortunately these definitions depend on the point a. The first problem

is to show the consistency i.e. the independency of Hardy Spaces from the

point. We have some partial results on this problem. And we see that those

spaces coincide with the usual Hardy Spaces on the ball and the polydisc.

And we show for n = 1 those spaces are equivalent to having a harmonic

majorant. The last chapter is devoted to those discussions.

In the first chapter we give basic notations used in the thesis and we give

the structure of the thesis.

In the second chapter we give the basic preliminaries needed for the the-

sis. First the complex differentiation and the complex differential forms are

introduced to deal with several complex variables. Next distributions and

currents are introduced for later discussions. Then a short introduction to

subharmonic and plurisubharmonic functions is given. Lastly classical Hardy

spaces are introduced in the disc, polydisc, and the ball. And analogue the-

orems are given without proof.

In the third chapter we deal with complex Monge-Ampére operators.

Monge-Ampére operators are important for characterizing maximal plurisub-

harmonic functions in Theorem 3.3.7 and are also important in complex ge-

ometry. (See [10].) Firstly, extensions of Monge-Ampére operators from C2
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functions to L∞loc functions are given. Next some comparison theorems are

given.

In the fourth chapter firstly, we introduce Green functions and give some

important properties of Green functions. Next we give some facts about

hyperconvex domains. Lastly we define Demailly-Monge-Ampére measures

which is important in Intersection Theory and Pluripotential Theory. From

our point of view they are very important since we will define the Hardy

Classes in terms of Demailly-Monge-Ampére measures.

The last chapter is devoted to the main goal of this work; namely to

extend Hardy Spaces to Hyperconvex domains.
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CHAPTER 2

FOUNDATION

In this chapter firstly we will give some necessary basic definitions from the

theory of several complex variables. Secondly, we will deal with complex

differential forms. Next we will give some facts from the theory of distri-

butions and currents to be able to extend the definition of Monge-Ampére

measures and the Monge-Ampére operator in terms of distributions and cur-

rents. We will give the definitions and some facts about subharmonic and

plurisubharmonic functions. Lastly we will give some facts about classical

Hardy Spaces.

2.1 Basic Definitions and Notations in Sev-

eral Complex Variables

2.1.1 The ∂ and ∂̄ Operators and Levi form

An R-linear map L is called C-linear if L(λx) = λL(x) for all x and for all

λ ∈ C. It is called anti C-linear if L(λx) = λ̄L(x). A matrix A is called

Hermitian if ĀT = A. A bilinear form is called Hermitian if it is represented

by a Hermitian matrix A.
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We will use the following notations to deal with complex analysis:

dzj
.
= dxj + idyj , dz̄

.
= dxj − idyj,

∂

∂zj

.
=

1

2
(

∂

∂xj

− i
∂

∂yj

)

∂

∂z̄j

.
=

1

2
(

∂

∂xj

+ i
∂

∂yj

)

Let f : Ω → C be a differentiable function at a ∈ Ω ⊂ Cn, then the

ordinary differential daf : R2n → R2 can be split into C-linear part, ∂af

and the anti C-linear part ∂̄af :

daf = ∂af + ∂̄af.

We obtain following formulas for daf, ∂af and ∂̄af ;

daf =
n∑

j=1

(
∂f

∂xj

dxj +
∂f

∂yj

dyj)

∂af =
n∑

j=1

∂f

∂zj

dzj

∂̄af =
n∑

j=1

∂f

∂z̄j

dz̄j.

We will use the multi-index notation in our dealing with several variables.

Recall that a multi-index α is an element of (Z)n. If α = (α1, . . . , αn) is a

7



multi-index, z = (z1, . . . , zn) ∈ Cn , we will write

zα .
= zα1

1 . . . zαn
n ,

z̄α .
= z̄α1

1 . . . z̄αn
n ,

( ∂

∂z

)α .
=

( ∂

∂z1

)α1

. . .
( ∂

∂zn

)αn

( ∂

∂z̄

)α .
=

( ∂

∂z̄1

)α1

. . .
( ∂

∂z̄n

)αn

We let α!
.
= α1! . . . αn! and |α| .

= α1 + · · ·+ αn. We will use the following

multi-index notation for partial derivatives

D(α)φ =
∂|α|φ

∂xα1
1 . . . ∂xαn

n

. (2.1)

If α, β ∈ (Z)n, then α < β means αi < βi, for all 1 ≤ i ≤ n (by the same

way α ≤ β is defined).

Let Ω be an open subset of Cn , and let u ∈ C2(Ω). Then the matrix

[ ∂2u

∂zj∂z̄j

(a)
]

i,j
1 ≤ i ≤ n (2.2)

is called the complex Hessian of u at a. It is clearly an Hermitian matrix.

The transpose of this matrix is shown by Lu(a). The Levi form of u at a,
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Lu(a) : Cn × Cn → C is defined by

〈Lu(a)b, c〉 =
n∑

j,k=1

∂2u

∂zj∂z̄j

(a)bjck, (2.3)

where b = (b1, . . . , bn), c = (c1, . . . , cn) ∈ Cn; and Levi form is a Hermitian

form.

2.1.2 Complex Differential Forms

In Cn if α = (α1, . . . , αk) ∈ Zk
+, k ≤ n, again using multi-index notation we

define

dzα .
= dzα1 ∧ · · · ∧ dzαk , dz̄α .

= dz̄α1 ∧ · · · ∧ dz̄αk ,

and

#α
.
= k.

Let’s denote the set of all alternating r-linear maps from Cn to C by
∧r(Cn,C) then if p, q ∈ Z+ are such that p + q = r then we will denote the

complex subspace of
∧r(Cn,C) generated by

{dz(α1,...,αp) ∧ dz̄(β1,...βq) : 1 ≤ α1 < · · · < αp ≤ n, 1 ≤ β1 < · · · < βq ≤ n},

by
∧p,q(Cn,C).

Definition 2.1.1. A differential form ω of bidegree (p, q) on an open set

Ω ⊂ Cn is a map from Ω to
∧p,q(Cn,C) .
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In an open set Ω we will denote the set of all differential forms of bidegree(p, q)

whose coefficients belong to C0(Ω,C) (respectively, C∞0 (Ω,C)) by Dp,q
0 (Ω)

(respectively, Dp,q(Ω)) .

An element ω ∈ Dp,q(Ω) can be written as

∑

#α=p

∑

#β=q

ωαβdzα ∧ dz̄β . (2.4)

The integer p+q is called the degree of differential form ω and every differen-

tial form of degree r can be written as a sum of differential forms of bidegree

(p, q), where p + q = r.

A form ω in
∧p,p(Ω,R) is called strongly positive if it is of the form

ω =
∑m

j=1 λj
i
2
η1∧η̄1∧· · ·∧ i

2
ηp∧η̄p for some non-negative numbers λ1, . . . , λm

and for some forms η1, . . . , ηm where ηj are linearly independent C-linear

mappings from Cn to C.

The volume form on Cn is defined as follows:

dV (z) =
( i

2

)n

dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ · · · ∧ dzn ∧ dz̄n. (2.5)

In real notation,

dV (z) = (
i

2

)n

(2idx1 ∧ dy1) ∧ · · · ∧ (2idxn ∧ dyn)

= dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn,

which is the standard volume form in R2n. We remark that the volume form

10



on Cn is a strongly positive form.

If ω is a differential form of bidegree (p, q) as in ( 2.4), we will use the

well-known operators d, ∂ and ∂̄ defined on differential forms of bidegree

(p, q). Recall that for 0 ≤ p, q ≤ n,

dω =
∑

α,β dωαβ ∧ dzα ∧ dz̄β,

∂ω =
∑

α,β ∂ωαβ ∧ dzα ∧ dz̄β,

∂̄ω =
∑

α,β ∂̄ωαβ ∧ dzα ∧ dz̄β.

(2.6)

The forms ∂ω and ∂̄ω are of bidegree(p+1, q) and (p, q +1), respectively.

We remark that

d = ∂ + ∂̄.

Now we will define another very important operator dc

dc .
= i(∂̄ − ∂). (2.7)

This definition of dc is not standard. Some authors such as [10] use

dc =
i

2π
(∂̄ − ∂). (2.8)

We will use the first definition. Note that

ddc = 2i∂∂̄, (2.9)
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and, if u ∈ C2(Ω), then

ddcu = 2i
n∑

j,k=1

∂2u

∂zj∂z̄k

dzj ∧ dz̄k. (2.10)

From this formula and the fact that for any b, c ∈ Cn,

dzj ∧ dz̄k(b, c) = bj c̄k − b̄kcj,

we deduce that

(ddcu)(a)(b, c) = −4Im < Lu(a)b, c > (2.11)

for a ∈ Ω and b, c ∈ Cn.

2.2 Distributions and Currents

In classical differential calculus historically there were some difficulties due to

existence of functions which are not differentiable. In 1945 L. Schwartz intro-

duced the theory of distributions in his paper ”Généralisation de la notion,

de dérivation, de transformation de Fourier et applications mathématiques

et physiques ” appeared in Annale de l’Université de Gronoble. By his great

work, theory of distributions allowed us to extend differentiability proper-

ties to a more general class of functions. Currents play a similar role for

differential forms. The notion of currents in its primitive form was first in-

12



troduced by de Rham in his papers in 1929 ”Intégrales Multiples et Analysis

Situs” appearing in Comptes Rendus des Séances de l’Académie des Sciences

and in 1931 ”Sur l’Analysis Situs des Variétés à n Dimensions” in Journal

de Mathématiques Pures et Appliquées. Note that this is earlier then the

appearance of the theory of distributions. After Schwartz introduced dis-

tributions de Rham adopted this concept to get a more general and best

suiting theory of currents in his paper in 1950 ”Intégrales harmoniques et

théorie des intersections” in Proceedings of the international Congress of

Mathematicians and in his lecture ”Harmonic Integrals” delivered at the In-

stitute for Advanced Study in Princeton. Later while dealing with complex

Monge-Ampére operator we will use his theory of currents. Therefore, here

we want to give a short review of test functions, distributions and currents.

Definition 2.2.1. Let Ω be a open subset of Cn (or Rn), then the space of

test functions D(Ω) is the vector space of functions φ of class C∞, each of

which has compact support.

We give a topolgy to the space D(Ω) which gives following notion of

convergence of sequences: A sequence φm ∈ D(Ω) converges in D(Ω) to the

function φ ∈ D(Ω) if there exists some fixed compact set K ⊂ Ω such

that the supports of φm − φ are in K for all m and, for each choice of

α = (α1, . . . , αn)

∂|α|φm

∂xα1
1 . . . ∂xαn

n

−→ ∂|α|φ
∂xα1

1 . . . ∂xαn
n

(2.12)

as m →∞, uniformly on K.(See [20, p. 128].)
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Definition 2.2.2. A distribution T is a continuous linear functional onD(Ω),

and whenever φn ∈ D(Ω) and φn → φ in D(Ω) then T (φn) → T (φ). The

space of distributions is the topological dual of D(Ω) equipped with the w∗-
topology, and shown by D′(Ω). In other words a sequence of distributions

T j ∈ D′(Ω) converges in D′(Ω) to T ∈ D′(Ω) if, for every φ ∈ D(Ω) , T j(φ)

converge to T (φ).

Example 2.2.3. Let f be a function in L1
loc(Ω) any φ ∈ D(Ω) and define

Tf (φ) :=

∫

Ω

fφdV,

For φm → φ, suppose K is the compact set which contains the supports of

φm − φ then we have

∣∣∣Tf (φ)− Tf (φ
m)

∣∣∣ =
∣∣∣
∫

Ω

(φ(x)− φm(x))f(x)dx
∣∣∣

≤ sup
x∈K

|φ(x)− φm(x)|
∫

K

|f(x)|dx,

which tends to zero as m → ∞. Moreover clearly Tf is linear hence, Tf

defines a distribution.

If a distribution T is given by Tf (φ) :=
∫
Ω

fφdx for some f ∈ L1
loc(Ω),

then we will identify Tf with f . This identification makes sense since Tf = Tg

if and only if f = g a.e.

Definition 2.2.4. A distribution T is said to be of order r if for every

sequence φn which satisfies

14



• the supports of φn are all contained in a fixed compact set K ∈ Ω

• supx |D(α)φn(x)| =→ 0, as n →∞ for all indices (α) such that |α| ≤ r.

We have T (φn) → 0. (See [18, p. 1].)

If T is finite order r, then T can be extended to the space Cr
0(Ω) of func-

tions of class Cr with compact support in Ω ; when Cr
0(Ω) is given the topology

of uniform convergence on compact subsets of Ω with all the derivatives of

order less then or equal to r.

A linear operator is positive if l(φ) ≥ 0 for all φ ∈ L such that φ ≥ 0.

Similarly a distribution T is called positive if T (φ) ≥ 0 for all φ ∈ D(Ω)

such that φ(x) ≥ 0 for all x ∈ Ω.

Consider a positive distribution T then we can consider it as a positive

linear operator on the space C0
0(Ω) can be regarded as a positive measure by

Riesz Representation Theorem.(For Riesz Representation Theorem see [20,

p. 55])

Definition 2.2.5. Let T be in D′(Ω) and let α0, . . . , αn be positive integers

such that α = (α1, . . . , αn). Distributional or weak derivative of order α of

T, D(α)T , is defined by its action on each test function φ ∈ D(Ω) as follows :

(DαT )(φ) = (−1)|α|T (Dαφ) (2.13)

(See [20, p. 131])
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Remark 2.2.1. Let f is a C|α|(Ω)−function, then the weak derivative agrees

with the classical derivative. Since if Gi := ∂f
∂xi

be distributional derivative

of f , then

Gi(φ) = (
∂f

∂xi

)(φ) = (−1)|i|
∫

Ω

(
∂φ

∂xi

)f = (−1)|i|
∫

Ω

φ(
∂f

∂xi

)

where the first and second equalities are by definition of distributional deriva-

tive and the third is due to integration by parts formula and φ has compact

support and f has continuous partial derivatives.

After this short introduction to distributions, we will now define currents.

Definition 2.2.6. A current t of bidegree (p, q) on an open subset Ω of

Cn is a linear functional t which is defined and continuous on the space of

differential (n− p, n− q)-forms with infinitely differentiable coefficients and

compact support. Here continuity means: If φn are differential (n−p, n− q)-

forms with smooth coefficients and φn → 0 i.e.

• supports supp(φn) are contained in a fixed compact set K ⊂ Ω

• for each coefficient φn,(i) of φn, and each multi-index (α), D(α)φn,(i) → 0

uniformly on K.

then t(φn) → 0.

Namely t(φn) → 0 if the coefficients of φn’s converge to 0 in D′
(Ω).

A current is a differential (p, q)−form with distribution coefficients. In

this case we call the current is of bidegree (p, q). (See [15, p. 107].)
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Example 2.2.7. Let α be a homogenous differential form of bidegree (s, r)

with continuous coefficients. Then

α(φ)
.
=

∫

Ω

α ∧ φ

for smooth differential form φ of degree (n− s, n− r) with compact support

defines a current of bidegree (s, r).

Example 2.2.8. Let S be a k dimensional compact submanifold of Ω. Then

current of integration [S] is defined by

[S](φ)
.
=

∫

S

φ

for smooth differential form φ of degree k with compact support defines a

current of degree k.

A current t is said to be of order r if it has the special property that

t(φn) → 0 for every sequence φn which satisfies,

• the supports of φn are all contained in a fixed compact set K ∈ Ω

• supx |D(α)φn(x)| = m
(α)
n → 0 , as n → +∞ for all indices (α) such that

|α| ≤ r.

A current t of bidegree (p, p) is said to be (weakly) positive if for every

choice of smooth (1, 0)-forms α1, . . . , αp on Ω

t ∧ iα1 ∧ ᾱ1 ∧ · · · ∧ iαp ∧ ᾱp (2.14)
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is a positive measure, i.e. positive multiple of dV .

A Radon measure µ on Ω is by definition a Borel measure such that for

any compact set K ⊂ Ω we have µ(K) < ∞.

In particular a distribution of order zero on Ω can be identified by a

Radon measure.

Let us denote all continuous functions on Ω with compact support by

C0(Ω), and let φ be continuous linear functional on Ω. Then by Riesz

Representation theorem there exists a unique Borel measure µ on Ω, such

that

φ(ϕ) =

∫

Ω

ϕdµ.

Since ϕ has compact support; µ becomes a Radon measure.

For any Radon measure µ on Ω we can associate a positive linear func-

tional Λ on C0(Ω), by

Λ(ϕ) =

∫

Ω

ϕdµ.

Hence we can identify all Radon measures by the positive linear functionals

on C0(Ω).

We remark that (n, n)-currents are just distributions on Ω, and a (0, 0)-

currents of order 0 are complex measures.

We endow (C0(Ω))
′

with weak∗-topology: in this topology, µj → µ as

j →∞ if µj(φ) → µ(φ) for each φ ∈ C0(Ω).

We will denote the class of currents on Ω of bidegree (m,m) and order

0 by Mm(Ω). Those are differential forms of bidegree (m,m) with Borel
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measure coefficients endowed with weak topology.

2.3 Plurisubharmonic Functions

2.3.1 Basic Definitions and Some Basic Facts

We want to start with some basic definitions from classical potential theory.

Definition 2.3.1. Let h ∈ C2(Ω) defined on an open subset of Rn is called

a harmonic function if it satisfies the homogeneous Laplace equation:

∆u =
n∑

j=1

∂2u

∂x2
j

≡ 0 in Ω. (2.15)

The space of harmonic functions on a domain Ω form a vector space since

the Laplace operator is linear. This space is denoted by H(Ω).

In particular if Ω ⊂ Cn then,

n∑
i=1

∂2f

∂zi∂z̄i

=
n∑

i=1

1

2

( ∂

∂xi

− i
∂

∂yi

)( ∂

∂xi

+ i
∂

∂yi

)
f

=
1

4

n∑
i=1

(∂2f

∂x2
i

+
∂2f

∂y2
i

)
=

1

4
∆f

As a consequence we have the following important example.

Example 2.3.2. Let f be analytic function in a domain Ω ⊂ Cn then

Ref(z) and Imf(z) are harmonic.

Observe that n = 1 4ddcu = ∆udz ∧ dz̄ for u ∈ C2(Ω)
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Theorem 2.3.3. A continuous function f is harmonic in Ω if and only if

u(y) =
1

σ(∂B(y, R))

∫

B(y,R)

u(x)dσ(x) (2.16)

for any B(y, R) such that B(y, R) ⊂ Ω, where σ is the usual Lebesgue

measure on the sphere.

Proof. See [15, p. 30].

In particular for Ω ⊂ C then 2.16 reduces to

f(y) =
1

2π

∫ 2π

0

f(y + reiθ)dθ (2.17)

Theorem 2.3.4. Let u be a harmonic function in Ω and continuous in Ω̄,

where Ω is a bounded domain in Cn(in Rn). Then either u is constant or

u(x) < sup
y∈∂Ω

u(y) (x ∈ Ω). (2.18)

Proof. Let α = supy∈∂Ω u(y). Now we define A = u−1(α). A is closed in

Ω since u is continuous. If A is not empty then we will show that A is

open. Since Ω is connected then A will be whole Ω. Let a ∈ A, r > 0, and

B(a, r) ⊂ Ω. If there exists b ∈ B(a, r) \ A, then the function u is strictly

less then u(a) = α in a neighborhood of b. Then let | b− a |= s then

α = u(a) =
1

σ(∂B(y, s))

∫

∂B(y,s)

u(x)dσ(x) <
1

σ(∂B(y, s))

∫

∂B(y,s)

αdσ(x) = α
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which gives a contradiction. Therefore B(a, r) ⊂ Ω. Hence A is open, and

so A = Ω.

The classical Dirichlet problem for a given continuous function on the

boundary of a bounded domain φ : ∂Ω → R is finding a function u ∈
H(Ω) ∩ C(∂Ω) such that limz→ζ,z∈Ω φ(z) = φ(ζ) for all ζ ∈ ∂Ω.

If Ω is the unit disc in the complex plane we can solve the Dirichlet

problem for any continuous function on the boundary. In fact we have more,

we have solution for any integrable function on the boundary:

Theorem 2.3.5. [21, p. 88] Let φ : ∂∆ → R is a Lebesgue integrable func-

tion, then its Poisson integral defined by

Pφ(z) :=
1

2π

∫ 2π

0

1− r2

1− 2rcos(θ − t) + r2
φ(z + eiθ)dθ. (2.19)

is harmonic in Ω, and if φ is continuous then limz→ζ Pφ(z) = φ(ζ) for all

ζ ∈ ∂∆.

Definition 2.3.6. Let X be a topological space. A function g : X →
[−∞,∞) is called upper semicontinuous if the set {x ∈ X : g(x) < α} is

open in X for each α ∈ R.

If X is a metric space then g is upper semicontinuous if and only if

lim sup
y→x

g(y) = g(x), (x ∈ X)
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where lim supy→x g(y) is defined as follows:

lim sup
y→x

g(y) = inf
δ>0

sup{f(y) : y ∈ (B(x, δ) ∩ Ω)}.

Definition 2.3.7. Let X be a topological space, let g : X → [−∞,∞) be

a function which is locally bounded above on X. Its upper semicontinuous

-regularization g∗ : X → [−∞,∞) is defined by;

g∗ := lim sup
y→x

g(y) = inf
N

(sup
y∈N

g(y)) (x ∈ X)

the infimum being taken over all neighborhoods N of x.

It is obvious that g∗ is an upper semicontinuous function on X such that

g∗ ≥ g, and also it is the smallest such function.

In particular, a function g : X → [−∞,∞) is upper semicontinuous if

and only if it coincides with its upper semicontinuous regularization.

Definition 2.3.8. An upper semicontinuous function u : Ω → [−∞,∞)

which is not identically −∞ is called subharmonic if

u(y) ≤ 1

σ(∂B(y,R))

∫

∂B(y,R)

u(x)dσ(x)

for any B(y, R) such that B(y, R) ⊂ Ω, where σ is the usual Lebesgue

measure on the sphere.

Definition 2.3.9. An upper semicontinuous function g on a domain D
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which is not identically equal to −∞ is called plurisubharmonic if a ∈ D and

b ∈ Cn, the function λ → g(a+λb) is subharmonic or identically −∞ on every

component of the set {λ ∈ C : a + λb ∈ D}. Namely g is plurisubharmonic

if and only if restriction of g to any complex line is subharmonic. The set of

all plurisubharmonic functions on D is denoted by PSH(D).

Definition 2.3.10. A function h is called pluriharmonic if both h and −h

are plurisubharmonic.

Theorem 2.3.11. Let g : Ω → R be a C2 function on an open set Ω. Then

g is plurisubharmonic if and only if 〈Lg(a)b, b〉 ≥ 0 for all a ∈ Ω, b ∈ Cn.

Proof. ⇒:Fix a ∈ Ω and b ∈ Cn. Consider the function h(λ) = g(a +

λb). Since g is plurisubharmonic, h is subharmonic. Therefore ∆h(λ)|λ=0 =

1
4

∑n
j,k=1

∂g2u
∂zj∂z̄j

(a)bj b̄k ≥ 0

⇐: Conversely assume 〈Lu(a)b, b〉 ≥ 0 for all a ∈ Ω, b ∈ Cn, then let h(λ) =

g(a + λb). Then ∆h(λ)|λ=0 = 1
4

∑n
j,k=1

∂g2u
∂zj∂z̄j

(a)bj b̄k which is nonnegative by

the assumption. Hence, h is subharmonic. Thus g is plurisubharmonic.

Corollary 2.3.12. A function f is pluriharmonic if and only if for any

b ∈ Cn we have 〈Lf(a)b, b〉 = 0.

Proof. Since f and −f are plurisubharmonic we have the conclusion by

2.3.11.

In fact we will also show that this characterization is still valid for non-

smooth plurisubharmonic functions where the derivatives are taken in the

23



sense of distributions in Theorem 2.3.16 below. Now we have another char-

acterization in terms of integral means.

Proposition 2.3.13. Let g : Ω → [∞,∞) be upper semicontinuous and not

identically −∞ on any connected component of Ω ⊆ Cn. Then g ∈ PSH(Ω)

if and only if for each a ∈ Ω and b ∈ Cn such that

{a + λb : λ ∈ C, |λ| ≤ 1} ⊆ Ω

we have

g(a) ≤ 1

2π

∫ 2π

0

g(a + eitb)dt. (2.20)

Proof. ⇒:Let g be plurisubharmonic . We define h(λ) = g(a + λb) which is

subharmonic since g is plurisubharmonic .

h(a) ≤ 1

2π

∫ 2π

0

h(a + eitb)dt =
1

2π

∫ 2π

0

g(a + eitb)dt

where the second inequality is due to h subharmonic. Hence g is plurisub-

harmonic.

⇐: Let g(a) ≤ 1
2π

∫ 2π

0
g(a + eitb)dt. Then for all a ∈ Ω and b ∈ Cn such that

{a + λb : λ ∈ C, |λ| ≤ 1} ⊆ Ω we define h(λ) = g(a + λb) and

h(a) = g(a) ≤ 1

2π

∫ 2π

0

g(a + eitb)dt =
1

2π

∫ 2π

0

h(a + eitb)dt.

Hence h is subharmonic, and g is plurisubharmonic.
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Now we want to give some theorems about smoothing of plurisubharmonic

functions. If u, v ∈ L1(Rn), then the convolution u∗v of u and v is defined

by formula

(u∗v)(x) =

∫

Rn

u(x− y)v(y)dV (y).

It is easy to see that u∗v = v∗u by a change of variable formula of advanced

calculus. Consider the function h : R→ R given by the formula

h(t) =





exp(−1/t) (t > 0),

0 (t ≤ 0).

(2.21)

It is elementary fact that h ∈ C∞(R). Now we define

χ(x) = h(1− ‖x‖2)/K (x ∈ Rn)

where

K =

(∫

B(0,1)

h(1− ‖x‖2)dV (x)

)
.

It is obvious that χ ∈ C∞(Rn), suppχ = B(0, 1), and
∫
Rn χ(x)dV (x) = 1.

Since χ(x) depends only on r = ‖x‖ , we will use χ(r) instead of χ(x).

For ε > 0 we define

χε(x) =
1

εn
χ(

x

ε
)

The functions χε are often called standard smoothing kernels.
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Let Ω ⊂ Rn be open. If Ω 6= Rn, we set

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}

for ε > 0. If Ω = Rn, we set Ωε = Rn for ε > 0.

Proposition 2.3.14. Let Ω be an open subset of Cn, and u ∈ L1
loc(Ω).

Suppose that a ∈ Ω, b ∈ Cn, and {a + λb : λ ∈ C, | λ |≤ 1} ⊂ Ω. Then

(
(

1

2π

∫ 2π

0

g(x + eitb)dt)∗χε

)∣∣∣∣
x=a

=
1

2π

∫ 2π

0

(g(a + eitb)∗χε)dt (2.22)

Proof.

(
(

1

2π

2π∫

0

g(x + eitb)dt)∗χε

)∣∣∣∣
x=a

=

∫

Cn

(
1

2π

2π∫

0

g(a + eitb− w)dt

)
χε(w)dV (w)

which equals to

∫ 2π

0

(
1

2π

∫

Cn

g(a + eitb− w)dt

)
χε(w)dV (w)

by Fubini Theorem and this equals to

1

2π

∫ 2π

0

(g(a + eitb)∗χε)dt.

Theorem 2.3.15. Let Ω ⊆ Cn be an open set, let g ∈ PSH(Ω). If ε > 0 is
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such that Ωε 6= ∅, then u∗χε ∈ C∞∩PSH(Ωε). Moreover, u∗χε monotonically

decreases with decreasing ε, and limn→0 u∗χε(z) = u(z) for each z ∈ Ω.

Proof. Observe that u∗χε is smooth since

u∗χε = χ∗εu =

∫

Cn

χε(x− y)u(y)dV (y)

and χε(x) is smooth and differentiation under integral sign. The function

u∗χε is plurisubharmonic since by Proposition 2.3.14 we have:

1

2π

∫ 2π

0

u∗χε(a + eitb)dt =
1

2π

∫ 2π

0

( ∫

Cn

u(a + eitb− w)χε(w)dw
)
dt

=

∫

Cn

( 1

2π

∫ 2π

0

u(a + eitb− w)χε(w)dt
)
dw

≥
∫

Cn

u(a− w)χε(w)dw

= u∗χε(a).

Third inequality comes from the fact that u is plurisubharmonic, others are

directly from definitions. Hence u∗χε is plurisubharmonic. For the rest of

the proof we refer to [15, p. 44].

Theorem 2.3.16. If Ω ⊂ Cn is open and u ∈ PSH(Ω), then for each

b = (b1, . . . , bn) ∈ Cn, we have

n∑

j,k=1

∂2u

∂zj∂z̄k

bj b̄k ≥ 0 (2.23)
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in Ω, in the sense of distributions , i.e.

∫

Ω

u(z)〈Lφ(z)b, b〉dV (z) ≥ 0 (2.24)

for any non-negative test function φ ∈ C∞0 (Ω). Conversely, if v ∈ L1
loc(Ω) is

such that for each b = (b1, . . . , bn) ∈ Cn,

n∑

j,k=1

∂2v

∂zj∂z̄k

bj b̄k ≥ 0 (2.25)

in Ω, in the sense of distributions, then the function u = limε→0(v
∗χε) exists,

plurisubharmonic in Ω, and is equal to v almost everywhere in Ω.

Proof. Let u ∈ PSH(Ω), and let uε = u∗χε for ε > 0. For any non-negative

test function φ ∈ C∞0 and b = (b1, . . . , bn) ∈ Cn we have,

∫

Ω

u(z)〈Lφ(z)b, b〉dV (z) = lim
ε→0

∫

Ω

uε(z)〈Lφ(z)b, b〉dV (z)

= lim
ε→0

∫

Ω

(z)φ(z)〈Luεb, b〉dV (z) ≥ 0

where the first equality is by Lebesgue’s dominated convergence theorem and

the second equation is obtained by using integration by parts formula twice

for smooth functions and φ has compact support. It is positive since uε is

plurisubharmonic and smooth by 2.3.11.

Conversely assume v ∈ L1
loc(Ω), and

∫
Ω

v(z)〈Lφ(z)b, b〉dV (z) ≥ 0. Let

vε = v∗χε for ε > 0. Then
∫
Ω

vε(z)〈Lφ(z)b, b〉dV (z) ≥ 0. Therefore, vε is
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plurisubharmonic in the sense of distributions. Moreover vε is smooth hence,

it is plurisubharmonic in usual sense. For ε2 > ε1 > 0 and x ∈ Ω, we have

vε2(x) = lim
δ→0

(v∗χε2)
∗χδ(x) = lim

δ→0
(v∗χδ)χε2(x)

≥ lim
δ→0

(v∗χδ)χε1(x) = lim
δ→0

(v∗χε1)
∗χδ(x) = vε1(x).

Remark that vεn are plurisubharmonic.

Definition 2.3.17. A set E ⊂ Ω is called polar set if for each point a ∈ E

there is a neighborhood V of a and a function u ∈ SH(Ω) such that

E ∩ V ⊂ {z ∈ V : u(z) = −∞}.

Definition 2.3.18. A set E ⊂ Ω is called pluripolar set if for each point

a ∈ E there is a neighborhood V of a and a function u ∈ PSH(Ω) such

that E ∩ V ⊂ {z ∈ V : u(z) = −∞}.

Remark that polar and pluripolar sets have Lebesgue measure zero [15,

p. 41].

2.3.2 Maximal Plurisubharmonic Functions

Definition 2.3.19. A maximal plurisubharmonic function is a plurisubhar-

monic function f on an open set Ω such that for any relatively compact

open subset G of Ω and any upper semicontinuous function g defined on Ḡ,

and plurisubharmonic on G such that g ≤ f on the boundary of G , then

g ≤ f in G.
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We will use the symbol MPSH(Ω) to denote the space of maximal

plurisubharmonic functions on Ω.

Proposition 2.3.20. Let Ω be an open subset Cn, and let f : Ω −→ R be a

plurisubharmonic function. Then the following are equivalent:

1. for every relatively compact open subset G of Ω and every function

g ∈ PSH(G), if lim infz→ξ(f(z) − g(z)) ≥ 0 for all ξ ∈ ∂G, then

f ≥ g in G;

2. for g ∈ PSH(Ω) and for each ε ≥ 0 there exists a compact set K ⊂ Ω

such that f − g ≥ −ε in Ω \K , then f ≥ g in Ω;

3. for g ∈ PSH(Ω) , G is a relatively compact open subset of Ω, and

f ≥ g on ∂G , then f ≥ g on G ;

4. for g ∈ PSH(Ω) , G is a relatively compact open subset of Ω, and

f ≥ g on ∂G , and for each ξ ∈ ∂G ,

lim inf
z→ξz∈G

(f(z)− g(z)) ≥ 0,

then f ≥ g in G;

5. f is maximal

Proof. See [15, p. 88].
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Proposition 2.3.21. [15, p. 92] Let Ω be a bounded open subset of Cn,

and let u, v be C2−plurisubharmonic functions in a neighborhood of Ω.

If v ≤ u on ∂Ω and

det
[ ∂2v

∂zj∂z̄k

]
1≤j,k≤n

≥ det
[ ∂2u

∂zj∂z̄k

]
1≤j,k≤n

in Ω,

then v ≤ u in Ω.

Proof. For ε > 0, we define

vε(z) = v(z) + ε(‖z‖2 − sup
w∈∂Ω

‖w‖2).

Now vε is plurisubharmonic since 〈Lvε(a)b, b〉 ≥ 0 since v is plurisubharmonic

and (ε(‖z‖2 − sup
w∈∂Ω

‖w‖2)) is positive. Then

0 < det
[ ∂2vε

∂zj∂z̄k

]
−

[ ∂2u

∂zj∂z̄k

]
=

1∫

0

d

dt
det

[ ∂2

∂zj∂z̄k

(tvε + (1− t)u)
]
dt

=

2π∫

0

( n∑

j,k=1

Ajk
t

∂2

∂zj∂z̄k

(vε − u)
)
dt =

n∑

j,k=1

Bjk ∂2

∂zj∂z̄k

(vε − u),

where [Ajk
t ] is the cofactor matrix of

[ ∂2

∂zj∂z̄k

(tvε + (1− t)u)
]
1≤j,k≤n

and [Bjk] is its integral with respect to t. Hence [Bjk] is positive definite,
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and hence vε − u has no local maximum in Ω. Thus vε ≤ u in Ω and, as ε

tends to 0, we get the result.

Theorem 2.3.22. [15, p. 93] Let g ∈ C2(Ω), where Ω ⊂ Cn is open. Then

g ∈MPSH(Ω) if and only if

det
[ ∂2g

∂zj∂z̄k

]
1≤j,k≤n

≡ 0 in Ω

Proof. ⇒: Assume that u is maximal and det
[

∂2g
∂zj∂z̄k

]
j,k

is not identically 0

in Ω. Then there exists w ∈ Ω such that for every b ∈ Cn\{0}, 〈Lu(w)b, b〉 >

0. Since it is twice continuously differentiable, there exists a closed ball

B(a, r) ⊂ Ω such that for every z ∈ B(a, r) and 〈Lu(z)b, b〉 > 0. Thus

for some c > 0, 〈Lu(z)b, b〉 ≥ c| b |2 for every z ∈ B(a, r) and b ∈ Cn\0.

Now if we define

v(z) =





u(z) (z ∈ Ω\B(a, r)),

u(z) + c(r2 − | z − a |2) (z ∈ B(a, r))

Because of our choice of c, v is plurisubharmonic

〈L(u(z) + c(r2 − | z − a |2))(z)b, b〉 ≥ 0 then we have u = v on ∂B(a, r)

and v(a) > u(a), which contradicts maximality of u.

⇐: Let G be a relatively compact open subset of Ω, and let v ∈ PSH(Ω)

such that v ≤ u on ∂Ω . We apply Proposition 2.3.21 to (v − δ)∗χε

instead of v (where δ > 0, ε > 0 are sufficiently small that we can apply
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the proposition i.e. since G is relatively compact there exists ε > 0 such that

G ⊂ Ωε), u and G. We conclude that (v − δ)∗χε ≤ u in G. We get

v ≤ u as δ, ε → 0.

2.4 Classical Hardy Spaces

We will begin by the definitions of Hardy Spaces on the unit disc and collect

some results from this theory.

2.4.1 Hardy Spaces on the Unit Disc

∆ = {z ∈ C : |z| < 1} ⊆ C is the unit disc in C. For 1 ≤ p < ∞ then Hardy

Spaces are defined as follows :

Hp(∆) =
{
f ∈ O(∆) : sup

0<r<1
(

1

2π

∫ 2π

0

|f(reiθ)|pdθ)
1
p < ∞}

. (2.26)

One also can define

H∞(∆) = {f ∈ O(∆) : sup
z∈4

|f(z)| < ∞} for p = ∞ . (2.27)

For 1 ≤ p < ∞ we equip Hp(∆) spaces with the following norms :

‖f‖p := sup
0<r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ)
1
p (2.28)
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and for H∞(∆), as usual, we define:

‖f‖∞ := sup
z∈4

|f(z)| (2.29)

Remark 2.4.1. We will point out the following facts concerning Hp spaces :

• ‖ ‖ is a norm on Hp(∆) making it a Banach Space

• The inclusion map i : Hp(∆) → Lp(∆, µ) is a continuous imbedding.

This follows from:

(

∫ 1

0

(

∫ 2π

0

|f(reiθ)|p dθ

2π
)rdr)

1
p ≤ 1

2p
‖f‖p

• H2(∆) is a Hilbert space with inner product

〈f, g〉 .
= sup

r

1

2π
(

∫ π

0

f(reiθ)g(re−iθ)dθ)
1
2

it is not difficult to express this inner product in terms of the Taylor

series expansions of f and g:

〈f, g〉 =
∞∑
i=1

anb̄n where f(z) =
∞∑
i=1

anz
n, g(z) =

∞∑
i=1

bnzn

Definition 2.4.1. A function g is said to be a convex function of log r if

log r = α log r1 + (1− α) log r2 (0 < r1 < r2 < 1; 0 < α < 1)
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then

log g(r) ≤ α log g(r1) + (1− α) log g(r2),

or

g(r) ≤ [g(r1)]
α[g(r2)]

1−α.

Theorem 2.4.2. (Hardy’s Convexity Theorem) Let f(z) be an analytic

function in the unit disc, then (i)Mp(r, f) is a nondecreasing function of r;

(ii)log Mp(r, f) is a convex function of log r. where

Mp(r, f) =

∫ 2π

0

|f(reiθ)|p dθ

2π
, (0 < p < ∞) (2.30)

M∞(r, f) = max
0≤θ<2π

|f(reiθ)| (2.31)

Proof. See [11, p. 9].

For 1 ≤ p ≤ ∞ then for f ∈ Hp(∆) define

fr(θ) = f(reiθ)

Theorem 2.4.3. (Fatou) Let f ∈ Hp(∆), 1 ≤ p ≤ ∞ then for almost all θ

radial limits of f exists, i.e.

f ∗(θ) .
= lim

r→1
fr(θ) = lim

r→1
f(reiθ)

exists a.e. and moreover f
∗

is in Lp(∂∆, dθ
2π

).
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Proof. See [17, p. 289].

Theorem 2.4.4. If f ∈ Hp(∆), p > 0, then

log | f(reiθ) | ≤ 1

2π

∫ 2π

0

P (r, θ − t) log | f(eiθ) |dt

Proof. See [11, p. 23].

Theorem 2.4.5. Let f be an analytic function in the ∆, then f ∈ Hp(∆) if

and only if |f |p has a harmonic majorant in the disc.

Proof. Assume u(z) be a harmonic majorant for | f(z) |p. Then

1

2π

∫ 2π

0

| f(reiθ) |pdθ ≤ 1

2π

∫ 2π

0

udθ = [u(0)]. (2.32)

Conversely assume f is in Hp(∆), then by Theorem 2.4.4,

| f(reiθ) |p ≤ exp
{ 1

2π

∫ 2π

0

P (r, θ − t) log | f(eiθ) |p dt
}

(2.33)

≤
∫ 2π

0

P (r, θ − t)| f(eiθ) |pdt (2.34)

where the last inequality is by Jensen’s inequality. Therefore, | f(z) |p is

dominated by Poisson integral of its boundary function which is harmonic.

It can be shown that there exists a smallest harmonic majorant U for

| f(z) |p for f ∈ Hp(∆). By means of these harmonic majorants we can
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define a new equivalent norm on Hp(∆) by defining:

‖ f ‖p:= U(0).

They are equivalent by 2.32.

Yet another equivalent norm can be given to Hp(∆) by defining

‖ f ‖p:=‖ f ∗ ‖p

where ‖ f ∗ ‖p is the norm of boundary function f ∗ of f in Lp(∂∆).

2.4.2 Hardy Spaces on the Polydiscs

Recall that an open polydisc with center z and polyradius r is

4n(z, r) = {w ∈ Cn : |zi − wi| < ri , j = 1, . . . , n}.

We will deal with the unit polydisc centered at the origin and simply

show it by ∆n. Hardy spaces on the polydiscs are defined as follows :

Hp(∆n) =
{
f ∈ O(∆n) : sup

0<r<1

( 1

(2π)n

∫

T n

| f(rz) |p dµ
) 1

p < ∞}

where

T n = {z ∈ ∂Ω :| zi |= 1 for all 1 ≤ i ≤ n}

and µ = θ1 . . . θn is the usual Lebesgue measure on the torus. As usual we
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let:

H∞(∆n) = {f ∈ O(∆n) : sup
z∈∆n

|f(z)| ≡ ‖f‖∞ < ∞} .

We equip these spaces with the following norms:

‖f‖p
.
= sup

0<r<1

( 1

(2π)n

∫

T n

| f(rz) |p dµ
) 1

p

and

‖f‖∞ .
= sup

z∈∆n

|f(z)|

We set for f ∈ O(∆n) , w ∈ T n

fr(w) = f(rw) 0 < r < 1, (2.35)

and define

f ∗(w)
.
= lim

r→1
f(rw) (2.36)

for every w ∈ T n at which this radial limit exists.

Theorem 2.4.6. Let f be in Hp(∆n) then f ∗(w) exists for almost all

w ∈ T n.

Proof. See [22, p. 51].

Theorem 2.4.7. For 0 < p < ∞ and f ∈ Hp(∆n), then

lim
r→1

∫

T n

| fr − f ∗ |pdµ = 0.
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Proof. See [22, p. 51].

Theorem 2.4.8. f ∈ Hp(∆n) if and only if |f(z)|p has an n-harmonic

majorant where n-harmonic means harmonic in each variable separately.

Proof. First, assume |f(z)|p has an n-harmonic majorant u then we have

1

(2π)n

∫ 2π

0

. . .

∫ 2π

0

| f(reiθ1 , . . . , reiθn) |pdθ1 . . . dθ1

≤ 1

(2π)n

∫ 2π

0

. . .

∫ 2π

0

udθ1 . . . dθ1 = [u(0)]

which is finite hence f ∈ Hp(∆n).

Conversely assume f ∈ Hp(∆n) then by Theorem 2.4.4, we have

|f(z)|p ≤ exp
1

2π

∫ 2π

0

P (r, θ1 − t1) log | f(reiθ1 , z2 . . . , zn) |pdθ1

we repeat same argument for z2 and we get:

|f(z)|p ≤ exp
1

2π

∫ 2π

0

P (r, θ1 − t1) log exp

∫ 2π

0

P (r, θ2 − t2)

| f(reiθ1 , z2 . . . , zn) |pdθ2dθ1

then repeating this procedure n times we have a bound for |f(z)|p:

exp
( 1

2π

∫ 2π

0

P (r, θ1 − t1)

∫ 2π

0

P (r, θn − tn)

| f(reiθ1 , reiθ2 . . . , reiθn) |p)dθ1 . . . dθn

)
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now using Jensen inequalty n times we get that |f(z)|p is dominated by

1

(2π)n

∫ 2π

0

. . .

∫ 2π

0

P (r, θ1−t1) . . . P (r, θn−tn)| f(reiθ1 , . . . , reiθn) |pdθ1 . . . dθ1

which is n-harmonic.

2.4.3 Hardy Spaces in the Unit Ball of Cn

We will define the Hardy Spaces in the unit ball of Cn for 1 ≤ ∞:

Hp(B)
.
= {f ∈ O(B) : sup

0<r<1

∫

S(r)

|f(z)|pdµ < ∞}

where S(r) is the sphere with center 0 and radius r and µ is the usual

Lebesgue measure on the sphere. We will use S for S(1). As usual we define

H∞(B) = {f ∈ O(B) : sup
z∈B

|f(z)| < ∞} .

We give following norms to Hardy Spaces on the ball:

‖f‖p
.
= sup

0<r<1
(

∫

S(r)

|f(z)|pdµ)1/p

and

‖f‖∞ .
= sup

z∈B
|f(z)|.

As in the case of polydiscs we define fr as fr(z) = f(rz) for 0 < r < 1.
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Also we define

f ∗(w) = lim
r→1

u(rw)

for every w ∈ S at which this radial limit exists.

Theorem 2.4.9. If f is in Hp(B), for 1 ≤ ∞ then, for almost all w ∈
S, f ∗(w) exists.

Proof. See [23, p. 85].

Theorem 2.4.10. If f is in Hp(B), for 1 ≤ ∞ then limr→1

∫
S

| f ∗ − fr |pdσ =

0.

Proof. See [23, p. 85].

Theorem 2.4.11. An analytic function f is in Hp(B) if and only if

| f(z) |p has an harmonic majorant.

Proof. See [17, p. 291].
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CHAPTER 3

THE COMPLEX MONGE-AMPÉRE

OPERATOR

In this chapter we will discuss complex Monge-Ampére operators (ddc)n.

Firstly, we will define complex Monge-Ampére operator for functions of class

C2 and extend this definition for continuous plurisubharmonic functions.

Then, we will define complex Monge-Ampére operator for plurisubharmonic

functions which are class L∞loc. This extension is the most important result

of the chapter. Lastly we will give some comparison theorems which enable

us to carry the inequalities on the boundary to the domain and to compare

the complex Monge-Ampére operators of two plurisubharmonic functions.

Using these comparison theorems we will give a characterization of maximal

plurisubharmonic functions. In this chapter we will basically follow the works

of Bedford and Taylor [2, 3, 4] and we will sometimes refer to [15].

3.1 The Dirichlet Problem

In classical potential theory the Generalized Dirichlet problem on an open

subset Ω of Rn is to find a harmonic function u such that u
∣∣
∂Ω

= f for a
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given extended real valued function f defined in ∂Ω. In particular for given

f ∈ C∞(∂Ω). Here extended means a function taking values in [−∞,∞].

In several variables the Pluricomplex Dirichlet problem asks to find an

upper semi-continuous function u on Ω, u : Ω −→ R for a given extended

real valued function f defined in ∂Ω such that (u
∣∣
Ω
) ∈ MPSH(Ω) and

u
∣∣
∂Ω
≡ f .

Recall that the complex Monge-Ampére operator in Cn is defined as the

n-th exterior power of ddc, namely

(ddc)n = ddc ∧ · · · ∧ ddc︸ ︷︷ ︸
n−times

.

If u ∈ C2(Ω), then an easy calculation allow that

(ddcu)n = 4nn!det
[ ∂2u

∂zj∂z̄k

]
dV, (3.1)

where

dV =
( i

2

)n

dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ · · · ∧ dzn ∧ dz̄n

is the usual volume form in Cn.

In particular for n = 1 (ddcu)n becomes usual Laplacian times the area

form in R2. Namely we can regard (ddcu)n as usual Laplacian ∆u.

Recall that real Monge-Ampére equations which can be formulated as :

det
( ∂2u

∂xj∂xk

)
= f(x1, . . . , xn) (3.2)
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where (x1, . . . , xn) ∈ Rn. These equations are studied extensively in Differ-

ential Geometry.

Complex version of the Monge-Ampére equation is

det
( ∂2u

∂zj∂z̄k

)
= f(z1, . . . , zn)

and can be formulated also as

(ddcu)n =
( i

2

)n

fdz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ · · · ∧ dzn ∧ dz̄n.

One of the important features of the Monge-Ampére operators is the fact

that the maximality of plurisubharmonic functions can be characterized in

terms of these equations.

Corollary 3.1.1. Let Ω be an open subset of Cn, and let u ∈ C2 ∩PSH(Ω).

Then u is maximal if and only if (ddcu)n = 0 in Ω.

Proof. Let u be maximal plurisubharmonic function then by Theorem 2.3.22

we have det
[

∂2g
∂zj∂z̄k

]
1≤j,k≤n

≡ 0, hence we have (ddcu)n = 0 by 3.1.

Conversely assume (ddcu)n = 0 then by 3.1 we have det
[

∂2g
∂zj∂z̄k

]
1≤j,k≤n

≡ 0

and by Theorem 2.3.22 we have u maximal.
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3.2 The Complex Monge-Ampére Operator

In the previous subsection we defined the Monge-Ampére Operator for twice

differentiable functions. We know that ddcu can be defined as a positive (1, 1)

current for non-differentiable L1
loc cases by 2.3.22. But it is well known that

higher powers of ddcu cannot be defined for non-differentiable case in the

same manner. We will give an example of a plurisubharmonic function for

which (ddcu)n cannot be defined as a positive current. This example is due

to Shifmann and Taylor.

Example 3.2.1. Let B be open unit ball of Cn where n > 1 . Let

Z = {z2 = · · · = zn = 0}. We will construct a plurisubharmonic function u

in Ω which is in C∞(B \Z) such that
∫

B(r)\Z
(ddcu)n is infinite for 0 < r < 1.

Let k be a positive integer and A be a positive number. Let

fk,A =
∣∣∣z

k
1

A

∣∣∣ +
n∑

i=1

|zi|2.

For ν ≥ 1 we define

Dν = B
(
1− 1

ν

)
∩

{ n∑
i=q

|zi|2 >
1

ν2

}
.

Now for µ, ν = 1 there exists a positive integer Cµ,ν such that for k = 1 there

exists a positive integer A(k) such that every partial derivative of log fk,A(k)

up to order µ is bounded by Cµ,ν on Dν . Fix 0 < r < 1. For ν = 2, let

kν = (2νCν,ν)
n. Since log fk,A(k) is plurisubharmonic function on Cn \ 0, there
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exists a C∞ plurisubharmonic function gν on Cn such that every partial

derivative of gν up to order ν is bounded by 2Cν,ν on Dν−1. Now we define:

u =
∞∑

ν=1

1

2νCν,ν

gν .

then ∫

B(r)\Z

(ddcu)n = ∞.

Now
∫

B(r)

(ddcu)n = ∞ and if as r → 0 we get infinite mass at the origin. If

we take a smooth function φ with compact support which is not identically

zero in a neighborhood of 0 then
∫

φ(ddcu)n = ∞. Hence (ddcu)n cannot

be defined as a (n, n) current. For details see [24].

We will now extend the definition of Monge-Ampére operator to functions

in C(Ω). Later we will extend the definition to slightly more general families

of plurisubharmonic functions namely, L∞loc(Ω).

In order to extend (ddc)n to L∞loc(Ω), we will use some norm estimates

due to Chern, Levine and Nirenberg [25]. Using Chern, Levine and Nirenberg

estimate and modified version of the estimate of Bedford and Taylor we will

first define (ddcu)n for continuous plurisubharmonic functions. Now we refer

to some theorems from Bedford and Taylor [2] in order to construct this

extension.

Proposition 3.2.2. Let u1, . . . , um ∈ C2(Ω), and φ be differential form of
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type (n−m,n−m) with coefficients from C∞0 (Ω). Then for 2 ≤ m ≤ n,

∫

Ω

φ∧ddcu1∧ . . .∧ddcum = −
∫

Ω

ddcφ∧du1∧dcu2∧ddcu3∧ . . . ddcum (3.3)

and

∫

Ω

φ ∧ ddcu1 ∧ . . . ∧ ddcum =

∫

Ω

u1ddcφ ∧ ddcu2 ∧ . . . ddcum (3.4)

Proof. Since φ has compact support and by using Stoke’s theorem we deduce

that

∫

Ω

φ ∧ ddcu1 ∧ . . . ∧ ddcum = −
∫

Ω

dφ ∧ dcu1 ∧ ddcu2 ∧ . . . ∧ ddcum

however (n− 1+1, n−m+1) parts of dφ∧ dcu and du∧ dcφ are the same,

so the last integral equals to

−
∫

Ω

du1∧dcφ∧ddcu2∧. . .∧ddcum = −
∫

Ω

dcu2∧d(du1∧dcφ∧ddcu3∧. . .∧ddcum)

= −
∫

Ω

ddcφ ∧ du1 ∧ dcu2 ∧ ddcu3 ∧ . . . ddcum

which gives 3.3. To show 3.4 we will use Stokes Theorem to get

−
∫

Ω

du1∧dcφ∧ddcu2∧. . .∧ddcum = −
∫

Ω

ddcφ∧du1∧dcu2∧ddcu3∧. . . ddcum.
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From this proposition we see some conditions under which (ddcu)n can

be defined. For example, when m = n = 2, and u1 = u2,
∫

φ(ddcu)2 3.3 tells

us that (ddcu)n(φ) should be equal to − ∫
du ∧ dcu ∧ ddcφ as a current.

Next proposition is a slightly modified version of Chern, Levine and

Nirenberg’s inequality and will be referred as the Chern-Levine-Nirenberg

estimate.

Proposition 3.2.3. Let K be a compact set in Cn and Ω is an open neigh-

borhood of K. There exists a constant C > 0 and a compact set L ⊂ Ω \K,

which depend on K and Ω, such that for all u1, . . . , un ∈ PSH ∩ C2(Ω),

∫

K

ddcu1 ∧ . . . ∧ ddcun ≤ C ‖ u1 ‖L · . . . · ‖ un ‖L (3.5)

where ‖ u ‖L is the sup norm on L.

Proof. See [15, p. 111].

We will denote the class of currents on Ω of bidegree (m,m) and order 0

by Mm(Ω).

Proposition 3.2.4. Let Tm(u) = ((ddcu), (ddcu)2, . . . , (ddcu)m) be an defined

operator defined from C2(Ω) into
n∏

k=1

Mk(Ω) for 1 ≤ m ≤ n. Then

If uj, vj ∈ C(Ω), and lim
j−→∞

uj = lim
j−→∞

vj = u uniformly on compact

subsets of Ω, such that u ∈ C2(Ω) and if both the limits lim
j−→∞

Tmuj and
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lim
j−→∞

Tmvj exist, then they are equal. Consequently, Tm has a unique ex-

tension to a continuous operator on all of C(Ω) ∩ PSH(Ω) in view of the

fact that any continuous plurisubharmonic function can be approximated by

smooth plurisubharmonic functions.

Proof. See [2].

By second part of this proposition we can extend (ddc)n to continuous

plurisubharmonic functions by taking a sequence of smooth plurisubharmonic

functions uj of class C functions (for instance take uε = u∗χε) then we can

define

(ddcu)n .
= lim

j→∞
(ddcuj)

n. (3.6)

By second part of the Proposition 3.2.4 this limit is independent of the se-

quence uj.

Next proposition assures us (ddcu)n coincides with the classical definition

whenever u is in C2(Ω).

Proposition 3.2.5. Let u ∈ PSH ∩ C2(Ω) and suppose

ddcu = 2i
n∑

j,k=1

hjkdzj ∧ dzk, where the hjk ∈ [L1
loc(Ω)]m. Then (ddcu)n ∈

Mm(Ω) has locally integrable coefficients and is given by [2i
n∑

j,k=1

hjkdzj ∧
dzk]

m.

Proof. Let u be a continuous plurisubharmonic function. Consider smooth

plurisubharmonic uε where uε = u∗χε converging to u. Then by weak conti-

nuity of (ddcu)n given by part (2) of Proposition 3.2.4 we have the result.
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Now we will extend the operator (ddc)n to L∞ plurisubharmonic func-

tions as positive (k, k) current by induction. We follow Bedford and Taylor

[2].

Definition 3.2.6. Let u ∈ L∞(Ω)∩PSH(Ω). We define (ddcu)k inductively

for 1 ≤ k ≤ n. For a (n − k, n − k) form χ with smooth coefficients with

compact support in Ω, then

∫

Ω

(ddcu)k ∧ χ =

∫

Ω

u(ddcu)k−1 ∧ ddcχ. (3.7)

Proposition 3.2.7. The operator (ddc)k defined by 3.7 for plurisubharmonic

functions in L∞(Ω) is a positive (k, k) current.

Proof. By the Proposition 3.3.5 of [15], we know that for any plurisubhar-

monic function u (ddcu)1 is a positive current. Now assume that (ddcu)k−1

is defined as a positive (k − 1, k − 1) current. Since u is upper semicontin-

uous and locally bounded, u(ddcu)k−1 again has measure coefficients, and

thus (ddcu)k is a (k, k) current.

For positivity take a strongly positive test form of bidegree (n − k, n − k)

whose support is contained in Ω. Let G be a relatively compact subset of

Ω that contains suppχ. By Theorem 2.3.15, there exists a decreasing se-

quence {uj}j∈N ⊂ PSH ∩ C∞(G) converging to u in G. For each j, the

form ddcuj ∧ χ is a strongly positive current. Therefore by the induction
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assumption, ∫

Ω

(ddcu)k−1 ∧ (ddcu ∧ χ) ≥ 0.

Now by the dominated convergence theorem, we have,

∫

Ω

(ddcu)k ∧ χ =

∫

Ω

u(ddcu)k−1 ∧ ddcχ

= lim
j→∞

∫

Ω

uj(ddcu)k−1 ∧ ddcχ

= lim
j→∞

∫

Ω

ddcuj(ddcu)k−1 ∧ χ ≥ 0.

For k = 1 we know that (ddc)k is continuous. But the higher orders

of ddc need not be continuous in general. Next theorem, due to Bedford

and Taylor, shows that (ddcu)n is continuous under decreasing sequences of

plurisubharmonic functions which are locally bounded.

Theorem 3.2.8. Let {v1
j}, . . . , {vk

j } be decreasing sequences of functions in

PSH(Ω) ∩ L∞loc(Ω) and assume that for all z ∈ Ω,

lim
j→∞

vi
j = vi ∈ PSH(Ω) ∩ L∞loc(Ω), 1 ≤ i ≤ k.

Then

lim
j→∞

ddcv1
j ∧ . . . ∧ ddcvk

j = ddcv1 ∧ . . . ∧ ddcvk (3.8)

where the limit is in the weak topology on Mk(Ω) .
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Proof. See [3].

Next corollary is a direct consequence of above theorem:

Corollary 3.2.9. The map (v1, . . . , vk) 7→ ddcv1∧. . .∧ddcvk is a symmetric,

multi-linear map from PSH(Ω)∩L∞loc(Ω) into the cone of nonnegative closed

currents of bidegree (k, k).

Proposition 3.2.10. Let u1, . . . , uk be a continuous (finite) plurisubhar-

monic functions and let uj
1, . . . , u

j
k be sequences of plurisubharmonic func-

tions converging locally uniformly to u1, . . . , uk. If Tj is a sequence of closed

positive currents converging weakly to T , then

uj
1ddcuj

2 ∧ · · · ∧ ddcuj
k ∧ Tj −→ u1ddcu2 ∧ · · · ∧ ddcuk ∧ T weakly and

ddcuj
1 ∧ · · · ∧ ddcuj

k ∧ Tj −→ ddcu1 ∧ · · · ∧ ddcuk ∧ T weakly.

Proof. See [10].

Now we will define a class of measures usingthe complex Monge-Ampére

operator. We start with an open connected subset Ω ⊂ Cn let a ∈ Ω. And

we define

PSH(Ω; a) = PSH(Ω) ∩ L∞loc(Ω \ {a}),

C∞0 (Ω; a) = {ϕ ∈ C∞0 (Ω) : supp(dϕ) ⊂ Ω \ {a}}.
(3.9)

Lemma 3.2.11. The space C∞0 (Ω; a) is dense in C0
0(Ω) in the topolgy of

uniform convergence on compact subsets.
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Proof. See [15, p. 228]‘.

Proposition 3.2.12. Let Ω be an open set in Cn, and let u ∈ PSH(Ω; a).

Then there exists a positive Borel measure µ on Ω such that, for any de-

creasing sequence {uj}j∈N ⊂ PSH ∩ L∞loc(Ω) convergent to u at each point

in Ω, the sequence {(ddcuj)
n}j∈N is weak∗−convergent to µ.

Proof. If ϕ ∈ C∞0 (Ω; a), then supp(ddcϕ) ⊂ Ω \ {a}, and thus

∫

Ω

ϕ(ddcuj)
n =

∫

Ω

uj(ddcuj)
n−1 ∧ (ddcϕ) →

∫

Ω

u(ddcu)n−1 ∧ (ddcϕ) (3.10)

as j →∞, by Theorem 3.2.8. By the Chern-Levine-Nirenberg estimates, the

set {(ddcu)n}j∈N is relatively sequentially compact in the weak∗-topology.

By Lemma 3.2.11 and 3.10, it is convergent on a dense subspace of C∞0 (Ω).

Consequently it converges to a measure µ.

By this proposition we can define (ddcu)n as a positive Borel measure on

Ω.

Corollary 3.2.13. Let a ∈ Cn, and let R > 0. If u(z) = log(‖z−a‖/R) for

all z ∈ Cn, then (ddcu)n = (2π)nδa, where δa is the Dirac delta function at

a.

Proof. See [15, p. 229].
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3.3 Comparison Theorems

We continue investigating the properties of complex Monge-Ampére operator.

In this part we will give some comparison theorems which enable us to extend

the inequalities on the boundary to the domain. We will follow the works of

Bedford and Taylor closely [3]. Following theorems are due to Bedford and

Taylor [3].

Theorem 3.3.1. (Comparison Theorem) Let Ω be an open bounded sub-

set of Cn. Let u, v ∈ PSH(Ω)∩L∞(Ω) and suppose that lim inf
ζ→∂Ω

u(ζ)−v(ζ) ≥
0 (e.g. u ≥ v on ∂Ω). Then

∫

{u<v}

(ddcv)n ≤
∫

{u<v}

(ddcu)n.

Proof. See [3].

Theorem 3.3.2. Let Ω be an open bounded subset of Cn. Let u, v ∈
PSH(Ω) ∩ L∞(Ω) and suppose that lim inf

ζ→∂Ω
u(ζ) − v(ζ) ≥ 0 (i.e. u ≥ v

on ∂Ω). Then ∫

{u≤v}

(ddcv)n ≤
∫

{u≤v}

(ddcu)n.

Proof. Let uε = u− ε, and Sε = {uε < v}. Clearly, Sε decreases to {u ≤ v}
as ε decreases to 0. For some ε small enough Sε ⊂ ω ⊂ Ω for some
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relatively compact set ω in Ω. Then, by Theorem 3.3.1, we have

∫

Sε

(ddcv)n ≤
∫

Sε

(ddcu)n.

Letting ε → 0, we obtain the desired inequality.

Corollary 3.3.3. Let Ω be an open bounded subset of Cn. Let u, v ∈
PSH(Ω) ∩ L∞(Ω) satisfying (i)limζ→∂Ω u(ζ) = limζ→∂Ω v(ζ) = 0, (ii) u ≤
v ∈ Ω Then ∫

Ω

(ddcv)n ≤
∫

Ω

(ddcu)n.

Proof. By theorem 3.3.1 we have

∫

Ω

(ddcv)n ≤
∫

Ω

[ddc(1 + ε)u]n = (1 + ε)

∫

Ω

(ddcu)n

for ε > 0, which give the result.

Proposition 3.3.4. Let Ω be an open bounded subset of Cn. Let u, v ∈
PSH(Ω) ∩ L∞(Ω), lim supζ→∂Ω | u(ζ)− v(ζ) |= 0, and (ddcu)n = (ddcv)n in

Ω, then u ≡ v in Ω.

Proof. We will show that the set {u < v} is empty. Assume that it is not

empty. Let ψ < 0 be a strongly positive plurisubharmonic function on Ω. If

the set {u < v} is not empty, then S = {u < v + εψ} is not empty for some

ε > 0. Since u and v + εψ are plurisubharmonic, S has positive measure else
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they are identical. Now by Theorem 3.3.1 ,

∫

S

(ddcu)n ≥
∫

S

(ddc[v + εψ])n ≥
∫

S

(ddcv)n + εn

∫

S

(ddcψ)n,

which is a contradiction since the last integral over S is strictly positive.

Corollary 3.3.5. (Domination Principle) Let Ω be an open bounded

subset of Cn. Let u, v ∈ PSH(Ω) ∩ L∞(Ω), such that (i) lim supζ→∂Ω |
u(ζ)− v(ζ) |= 0, (ii)

∫
u<v

(ddcu)n = 0 Then u ≥ v in Ω.

Proof. Let ṽ = v − ε + δ | z | where ε, δ are chosen so that ṽ < v on Ω, then

0 <

∫

u<ṽ

(ddcṽ)n ≤
∫

u<ṽ

(ddcu)n ≤
∫

u<v

(ddcu)n

which is a contradiction unless {u < v} is empty.

Corollary 3.3.6. Let Ω be an open bounded subset of Cn. Let u, v ∈
PSH(Ω) ∩ L∞(Ω), lim supζ→∂Ω(u(ζ) − v(ζ)) ≥ 0, and (ddcu)n = 0 in Ω,

then u ≥ v in Ω.

Proof. Let p(z) = ‖z‖2
4

, z ∈ Cn; then (ddcp)n = n!dV , where dV is the

volume form in Cn. Now, define vε,δ = v + εp − δ for ε > 0, δ > 0. We

will choose ε and δ so that vε,δ < v on Ω. Then u and vε,δ, satisfies the

assumptions of the corollary. If the set {u < v} is non-empty, then, for some

ε and δ, the set {u < vε,δ} is non-empty. The set {u < vε,δ} must have
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positive Lebesgue measure.

∫

{u<vε,δ}
(ddcv)n +

∫

{u<vε,δ}
(ddc(εp− δ))n ≤

∫

{u<vε,δ}
(ddcvε,δ)

n

≤
∫

{u<vε,δ}
(ddcu)n ≤

∫

{u<v}
(ddcu)n = 0

which is impossible, as

∫

{u<vε,δ}
(ddc(εp− δ))n = εn

∫

{u<vε,δ}
dV > 0.

A direct consequences of the above comparison theorems is the follow-

ing theorem characterizing maximal functions for plurisubharmonic functions

which are maximal.

Theorem 3.3.7. Let Ω be an open subset of Cn and u ∈ PSH(Ω)∩L∞loc(Ω)

then it satisfies the Monge-Ampère equation (ddcu)n = 0, if and only if u is

maximal.

Proof. Let v ∈ PSH(Ω) and for each ε > 0 there is compact set K ⊂ Ω

such that u−v ≥ −ε in Ω\K, then lim supζ→∂Ω(u(ζ)−v(ζ)) ≥ 0, then by

Corollary 3.3.6 we have u ≥ v. Hence by second part of Proposition 2.3.20,

we have u maximal.
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CHAPTER 4

HYPERCONVEX DOMAINS AND

MONGE-AMPÉRE MEASURES

In this chapter we want to introduce hyperconvex domains and some impor-

tant properties of hyperconvex domains from pluripotential theoretic view-

point. Secondly we want to discuss Monge-Ampére measure over hypercon-

vex domains, following J.P.Demailly, using Bedford and Taylor’s methods.

Here our most important result is what Demailly called ”Lelong-Jensen for-

mula”. We will call this result as ”Demailly-Lelong-Jensen formula”.

4.1 Pluricomplex Green Functions

Let Ω be an open bounded subset of C, and a ∈ Ω. Let GΩ(z, a) be a

function from Ω to [0, +∞] such that:

(i) GΩ(z, a) is harmonic in Ω\{a}.
(ii) GΩ(z, a) → 0 as z → w, for each w ∈ ∂Ω.

(iii) GΩ(z, a) + log | z − a | extends to a harmonic function on Ω.This

function is called the classical Green function with pole at a.

Indeed, by maximum principle if Green function exists then it is unique.
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Note that −GΩ(z, w) is subharmonic.

Now we will give some properties of classical Green functions on domains

in C . We will refer to [21] for the proofs.

Theorem 4.1.1. If boundary of Ω is non-polar, then it has a unique Green

function for Ω.

Proof. See [21, p. 106].

Theorem 4.1.2. Let Ω1, Ω2 be domains with non-polar boundaries and

f : Ω1 −→ Ω2 an analytic function. Then GΩ2(f(z), f(w)) ≥ GΩ1(z, w),

equality holds if and only if f is biholomorphic.

Proof. See [21, p. 107].

Just a direct corollary of this theorem is as follows:

Corollary 4.1.3. Let Ω1, Ω2, be domains with non-polar boundaries such

that Ω1 ⊆ Ω2 then GΩ1(z, w) ≤ GΩ2(z, w) (z, w ∈ Ω1)

Theorem 4.1.4. Let Ω be a bounded domain in C whose boundary is non-

polar , and let (Ωn)n≥1 be subdomains of Ω such that (i)Ωn has non-polar

boundary, (ii)Ωn ⊆ Ωn+1, (iii)∪nΩn = Ω. Then

lim
n→∞

GΩn(z, w) = GΩ(z, w) (z, w ∈ Ω).

Proof. See [21, p. 108].
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Theorem 4.1.5. Let Ω be a bounded domain in C whose boundary is non-

polar, then GΩ(z, w) = GΩ(w, z).

Proof. See [21, p. 110].

Now we want to introduce Perron function and the harmonic measures.

Definition 4.1.6. Let Ω be a bounded domain in C, and let φ : ∂Ω → R

be a bounded function. The Perron function HΩφ : Ω → R is defined by

HΩφ = sup
u∈U

u, (4.1)

where U denotes the family of all subharmonic functions u on Ω such that

lim supz→ζ u(z) ≤ φ(z) for each ζ ∈ ∂Ω.

The importance of Perron function associated with the function φ is if

the Dirichlet problem has a solution, then it is clearly HΩφ.

Definition 4.1.7. Let Ω be a bounded domain in C, we will denote the

σ−algebra of Borel subsets of ∂Ω by B(∂Ω). A harmonic measure for Ω is a

function ωΩ : D × B(∂Ω) → [0, 1] such that:

1. for each z ∈ Ω, the map B → ωΩ(z,B) is a Borel probability measure

on ∂Ω;

2. if φ : ∂Ω → R is a continuous function, then HΩφ = PΩφ on Ω, where

PΩφ is the generalized Poisson integral of φ on Ω, given by

PΩφ
.
=

∫

∂Ω

φ(ζ)dω(z, ζ) (z ∈ Ω). (4.2)
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Example 4.1.8. Let Ω be a smoothly bounded open bounded subset of C

then consider the Green identity:

∫

Ω

u∆v − v∆u =

∫

∂Ω

u
∂v

∂n
− u

∂v

∂n
. (4.3)

Let u be a harmonic function and suppose that G(,̇z) is the Green function

on Ω. Then equation 4.3 becomes

∫

Ω

u∆G =

∫

∂Ω

u
∂G

∂n

and it is well known that ∆G = 2πδ(z) that we have u(z)2π =
∫

∂Ω
u∂G

∂n
.

Namely ∂G
∂n

gives the harmonic measure.

Theorem 4.1.9. ([21, p, 117])(Poisson-Jensen Formula) Let Ω be a

bounded regular domain in C, and let u be a subharmonic function on a

neighborhood of Ω̄. Then

u(z) =

∫

∂Ω

u(ζ)dωΩ(z, ζ)− 1

2π

∫

Ω

GΩ(z, w)∆u(w) (z ∈ Ω) (4.4)

Theorem 4.1.10. Let Ω be a bounded domain of C, such that ∂Ω is non-

polar, and u be a subharmonic function on Ω with u is not identically −∞.

(i) If u has a harmonic majorant on Ω, then it has a least harmonic majorant

61



h and we have

u(z) = h(z)− 1

2π

∫

Ω

GΩ(z, w)∆u(w) (z ∈ Ω).

(ii) If u has no harmonic majorant on Ω, then

1

2π

∫

Ω

GΩ(z, w)∆u(w) = ∞ (z ∈ Ω) (4.5)

Proof. See [21, p, 118].

In 1981 Lempert constructed a function Φw for each strictly convex

bounded domain D ⊂ Cn and for each w ∈ D such that if we set

u(z) = log Φw(z) then we have:





det | ∂2u(z)
∂zj∂z̄k

|= 0 for z ∈ D\w,

u ∈ PSH(D)

limz→ξz∈D u(z) = 0 ξ ∈ ∂D

u(z)− log | z − w |= O(1) for z → w.

(4.6)

For n = 1, the function −u is just the classical Green function for D

with pole at w. Due to analogy between Laplacian and the complex Monge-

Ampére operator in Cn, we can regard u as Pluricomplex version of classical

Green function. In 1985 Klimek introduced a Pluricomplex Green function
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in [14]. His definition is

gΩ(z, w) = sup{u(z)}, (4.7)

where the supremum is taken over all non-positive plurisubharmonic func-

tions on Ω (including u ≡ −∞) such that the function t → u(t)− log |t−w|
is bounded from above in a neighborhood of w,

In 1987 Demailly showed that Klimek’s definition gives a solution to the

generalized Pluricomplex Dirichlet problem in any hyperconvex domain. For

details see 4.2.9.

4.2 Hyperconvex Domains

In this section we will give the definition of hyperconvex domains and some

important properties of hyperconvex domains from different points of view.

Definition 4.2.1. [13] A connected open subset Ω of Cn is called hyper-

convex if there exists a plurisubharmonic function g : Ω −→ [−∞, 0) such

that {z ∈ Ω : g(z) < c} is relatively compact for each c < 0. Here g is called

a plurisubharmonic exhaustion or a defining function for Ω.

Now we will present some examples

Example 4.2.2. ∆ = ∆(0, 1) ⊂ Ω is a hyperconvex domain. g : ∆ →
[−∞, 0) defined by g(z) = log(| z |). This is the most important example
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and it will be a motivating tool for us. The level sets are just discs with

radius er so they are relatively compact.

Example 4.2.3. B(0, 1) ⊂ Cn is a hyperconvex domain with defining func-

tion g : B → [−∞, 0) given by g(z) = log(‖z‖).
Another important example in this context is the polydisc ∆n ⊂ Cn

with plurisubharmonic exhaustion function g : ∆n → [−∞, 0) defined by

g(z) = log(max | z1 |, . . . , | zn |).

It is clear from the definition that every hyperconvex domain is a pseudo-

convex set (i.e. there exists a plurisubharmonic exhaustion function). More-

over every pseudoconvex set can be written as increasing union of hypercon-

vex sets. Since for any pseudoconvex domain there exists a smooth exhaustive

plurisubharmonic function ϕ and consider the level sets of ϕ which are of

the form {ϕ < c} then any level set is hyperconvex by negative continuous

plurisubharmonic function ψ = ϕ− c which is exhaustive.

Now we will present some properties of hyperconvex domains from differ-

ent perspectives.

Next theorem gives a good characterization of hyperconvex domains in

terms of Frechet Spaces of analytic functions on them.

Theorem 4.2.4. Let Ω be a bounded subset of Cn. Then O(Ω), the Frechet

Space of analytic functions on Ω is isomorphic to A(∆n) if and only if Ω is

a hyperconvex domain.

Proof. See [26].
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Theorem 4.2.5. Let Ω be a bounded domain of holomorphy in Cn which is

complete with respect to the Carathéodory metric. Then Ω is hyperconvex.

Proof. See [1].

Lemma 4.2.6. ([15, p. 225]) Let Ω be a hyperconvex domain, then for each

a ∈ Ω and w ∈ ∂Ω

lim
z→w,z∈Ω

gΩ(z, a) = 0. (4.8)

Proof. Let ρ be a defining function for Ω. Let a ∈ Ω,and choose r, R > 0

such that B(a, r) ⊂ Ω ⊂ Ω̄ ⊂ B(a,R). Define

v(z) =





max{Cρ(z), log(‖z − a‖/R)} z ∈ Ω \B(a, r)),

log(‖z − a‖/R) (z ∈ B(a, r)),

where the constant C > 0 is chosen such that Cρ < log(r/R) on the unit

sphere ∂B(a, r). Clearly, v is a plurisubharmonic function and hence v(z) ≤
gΩ(z, a) in Ω. Since v(z) = Cρ(z) when z is sufficiently close to the

boundary of Ω, the result follows.

Lemma 4.2.7. ([15, p. 227]) Let Ω ⊂ Cn be hyperconvex, and let a ∈ Ω,

Then for each ε > 0 and for each neighborhood U ⊂ Ω of a there exists a

neighborhood V of a such that V is relatively compact subset of U and

(1 + ε)−1 ≤ gΩ(z, x)

gΩ(z, y)
≤ (1 + ε), (4.9)

for all (z, x), (z, y) ∈ (Ω \ U)× V .
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Proof. Let ε > 0. Choose s > 0 such that B(a, s) ⊂ Ω, and we define

U = B(a, s). Let r := inf{‖z −w‖ : z ∈ U,w ∈ ∂Ω} and R := sup{‖z −w‖ :

z ∈ U,w ∈ ∂Ω}. Then

log(‖z − x‖/R) ≤ gΩ(z, x) ≤ log(‖z − x‖/r) ((z, x) ∈ Ω× U).

Now we find a λ ∈ (0, s) such that (1 + ε) log(3λ/2r) < log(λ/2R), and we

define V = B(a, λ/2). For any two points x, y ∈ V , define

v(x) =





log(‖z − y‖/R) (z ∈ B(a, s))

max{(1 + ε)gΩ(z, x), log(‖z − y‖/R)} (z ∈ Ω \B(a, s)).

If ‖z − a‖ = s, then

(1 + ε)gΩ(z, x) ≤ (1 + ε) log(‖z − y‖/R) ≤ (1 + ε) log(3λ/2r)

< log(λ/2R) < log(‖z − y‖/R).

Therefore v ∈ PSH(Ω). Also, we have v < 0 by the maximum principle.

Hence, v ≤ gΩ(·, y). So if x, y ∈ V and z ∈ ΩU , then we have

(1 + ε)gΩ(z, x) ≤ v(z) ≤ gΩ(z, x),

and we have

gΩ(z, x)

gΩ(z, y)
≤ (1 + ε).
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By a change of x and y, we have also

gΩ(z, y)

gΩ(z, x)
≤ (1 + ε)−1.

Theorem 4.2.8. if Ω ⊂ Cn is hyperconvex, then the pluricomplex Green

function gΩ : Ω̄× Ω → [−∞, 0] is continuous (where gΩ

∣∣
∂Ω×Ω

≡ 0).

Proof. See [8]

Theorem 4.2.9. If Ω is hyperconvex domain. Then there exists a unique

continuous plurisubharmonic function gΩ(·, w) which is a solution to the prob-

lem 4.6 and g(·, w) : Ω̄ → [−∞, 0] is plurisubharmonic on Ω, and continuous

on Ω̄ satisfying 4.6 and (ddcu)n = (2π)nδw.

Proof. See [9].

4.3 Monge-Ampére Measures and Lelong-Jensen

Formula

This section is devoted to Demailly measures (or Monge-Ampère measures)

which will be used in the construction of Hardy Spaces on hyperconvex do-

mains. Hence we want to overview Demailly measures. We will follow basi-

cally Demailly. All terminology and theory belongs to Jean-Pierre Demailly

[8, 9, 10]
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Now let Ω be a hyperconvex domain ∈ Cn and ϕ : Ω → [−∞, 0) be

a negative continuous plurisubharmonic exhaustion for Ω. Now we define

pseudoball:

B(r) = {z ∈ Ω : ϕ(z) < r}, r ∈ [−∞, 0), (4.10)

and the pseudosphere :

S(r) = {z ∈ Ω : ϕ(z) = r}, r ∈ [−∞, 0) (4.11)

and we set

ϕr = max{ϕ, r}, r ∈ (−∞, 0) (4.12)

For every r ∈ (−∞, 0) the measures (ddcϕr)
n are well defined since the

functions ϕr’s are continuous.

In 1985 by means of Monge-Ampére operator Jean-Pierre Demailly intro-

duced the measures

µr = (ddcϕr)
n − χΩ\B(r)(ddcϕ)n r ∈ (−∞, 0) (4.13)

where χω is the characteristic function of the ω ⊂ Ω. Demailly [9] calls

these measures as Monge-Ampère measures. We shall call those measures

as Demailly-Monge-Ampère measures. In fact in his paper [9] he defined

this measures for any Stein space with an exhaustion function ϕ but for our
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purposes we restrict ourselves to only hyperconvex domains.

ϕr ≡ r on B(r) so we have (ddcϕr)
n = 0 on B(r). Moreover on Ω \ {z :

ϕ(z) ≤ r} we have (ddcϕr)
n = (ddcϕ)n. Thus those measures are supported

on the pseudospheres S(r).

Remark that when ϕ is maximal off a compact set K contained in

B(r), (i.e.(ddcϕ)n = 0) then µr reduces to µr = (ddcϕr)
n.

Proposition 4.3.1. Assume that ϕ is smooth near S(r) and dϕ 6= 0 on

S(r). Then the Demailly-Monge-Ampère measure µr reduces to (ddcϕ)n−1 ∧
dcϕ

∣∣
S(r)

.

Proof. We start by taking decreasing sequence of smooth convex functions

with ψk(t) = r for t ≤ r − 1/k and ψk(t) = t for t ≥ r + 1/k. Here

limk→∞ ψk(t) = max{t, r} and limk→∞ ψ
′ ◦ ϕ = χΩ\B(r) a.e., and by Propo-

sition 3.2.10 we have (ddcψk◦ϕ)n converges to (ddcϕr)
n. Let h be a smooth

function with compact support near S(r).

∫

Ω

h(ddcϕr)
n = lim

k→∞

∫

Ω

h(ddcψk ◦ ϕ)n

= lim
k→∞

∫

Ω

−dh(ddcψk ◦ ϕ)n−1 ∧ dc(ψk ◦ ϕ)

= lim
k→∞

∫

Ω

−(ψ
′ ◦ ϕ)dh ∧ (ddcϕ)n−1 ∧ dcϕ

=

∫

Ω\B(r)

−dh ∧ (ddcϕ)n−1 ∧ dcϕ

=

∫

S(r)

h(ddcϕ)n−1 ∧ dcϕ +

∫

Ω\B(r)

h(ddcϕ)n−1 ∧ dcϕ.
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Hence we have

(ddcϕr)
n = (ddcϕ)n−1 ∧ dcϕ

∣∣
S(r)

+ χΩ\B(r)(ddcϕ)n

Example 4.3.2. In the case of the unit disc we have g∆ = log |z|. Now by

using the exhaustion function g∆(z) = log |z|. The Demailly measure µr is

obtained by evaluating just dcg
∣∣
S(r)

dcg =
−y

x2 + y2
dx− x

x2 + y2
dy

now we put x = r cos θ and y = r sin θ we get

dcg
∣∣
S(r)

= dθ.

Namely it gives usual Lebesgue measure on the circle with radius r.

Example 4.3.3. Now let Ω be the unit ball of Cn and let φ(z) = log ‖z‖ be

the defining function of B(0, 1) We want to evaluate the Demailly measure

on the level sets B(0, r), for 0 < r < 1. Now we directly calculate by using

Proposition 4.3.1. Now on S(r)

dc log ‖z‖ = i

n∑
i=1

zi

‖z‖2
dz̄ − z̄i

‖z‖2
dz =

1

2r2
dc‖z‖2
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By the same way

ddc log ‖z‖ =
1

2r2
ddc‖z‖2

dc‖z‖2 ∧ (ddc‖z‖2)n−1 = 22n−1(n− 1)!rdσr

where σ is the usual Lebesgue measure on S(r), hence we have

1

(2π)n
(dc log ‖z‖) ∧ (ddc log ‖z‖)n−1

∣∣∣∣
S(r)

=
1

σ(S(r))
dσr (4.14)

which is the normalized Lebesgue measure on the Sphere with radius r.

Example 4.3.4. Let Ω be the polydisc ∆n = {z : ϕ(z) = log(max |zj|) < 1}
then the pseudoballs B(r) are the polydisc with polyradius (r, . . . , r). By

Corollary 5.4 of [10] we have

(ddcϕ)n =
1

(2π)n
δ0. (4.15)

Now we want to find measures µr. If z is a point that all terms zj are

not equal, then we can omit the smallest term in a neighborhood of z with-

out changing ϕ. Now since ϕ depends on only (n − 1) variables we have

(ddcϕr)
n = 0 Hence µr = 0 near z. Hence µr is supported on distin-

guished boundary of polydisc B(r). Since ϕ is invariant under the rotations

zj −→ eiθjzj, the measure µr is also invariant and we see that µr is a
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constant multiple of dθ1 . . . dθn by 4.15 and by Theorem 4.2.9 we have

µr =
1

(2π)n
dθ1 . . . dθn (4.16)

So we get the usual Lebesgue measure on the Torus.

In 1985 Demailly found a useful formula in his paper [9], what he calls

Lelong-Jensen formula. We will call it Demailly-Lelong-Jensen formula.

Theorem 4.3.5. Let V be a plurisubharmonic function in Ω. Then V is

µr−integrable for every r ∈ (−∞, 0) and

∫

Ω

V dµr −
∫

B(r)

V (ddcϕr)
n =

∫ r

−∞
dt

∫

B(t)

ddcV ∧ (ddcϕ)n−1 (4.17)

which is equivalent to

∫

Ω

V dµr −
∫

B(r)

V (ddcϕr)
n =

∫

B(r)

(r − ϕ)ddcV ∧ (ddcϕ)n−1. (4.18)

Proof. See [9].

Now by Demailly-Lelong-Jensen formula we have

µr(V )−µr0(V )+

∫

B(r0)\B(r)

V (ddcϕ)n =

∫ r

r0

dt

∫

B(t)

ddcV ∧ (ddcϕ)n−1 (4.19)

where µ(V ) =
∫
Ω

V dµ.
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Corollary 4.3.6. Assume that (ddcϕ)n = 0 on Ω \ S(−∞) and V is posi-

tive. Then the function r 7−→ µr(V ) is a convex and increasing function of

r.

Proof. By 4.19 we have

µr(V ) = µr0(V ) +

∫ r

r0

dt

∫

B(t)

ddcV ∧ (ddcϕ)n−1.

Since
∫

B(t)
ddcV ∧ (ddcϕ)n−1 are increasing and non-negative, we have

r 7−→ µr(V ) is a convex and increasing function of r.

Another result of Demailly-Lelong-Jensen Formula is total mass of µr is:

‖µr‖ = µr(1) =

∫

B(r)

(ddcϕ)n. (4.20)

Another important theorem due to Jean-Pierre Demailly is the following

theorem.

Theorem 4.3.7. Let ϕ : Ω −→ [−∞, 0) be a continuous plurisubharmonic

exhaustion function for Ω. And suppose that the total Monge-Ampère mass

is finite, i.e. ∫

Ω

(ddcϕ)n < ∞. (4.21)

Then as r tends to 0, µr converge to a positive measure µ weak∗ − ly on

Ω with total mass
∫

Ω
(ddcϕ)n and supported on ∂Ω. We associate this limit

measure µ on the boundary with the exhaustion function ϕ.
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Proof. The measures µr are uniformly bounded by
∫
Ω
(ddcϕ)n for r < 0.

It suffices to show that for any function h ∈ C2(Ω) the limit of r → µr(h)

exists. If γ is a strictly plurisubharmonic function in C2(Ω) We can choose a

constant C > 0 such that V = h+Cγ is plurisubharmonic and nonnegative

on Ω̄. By corollary 4.3.6 µr(γ), µr(V ) are increasing function of r. Hence the

limits µr(γ) and µr(V ) exist as r → 0. Hence µr(h) exists as r → 0.

Another application of Demailly-Lelong-Jensen formula is next theorem.

Theorem 4.3.8. Let ϕ : Ω −→ [−∞, 0) is a continuous plurisubharmonic

exhaustion function for Ω and V ∈ PSH(Ω) ∩ C(Ω̄). Then

µ(V ) =

∫

Ω

V (ddcϕ)n +

∫

Ω

ddcV ∧ |ϕ|(ddcϕ)n−1 for n ≥ 1,

µ(V ) =

∫

Ω

V (ddcϕ)n +

∫

Ω

ddcV ∧ (ddcϕ)n−2 ∧ dϕ ∧ dcϕ for n ≥ 2.

Proof. For the first equation consider Demailly-Lelong-Jensen formula 4.17,

and we let r → 0 then we have the first equation. Second equation is directly

obtained from the first one by writing the integral
∫
Ω

ddcV ∧ |ϕ|(ddcϕ)n−1 as
∫

Ω
(ddcϕ)n +

∫
Ω

ddcV ∧ (ddcϕ)n−2 ∧ dϕ ∧ dcϕ by Proposition 3.2.2.

From now on we want to restrict ourselves to only Pluricomplex Green

function with pole at a. Recall that (ddcgΩ)n = (2π)nδa, then Theorem 4.3.8

reduces to

V (a) =
1

(2π)n

∫

∂Ω

V dµ− 1

(2π)n

∫

Ω

ddcV ∧ |gΩ|(ddcgΩ)n−1 (4.22)
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For n = 1 it reduces to the Poisson-Jensen formula 4.4. A direct conse-

quence is the next corollary

Corollary 4.3.9. Let ϕ : Ω −→ [−∞, 0) is a continuous plurisubharmonic

exhaustion function for Ω and V ∈ C(Ω̄) be a pluriharmonic function in Ω.

Then we have

V (a) =
1

(2π)n

∫

∂Ω

V dµ (4.23)

Proof. For a pluriharmonic function V we have ddcV = 0. Hence we get

the result.

For n = 1 for Ω = ∆ then we have the usual Poisson formula. We can

consider it as the Pluricomplex version of Poisson formula. (See [9].)
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CHAPTER 5

HARDY SPACES OVER

HYPERCONVEX DOMAINS OF Cn

5.1 Introduction

This chapter is the most important part of this thesis because main goal of

this thesis is to give a definition of Hardy spaces over hyperconvex domains.

In this chapter we want to extend the theory of Hardy Spaces to hyperconvex

domains in terms of integral mean growth of analytic functions . In this

chapter we will give a definition of Hardy Spaces on hyperconvex domains

that unifies the theories of Hardy Spaces on polydiscs and the unit ball of

Cn(or more generally pseudoconvex domains with C1 boundary).

5.2 Hardy Spaces over Hyperconvex Domains

Let Ω be a hyperconvex domain in Cn. Fix a point a and let g(z) = gΩ(z, a)

be the Pluricomplex Green function which is a continuous exhaustion.

And now we define Hardy Spaces over hyperconvex domains in terms of

Demailly-Monge-Ampére measure related to g. Define Hardy Spaces over Ω
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as :

Hp
a

.
= { f ∈ O(Ω) : sup

r<0

∫

S(r)

|f(z)|pdµr,a < ∞ }.

On Hp
a we define norm as:

‖f‖p
.
=

[
sup
r<0

∫

S(r)

|f(z)|pdµr,a

]1/p

Remark 5.2.1. Some obvious facts are:

1. If Ω = ∆, then Hp
a are usual Hardy Spaces by Example 4.3.2.

2. If Ω = ∆n, then Hp
a are usual Hardy Spaces. by Example 4.3.4.

3. If Ω is a ball in Cn then Hp
a are usual Hardy Spaces by Example 4.3.3.

Next theorem is an analogous theorem for Hardy’s Convexity Theorem

2.4.2 for Hardy Spaces in the unit disc in C.

Theorem 5.2.1. Let f ∈ Hp
a then the function r 7−→ ∫

S(r)
|f(z)|pdµr,a is

an increasing and convex function of r.

Proof. Follows directly from Corollary 4.3.6 since |f(z)|p is plurisubharmonic.

Theorem 5.2.2. Let Ω be a hyperconvex domain in C. Then f ∈ Hp
a(Ω) if

and only if |f |p has a harmonic majorant.
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Proof. Let f has a harmonic majorant u. Then

∫

S(r)

|f(z)|pdµr,a ≤
∫

S(r)

udµr,a = u(a) < ∞

by Corollary 4.3.9.

Conversely, let f be in Hp
a(Ω) and assume that f has no harmonic majo-

rant. Then by Theorem 4.1.10 we have

1

2π

∫

Ω

GD(z, w)∆| f(z) |p = ∞ (5.1)

On the other hand we have

1

2π

∫

Sr

| f(z) |pdµr,a − | f(a) |p ≤ C < ∞ (5.2)

where C is independent of r, we have

1

2π

∫

Sr

| f(z) |pdµr,a − | f(a) |p =
1

2π

∫

Br

GDr(z, w)ddc| f(z) |p (5.3)

by Demailly-Lelong-Jensen formula 4.22. Since GDr are increasing by Corol-

lary 4.1.3 and ddc| f(z) |p and GBr(z, w) are positive, and limr→0 GBr(z, w) =

GΩ(z, w), by 4.1.4. Now since GB(r)(z, w)χB(r) ↑ GΩ(z, w) on Ω, by using
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Monotone Convergence Theorem

lim
r→0

1

2π

∫

Br

GBr(z, w)ddc| f(z) |p = lim
r→0

1

2π

∫

Ω

GBr(z, w)ddc| f(z) |pχB(r)

=
1

2π

∫

Ω

gΩ(z, w)ddc| f(z) |p

which is a contradiction since left-hand side stays bounded by 5.2, whereas

the right hand side is ∞ in view of 5.1. Hence it has a harmonic majorant.

This contradiction proves the theorem.

Corollary 5.2.3. For n = 1, the class Hp
a(Ω) is independent of the base

point a.

Proof. Let f is in Hp
a(Ω). Then |f |p has a harmonic majorant u by 5.2.2.

Therefore f ∈ Hp
b (Ω) for any b ∈ Ω by 5.2.2.
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