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Supervisor: Assoc. Prof. Gülser Köksal 
 

 

September 2003, 144  pages 

 

 

In this thesis, it is aimed to design lithium extraction from boron clays 

using statistical design of experiments and robust design methodologies. There 

are several factors affecting extraction of lithium from clays. The most important 

of these factors have been limited to a number of six which have been gypsum to 

clay ratio, roasting temperature, roasting time, leaching solid to liquid ratio, 

leaching time and limestone to clay ratio. For every factor, three levels have 

been chosen and an experiment has been designed. After performing three 

replications for each of the experimental run, signal to noise ratio 

transformation, ANOVA, regression analysis and response surface methodology 

have been applied on the results of the experiments. Optimization and 

confirmation experiments have been made sequentially to find factor settings 

that maximize lithium extraction with minimal variation. The mean of the 

maximum extraction has  been  observed  as 83.81% with a standard deviation 

of 4.89 and the 95% prediction interval for the mean extraction is (73.729, 

94.730). This result  is in  agreement  with  the  studies  that  have been  made in   

iii 



the literature. However; this study is unique in the sense that lithium is extracted 

from boron clays by using limestone directly from the nature, and gypsum as a 

waste product of boric acid production. Since these two materials add about 20% 

cost to the extraction process, the results of this study become important.    

Moreover, in this study it has been shown that statistical design of experiments 

help mining industry to reduce the need for standardization.     

 

Keywords: Statistical Design of Experiments, Taguchi Method, Robust Design, 

Response Surface Methodology, Lithium Extraction, Boron Clays 
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ÖZ 
 

BOR KİLLERİNDEN LİTYUM KAZANIMININ İSTATİSTİKSEL 
DENEY TASARIMI VE ANALİZİ YOLUYLA   

ROBUST TASARIMI  
 

Büyükburç, Atıl 

Yüksek Lisans, Endüstri Mühendisliği 
Tez Yöneticisi: Doç. Dr. Gülser Köksal 

 

Eylül 2003, 144 Sayfa 
 

Bu tez çalışmasında, bor killerinden lityumun kazanılmasının, 

istatistiksel deney tasarımı ve robust tasarım metotları uygulanarak tasarlanması 

amaçlanmıştır. Lityumun killerden kazanımı etkileyen çeşitli faktörler vardır. 

Bunlar içinde en önemlileri altı faktörde sınırlanmıştır. Bunlar jipsin kile oranı, 

kavurma sıcaklığı, kavurma süresi, liçin katı sıvı oranı, liç süresi, kireçtaşının 

kile oranıdır. Her parametre için üç seviye seçilecek şekilde, deney 

tasarlanmıştır. Her deney için üç tekrar yapıldıktan sonra, sinyal/gürültü oranı 

dönüşümü, ANOVA, regresyon analizi  ve cevap yüzeyi metotları, deney 

sonuçları üzerinde uygulanmıştır. En yüksek lityumun çözünmesini ve en düşük 

sapmayı sağlayacak faktör seviyelerinin bulunması için  optimizasyon ve 

doğrulama deneyleri bir önceki sonuçlar kullanılarak yapılmıştır. Deneyler 

sonucunda ortalama lityum kazanımı %83.81 olurken, standard sapma 4.89 

olarak hesaplanmış, %95 tahmin aralığı ise (73.729, 94.730) olarak  

bulunmuştur. Elde edilen bu sonuçlar, literatürde yapılmış olan killerden lityum 

kazanımı çalışmaları ile uyumluluk göstermektedir. Ancak bu çalışmada 

killerden lityum kazanımına yeni bir bakış açısı getirilmiş ve proses esnasında 

kullanılan kireçtaşının doğrudan doğadan sağlanması, jips olarak ise borik asit 
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üretiminde açığa   çıkan   katı   atığın  kullanılması   düşünülmüştür.  Bu   iki 

hammaddenin  toplam  proses  ekonomisine yaklaşık  %20’lik  bir maliyet 

getirdiği göz önüne alındığında çok önemli olduğu düşünülmektedir.  Ayrıca bu 

çalışmada madencilik sektöründe standardizasyona duyulan ihtiyacın  

istatistiksel deney tasarımının yardımıyla azaltılabileceği  gösterilmiştir.  

 

 

Anahtar Kelimeler: İstatistiksel Deney Tasarımı, Taguchi Metodu, Robust 

Tasarım, Cevap Yüzeyi Metodolojisi, Lityum Kazanımı, Bor Killeri    
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CHAPTER I 
 

 

INTRODUCTION 
 

 

 

 The aim of this study is to use statistical experimental design and 

analysis of these experiments in order to maximize the extraction of lithium 

from the clays of the boron fields. While achieving this aim, it is tried to make 

the lithium extraction robust to the variations in the process. Taguchi’s L27 (313) 

orthogonal array has been chosen as the statistical experimental design. In order 

to analyse the robustness of the process, three replications have been performed. 

Signal-to-Noise (S/N) ratio, Analysis of Variance (ANOVA) and Regression 

Analysis (for both mean and standard deviation) and Response Surface 

Methodology have been used in order to maximize the mean of lithium 

extraction and minimize the variation. 

 The widest application areas of lithium and its compounds are in several 

industries such as glass, ceramics, lubricants, pharmaceutics, metallurgy and 

batteries (Fishwick, 1974). In the ceramic industry, lithium is used as an additive 

to frits and glazes to reduce the viscosity. In the pharmaceutics industry, it is 

used in the synthesis of vitamin A and in the treatment of manic-depressive 

disorders. As lithium has high energy density, it is a desirable electrode material 

in batteries. Lithium compounds like lithium carbonate (Li2CO3) is added to the 

aluminium electrolysis cells in order to increase current efficiency and thereby 

decreasing the power consumption (Fishwick, 1974).  
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It is known that lithium occurs in boron fields (Mordoğan et. al., 1995, 

Beşkardeş et. al., 1992 and Büyükburç et. al., 2002) all of which owned by a 

state-hold company, Eti Holding, Inc. Therefore, from the clays of boron 

minerals, lithium has been tried to be extracted and production of  Li2CO3 has 

been aimed. In this study a different approach has been suggested for the 

extraction process design. This approach has been based on using raw materials 

that can be obtained from the facilities and fields of Eti Holding, Inc. Therefore, 

the raw material cost will be minimized so that no payment will be made for 

purchasing these raw materials. The studies in literature have not used or have 

not had any chance to use such an approach.  

There are several factors affecting the Li2CO3 production from clays. 

The production steps can be simplified as pelletizing, roasting, leaching, 

evaporation, precipitation and filtering.  

The first and main part of the process is to take lithium into the solution. 

The most important parameters of taking lithium into solution can be classified 

as; raw material to clay ratio, roasting temperature, roasting time, leaching time 

and leaching solid to liquid ratio. In order to perform the experiments, three 

levels for each factor have been determined and Taguchi’s L27(313) orthogonal 

array is chosen in order to estimate the main effects and some of interactions. To 

perform robust analysis and study the variations, three replications for each run 

have been obtained. S/N ratio has been estimated and analysis of variance 

(ANOVA) has been performed. The regression analyses for both the mean and 

the standard deviation have been conducted. In order to achieve the maximum 

solubility, response surface methodology has been used and it has been tried to 

find  the  global  optimum  of  extraction  by  employing  the  GAMS  non-linear  

programming and the methodology of  response surfaces for  2nd  order surfaces,  

Ridge Analysis. Although after completing the designed experiments maximum 

extraction has been identified as 73%, applying optimization methods has 

increased the extraction to about 83% on the average. These methodologies have 

not been applied commonly in mining industry, without making any 

standardization to the best of our knowledge. 
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In Chapter II, the background on the methods used in this study has been 

provided. In Chapter III, problem definition and the experimental procedure 

have been explained. In Chapter IV, the design, analysis and conduct of 

experiments have been explained. In Chapter V, the optimization study has been 

reported. In Chapter VI, an attempt to improve the optimum points has been 

presented. In Chapter VII, a cost analysis for this study has been made. Finally 

in Chapter VIII, the results obtained from this study have been discussed and 

suggestions for future work have been made.   
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CHAPTER II 
 

LITERATURE SURVEY 
 

2.1. Background On Lithium Extraction 

 

In this study, lithium has been extracted from boron fields by applying 

roasting and leaching processes simultaneously, and the experiments have been 

performed by using orthogonal arrays, and analysis of experiments (ANOVA, 

Regression) has been performed. On the results gained from regression, 

response surface and robust design methodologies have been applied.     

 Lithium is the third element of the periodic table coming after hydrogen 

and helium. It is the lightest metal and its atomic weight is 6.938. The name 

lithium originates from the Greek word “lithos” that means stone. The first 

identification of lithium was in the 19th century by Johan August Arfvedson. 

Arfvedson had analysed the content of a mineral later called spodumene 

[LiAl(Si2O6)] and saw that an accounted portion of the ore was not identified 

(Kroschwitz, 1994). Further work resulted in extraction of a compound that had  

unknown  chemical properties. However; it was not until 1855 that lithium was 

extracted as a free metal by the studies of Robert Bunsen and Augustus 

Matthienson. They achieved these by electrolysis of lithium chloride. In 1923, 

Metallgesellschaft AG in Germany did the first commercial production of 

lithium. The first production of lithium on an appreciable scale was during 

1900’s as spodumene mineral of Etta Mine in the Black Hills of South Dakota. 

The large increase of lithium and its derivatives production were in the middle 

of 1950’s due to the thermonuclear program of Atomic Energy Commission 

(AEC). The program had been completed in 1960 and the lithium producers 

have been left  with  an  excess capacity.  However;  after  1960  new application  
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areas of lithium were found.  

The average concentration of lithium in earth’s crust is about 0,006% 

and it is supposed that there exists 0,1 ppm lithium in seawater. The main 

sources of lithium are clays, minerals and brines. However; current commercial 

production is made from minerals and brines. The commercially important 

lithium minerals are spodumene, lepidolite, petalite and amblygonite (Saller and 

O’Driscoll, 2000). These minerals are either used directly in certain applications 

or they are converted in the lithium compounds such as Li2CO3, LiCl, LiOH. 

Li2CO3 production is made both from minerals and brines. The production is 

made mainly from brines as this is easier and cheaper than mineral processing.  

 A smectit-type clay which contained minimum lithium content of about 

4500 ppm is called hectorite. This type of clay is not currently used for 

producing lithium but instead is used directly in different applications. Some 

studies were performed (Lien, 1985, May et. al., 1980 and Edlund, 1983) in 

order to extract lithium from these clays and then producing Li2CO3.  

Lithium carbonate (Li2CO3) is the most important compound of lithium, 

which is a raw material for various industries as explained in Chapter 1. Li2CO3 

is produced commercially from minerals and brines. The production route from 

minerals includes crushing of spodumene mineral and applying of flotation in 

order to produce concentrate. Then the concentrate goes through a heating 

process at about 1100°C and the crystal structure of spodumene is altered so it 

becomes more reactive to sulfuric acid. The mixture of finely ground converted 

spodumene and sulfuric acid is heated to 250°C and forms lithium sulphate 

which is a water soluble compound. After leaching with water, insoluble 

compounds are separated by filtration. Lithium carbonate is achieved by reacting 

lithium sulphate and sodium carbonate (Na2CO3) (Ober, 2001). As this process 

is energy intensive, producing lithium carbonate is expensive when compared 

with the production from brines and the production is shifting to that side. The 

production from brines mainly includes evaporation, filtration, and precipitation 

steps. The schematic diagram of Li2CO3 production from the world’s largest 

lithium containing brine (Salar de Atacama, Chile), is shown in Figure 2.1.   
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Figure 2.1. The extraction of Li2CO3 and other salts from brines, Salar de 

Atacama, Chile (Mordoğan et. al., 1995 and Coad, 1984)  

 

 

 
6 

Brine 

Evaporation Pond 

Filtration 

Evaporation Pond 

Filtration KCl plant 

Evaporation Pond 

Filtration 

Li plant (Chem. Proc.)

Boric Acid plant 

K2SO4 plant 

Washing, drying, packing 



Ooi et. al. (1986) have claimed that if the application of lithium in 

thermonuclear fusion will come to the stage, the known lithium reserves will not 

be enough to supply this demand, and extraction of lithium from the sea water 

will be needed regardless of the low concentration which is 0.17 ppm. However; 

before coming to the extraction from sea water, the recovery from lithium 

bearing clays are to be thought. By this point of view, various studies have been 

performed in order to extract lithium from clays. The methods to extract lithium 

can be classified as water disaggregation, sulfuric acid leaching, acid baking-

water leaching, alkaline roast-water leach, sulfate roast-water leach, chloride 

roast-water leach, multiple reagent roast-water leach (May et. al., 1980), 

selective chlorination (Davidson, 1981) and lime-gypsum roasting-water leach 

(Edlund, 1983 and Lien, 1985). Among all these, lime-gypsum roasting-water 

leach is the most promising method. Edlund (1983) tries to optimize the lime-

gypsum ratios and roasting parameters. He conducts the experiment in different 

atmospheres such as N2+CO atmosphere, CO+H2O+N2 atmosphere. 

Clay:Lime:Gypsum ratio 5:3:3 is found as the optimum. The calcination time is 

prolonged to 4 hours and experiments are conducted for hours between 1-4. The 

results indicate that calcination temperature of 900°C yields the best results for 

batch production with a rotary furnace. According to the same study, in an 

electrically heated furnace the extraction yield has increased for all 

temperatures. Lien (1985) makes an extensive study for producing Li2CO3 from 

a montmorillonite-type clay containing %0,6 lithium. He also sets the 

clay:lime:gypsum ratio to 5:3:3 as optimum and conducts the experiments in the 

calcination temperature range of 750-1100°C for 1 hour. Lien (1985) concludes 

that 78-82% of  lithium  in  the  clay  can  be recovered. He also estimates the 

production cost of Li2CO3 and finds the cost as 1.4 fold larger than market price 

of Li2CO3. The process flow chart is given in Figure 2.2.    

 

   

 

 

 
 

7 



                                        Lithium containing clay 
 

 

         Limestone (CaCO3)                                  Gypsum (CaSO4.2H2O)                                               

                                                                                                

                                                Pelletized Raw Material                                                            

 

           

 

                    

                   Wash Water 

 

                                           Water      Slurry 

                                                                      

                                                              Residue 

                    Leach Solution 

 

            

 

                                                                         CaCO3 

 

                                               Concentrated Solution 
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Figure 2.2. The process flowchart of Li2CO3 from hectorite clay (Lien, 1985) 
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Extraction of lithium from boron fields has been the subject of Turkish 

researchers (Mordoğan et.al, 1995 and Beşkardeş et.al, 1992). Mordoğan et. al. 

(1995) conclude that 77% of lithium from Kırka clays can be recovered by 

adding 16,67% gypsum to the clay but no lime. Calcination temperature and 

time set as 900°C and 2 hours as optimum. Leaching time and solid:liquid ratio 

used are 1 hour and 0.1 respectively. Beşkardeş et. al. (1992) mainly concern 

with the application of Bigadiç clays for industrial use and try to investigate the 

economy of recovering lithium. They conclude that the cost of recovering 

lithium is 10,95$/kg which is about 3 times the selling price of Li2CO3.   

 

2.2. Background on Design and Analysis of Experiments for 

Optimization 

 

In this study, natural lime-waste gypsum roasting-water leach method 

has been used in order to extract lithium from boron fields. The experiments 

have been performed by using Taguchi’s L27 (313) orthogonal array and analysed 

by using robust design methodologies. S/N Ratio, ANOVA, regression and 

response surface are the methods that have been used to analyse the experiments 

and optimize the extraction of lithium.  

 After World War II, Japan faced the problem of reconstruction the 

country. The main problem was from good-quality raw material, high-quality 

manufacturing equipment and skilled engineers (Phadke, 1989). To meet this 

challenge, Genichi Taguchi was assigned and he developed the foundations of 

Robust Design. The Robust Design method provides a systematic and efficient 

approach in order to get close to the optimum by having the product functional, 

exhibiting high performance and robust to variations (Erdoğan, 2000).  

  The robust design methodology strives for: 

 1. Making product performance insensitive to raw material which in turn 

leads to independence from the grade or quality of the raw material or 

components in the process. 
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 2. Making the design robust to the manufacturing variation in order to 

reduce labor and material cost for rework. 

 3. Having the design less sensitive to operating environment so that the 

reliability improves and operating cost decreases. 

 4. Using a novel development process, which will help, in using the 

engineering time more productively. 

 In order to achieve these aims, robust design simply tries to minimize the 

sensitivity of the process or product to the variation caused by uncontrollable 

factors without sacrificing the main aim, optimizing the mean (minimize, 

maximize or on target). The optimum settings of the controllable factors are 

found and set to minimize the variation. Robust Design involves eight steps 

which can be grouped into three categories as planning experiments, conducting 

them and analyzing and conforming the results (Phadke, 1989). 

  

Planning the experiment contains; 

a- Identifying of the main function 

b- Identify noise factors and testing conditions for quality loss 

c- Decide on the quality characteristic to observe and the objective 

function to be optimized 

d- Identifying and levelling of the control factors 

e- Choosing the most suitable experiment design and data analysis 

procedure 

Performing the experiments contains; 

f-   Conducting the experiments 

Analyzing and conforming the results consists of; 

g-  Analyzing the data and determining of optimum levels for control 

factors 

h- Conduct the confirmation experiments and planning future actions 

The Robust Design method developed by Taguchi has two major tools; 

signal-to-noise ratio and orthogonal arrays. 
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When we intentionally deal with the problem of minimizing the variation 

and the optimization of the response simultaneously, we can transform our data 

such that we can observe the variation and the mean. Taguchi recommended the 

transformation of the raw data to signal-to-noise ratio (S/N). S/N ratio 

consolidates several repetitions (at least two data points are required) into one 

value which reflects the amount of variation (Ross, 1988). In Robust Design, 

S/N ratio is used as the objective function to be maximized.  

A process simply consists of input, controllable and uncontrollable 

factors and output as shown in Figure 2.3.  

 

                                              Uncontrollable Factors 

 

Input                                                                 Output 

 

                Input                                                    

                                                 Conrollable 

                                                    Factors 

 

Figure 2.3. General model of a process  

  

In S/N ratio terminology, the controllable factors for a fixed target or 

static problem can be considered as signal factors and these can be intentionally 

adjusted to accomplish a controlled change in the output of the system. 

Uncontrollable factors are named as noise factors and these are known to affect 

a system’s performance. However; the settings of these factors can not be 

controlled or it is not feasible to control them in actual operation. Noise factors 

can be split into three categories as inner noise, outer noise and between-

products noise. Inner noise is the internal source of variability in a product’s 

function such as deterioration of components in response to aging. Outer noise is 

the one that is external sources of variability like operating environment; 

temperature, humidity.  Between-products  noise  is  caused by  the variability in  
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the manufacturing procedures or equipment. Welding amperage can be an 

example for such a noise. 

 Using S/N ratio we can simply analyze the results of the experiments 

involving multiple runs, instead of extended and time-consuming analysis. S/N 

ratio lets the selection of the optimum objective with minimum variation around 

the target.  

A classical example can be given to show the idea of S/N ratio.  Let us 

consider a  radio  that  the signal factor is  the  power  of  the radio  signal and 

noise factor is interference of storm. The clearness of radio signal is the target 

and the storm interference is variation. The most desirable situation is strong 

signal and little interference whereas the least desirable situation is weak signal 

and strong interference. So maximizing radio signal/storm interference will be 

the most suited case for our problem.  

There are three types of S/N ratios for static cases; 

- Nominal-the-Best 

- Smaller-the-Better 

- Larger-the-Better 

Nominal-the-Best: Nominal-the-best is the correct type when we have the 

following conditions; 

L: Quality Loss = 0     when  µ:Target=m,  and σe:Deviation=0  

To simplify, nominal-the best is a measurable characteristic with a specific user-

defined target. The transformation to S/N ratio can be made by the following 

formula: 

where; 

η = symbol for S/N; (dB) 
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Smaller-the-Better: If we have the following criteria; 

L: Quality Loss = 0    when  µ=0 and σe:Deviation=0  

then Smaller-the-Better type S/N ratio can be used. This simply corresponds to 

the target of achieving zero which is the smallest obtainable value, without 

negative values. If the system is capable of attaining both negative and positive 

values, then this is a case for Nominal-the-Best type.                                                              

The transformation formula for smaller-the-best type is: 

where;  n= number of replications  

            yi = ith value  

The specific examples for smaller-the-better type problems are direct evaluation 

of energy, leakage of any matter (gas, solid, liquid) or pollution. 

 

Larger-the-Better: When we have the following requirement; 

L: Quality Loss = 0    when  µ =+∞, and σe:Deviation=0  

then the larger-the-better type is the most suitable one. If a system will be 

defined as perfect when it approaches to infinity, larger-the-better should be 

used. Dr.Taguchi recommends to use the inverse of the target of zero which is 

similar to opposite of smaller-the-better type. Therefore the transformation to the 

S/N ratio can be performed by the formula: 

 

Weld strength, profit, material strength and fuel efficiency can be the examples 

of larger-the-better type. 
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Another tool used in Robust Design methodology is orthogonal arrays. 

Orthogonal array is a type of statistical design of experiments and are called 

matrix experiments also. Ronald Fisher who introduced analysis of variance 

(ANOVA) was the primary founder of the statistically designed experiments. He 

first applied this method in agricultural studies and later statistically designed 

experiments have found wide applications in Medical and R&D activities. There 

are various kind of designs such as; one factor at a time, full factorial, fractional 

factorial, central composite design and orthogonal arrays. In designing, 

conducting and analyzing an experiment, there are major steps (Ross, 1988). 

These can be listed as: 

1. Selection of factors and/or interactions to be evaluated 

2. Selection of number of levels for the factors 

3. Selection of the appropriate orthogonal arrays 

4. Assignment of factors and/or interactions to columns 

5. Conducting tests 

6. Analyzing tests 

7. Making the confirmation experiments 

 

Orthogonal array is the foundation for designing an experiment in 

Taguchi methodology. Orthogonal means being balanced and not mixed. In 

statististical terminology, orthogonal means statistically independent. Notation 

of orthogonal arrays is La (bc) where “L” is an symbol for orthogonal array, “a” 

stands for the number of experiments required for this array, “b” shows the 

number of test levels for each factor and “c” points out the number of factors 

that this array can examine. For example L27 (313) tells that this array requires 27 

experiments, and with these, thirteen 3 level factors can be analysed. 

 In statistical terminology a matrix is said to be orthogonal if following 

two criteria occur ; 

� all possible combinations of test levels occur between pairs of 

columns  

� and each of these combinations occur an equal number of times 
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There  are  several  orthogonal  arrays  that  are  used.  The most widely 

ones are L4(23), L8(27), L9(34), L12(211), L16(45), L18 (21x37), L25(56), L27(313) and 

L32(231).  There are other orthogonal arrays that are less common such as 

L20(219), L98(715x21), L121(1112), L169(1314). It is possible to create new 

orthogonal arrays by merging colums of the most widely used ones. Some 

examples for such arrays are; L18(61x36), L27(91x39), L81(910) and L128(441x24).  

Ünal (2001) lists all these orthogonal arrays and in Phadke (1989), interaction 

tables and linear graphs of the most commonly used arrays can be found.      

 After performing the experiments, the analysis and model fitting of the 

experimental data come into nature. Model fitting is made by using regression. 

Regression analysis is called simple regression when the model contains only 

one factor. If there are more than one factor in the model, then multiple 

regression is performed to fit a model. When the model contains only linear 

terms then this model fitting is called multiple linear regression, and denoted by: 

 

 y = β0 + β1X1 + β2X2 + ...+ βkXk + ε                                                  [2.4] 

When the model contains square and interaction terms then the model is called 

quadratic regression and the model is formulated as: 

 

In order to find the optimum point in the model, response surface 

methodology can be used. An experimenter wishes to have the optimum point in 

his/her experimental region. An appropriate way to see whether the global 

optimum lies in the experimental region is to apply response surface methods. 

For a regression problem including only the linear terms in xj’s, it is easy for 

response methodology to reach to optimum by using the method called steepest 

ascent. This method basically tries to reach the optimum by moving b1 units in, 

say X1 direction  for  every  b2 units  in, say   X2  direction  starting at  the centre  
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(0,0) of the experimental design if X1 and X2 are the only variables. Thus, the 

steps along the path are proportional to the regression coefficients (βi’s) 

(Montgomery, 1997). If second order model is necessary to explain the 

relationship, ridge analysis can be used.   

The technique of ridge analysis was first suggested by A.E.Hoerl (1959) 

and later urged by R.W.Hoerl (1985). It is developed form of the steepest ascent 

that will apply to second-order surfaces and finds its origin in Box and Wilson 

(1951) (Box and Draper, 1987).       

 The method simply comprises the following: 

 Consider the 2nd order response surface in k variables x1, x2,...,xk that 

µ = b0 + b1x1 + b2x2 + ... + bkxk + b11x1
2 + b22x2

2 + ... + bkkxk
2 + 

       b12x1x2 + b13x1x3 + ... +bk-1,kxk-1xk                                                                         [2.6] 

 

 

Suppose a sphere centring at the origin  [usually (0,0,...,0)] and having 

radius R is drawn.  Then it is certain that somewhere in the sphere there will be a 

maximum and elsewhere a minimum. Also depending on the type of quadratic 

surface [2.6] values of µ which are local maxima or minima, that is maxima and 

minima for all nearby points on the sphere, but not absolute maxima or minima 

when all points of the sphere are taken into consideration (Box and Draper, 

1987).  

For ridge analysis, application of the method of Lagrange multipliers 

leads to the following equations, which  must be solved for x = (x1, x2,…,xk)/: 

(B- λI) x = -1/2 b                                                                               [2.7] 

 

b11 1/2b21 ... 1/2b1k 

1/2b12 b22 ... 1/2b2k 

... ... ... ... 

1/2b1k 1/2b2k ... bkk 
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B= 

 
 
b= 

b1 
b2 
... 
bk 



 
Let the eigenvalues of the matrix  B be denoted by µi (i=1,...,k). Then, det (B- 

µI) = 0 will provide the eigenvalues. Suppose that the largest eigenvalue for B is 

µL and the smallest eigenvalue is µs. Some assignment values to λ is given and 

equation [2.7] is solved and values for x1, x2,...,xk are computed. Whether the 

assigned λ value is outside the interval [µs µL] or inside the interval gives the 

decision of the point, x = (x1, x2,...,xk) as  local or global maxima or minima 

(Box and Draper, 1987).  

 

 Contour plots and response surface graphs are two basic constitutes of 

response surface methodologies that help the researcher visualise the surfaces 

more easily.  An example adapted from literature showing the response surface 

graphs and contour plots with the pathway that should be followed while 

conducting response surface methodology are given in Figures 2.4 and 2.5.  

 

Applications of response surfaces can be read from Özler (1997), Myers 

(1971), Myers et. al. (1989), Lin et. al. (1995), Handle et. al. (1997) and  Myers 

et. al. (1999). Applications of robust design can be found in Koolen (1998), 

Köksal et. al. (1998), Köksal (1992), Menon et. al. (2002) and Khoei et. al. 

(2002). 
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Figure 2.4.  The flow diagram of Response Surface Methodology (Abacıoğlu, 

1999) 
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Figure 2.5. Contour plot and a response surface (George et.al, 2000).  
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CHAPTER III 
 
 

PROBLEM DEFINITION AND EXPERIMENTAL PROCEDURE 
 
 
 

 Boron minerals in Turkey are completely owned by Eti Bor, a subsidiary 

of Eti Holding. Boron minerals are found in four different places in Turkey. 

Three different boron minerals are mined in these four locations. Colemanite 

(Ca2B6O11.5H2O) mineral is mined in Kestelek (Bursa), in Bigadiç (Balıkesir) 

and in Emet (Kütahya). Ulexite (NaCaB5O9.8H2O) is mined in Bigadiç and 

Tincal (Na2B4O7.10H2O) is mined in Kırka (Eskişehir). After extracting the run-

of-mine ore, physical (crushing, washing, sieving and so on) processes should be 

applied to recover the mineral. These processes are applied in order to separate 

the valuable part of the ore (B2O3) from relatively less valuable part (clay, 

limestone, marn, tuff) totally named as gangue minerals. These gangue minerals 

are stored in tailings pond as slurry or solid. Some studies have been conducted 

to beneficiate the clay minerals of boron fields. Some of the studies concentrate 

on extracting the lithium content of Bigadiç clays. Bigadiç clays contain nearly 

about 2500 ppm lithium (Mordoğan et. al., 1995 and Büyükburç et. al., 2002)  

and this can be a potential source for future use.  

 The extraction of lithium comprises mixing of raw materials, roasting 

them and leaching with water. After taking lithium in the solution, it is 

concentrated  by  evaporation  and  then  precipitated by the addition of Na2CO3.  

Therefore we can roughly divide Li2CO3 production into two  stages;  extraction 

(taking  into  solution)   and   precipitation  (reacting  with  Na2CO3).  Extraction   

mostly affects the yield of the whole process as the solid part of the leaching is a 

residue. Extraction includes three processes; raw material preparation (crushing, 

grinding), roasting, leaching. During these processes, many factors cause 

variation that affect the extraction yield. These factors are listed in Table 3.1.  
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Table 3.1. Factors Affecting the Extraction of Lithium  

Process Factors Affecting Lithium Extraction 

Mixing ratios 

The contents of the raw materials: 

     a. CaSO4.2H2O content of gypsum* 

     b. CaCO3 content of limestone* 

     c. Lithium content of clay* 

Measurement Error 

Raw Material Preparation 

     a. Calibration of balance  

Roasting temperature 

Roasting time Roasting 
Temperature variation in the furnace 

Leaching time 

Leaching solid to liquid ratio 

Leaching temperature 

Stirring speed 

Leaching particle size 

Measurement Error 

     a. Calibration of balance 

     b. Accuracy of container 

Leaching 

     c. Chemical Analyses 

* The contents vary since the raw materials are from nature (limestone) or 
wastes (clay and gypsum). 
 

 As there is no industrial production of lithium from clays, probably some 

of the factors affecting the process have been neglected. Some of the factors 

listed above are control factors and some are noise factors. However; in order to 

simulate the production environment, some controllable factors not studied and 

certain predetermined levels are used for them. Moreover; to control some of the 

factors will bring additional cost to the process. This is especially valid for 

bringing the contents of the raw materials to minimum value (standardization). 

However; standardization has not been taken into consideration in this study and  
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contents of the raw materials have been left as a noise factor. In real production 

environment; as the capacities are so high, the measurements about weighting 

are to be based on tonnage and some variation in weighting of the solids and 

measuring the volume of the liquid may occur. In this study, the measurements 

have been made accurately so such errors in the production environment have 

not been simulated. Another important noise factor that can affect the yield of 

the extraction is, temperature variation in the furnace. In the real production 

environment, temperature can not be kept consistently at given levels or this is 

not desired, as it will increase the cost. In this study, a furnace that shows ±10°C 

variation has been used in order to simulate the production environment. 

Leaching temperature is another important factor that can affect the solubility of 

lithium sulphate, hence extraction. As the room temperature solubility of lithium 

sulphate is 40 gr/lt, it is not needed to work at high leaching temperatures. 

Moreover, leaching will be made at room temperature in the real production 

environment so this factor can be simulated, however, as solubility increases 

with increasing temperature, in this study it is not claimed to have robustness 

against leaching temperatures other than the room temperature. Stirring speed is 

another factor that can not be followed accurately in the production 

environment. Therefore, in this study stirring speed has been let to variate ±10 

rotations per minute. That means the stirring speed has been left to vary between 

400-420 (410±10) rpm so that noise factor can be simulated well. Leaching 

particle size is another factor. However; as leaching in the real production 

environment will be made with powder particles (particle size less than 200 µ) 

and as in this study the average particle size has been set around 74µ, this factor 

has been simulated well. In this study, pelletizing has not been made although it 

has been made in other studies in literature (Beşkardeş et. al. 1992, Mordoğan et. 

al., 1995  and Lien 1985). The results of this study do not show a considerable 

difference from those studies. However; if pelletizing is needed in the real 

production environment due to high dusting environment in roasting process, 

then leaching  particle  size  should  be taken into consideration. Other factors 

such  as  clay:gypsum:limestone  mixing   ratio,  roasting  temperature,   roasting  
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time,  leaching solid to liquid ratio and leaching time have been chosen as the 

control factors in this study. Another important noise factor is accuracy of 

chemical analyses. In order to overcome this factor a mass balance has been set 

up and if there occurs larger than 15% difference in mass balance then analyses 

and/or experiments have been repeated.  

3.1 RAW MATERIAL PREPARATION 

 Three raw materials are used in extracting lithium. First one is the clay 

from boron fields and the others are gypsum and limestone. The studies about 

extracting lithium from clays present that the process is cost-sensitive. 

(Beşkardeş, 1992 and Lien, 1985). In order to decrease the cost, the reagents 

(gypsum and limestone) are not purchased from chemical suppliers or from 

mining companies. Instead the materials that belong the Eti Holding are tried. 

Instead of purchasing gypsum from outside markets, solid waste of boric acid 

production plant is used. Chemical analyses of this waste show that it can be a 

candidate to be used instead of gypsum. Also in Bigadiç mine, there is a place 

rich in limestone content. Therefore the limestone used in the experiments are 

from Bigadiç fields which belong to Eti Holding. Also the chemical analyses of 

this pit show a great hope to substitute limestone. The chemical analyses of the 

samples are given in Table 3.2. 

 Table 3.2. The chemical analyses of raw materials 

Sample CaO (%) CO2 (%) SO4 (%) Li (ppm) SiO2 (%) 

Limestone 49,74 38,37 0,26 64 7,91 

Gypsum 27,89 0,64 50,26 98 5,84 

Clay 10,03 4,55 0,21 2150 39,01 

  

As these materials are natural, the chemical analyses show variability. 

 All the materials are crushed under a size of 1,3 cm. In order to have an 

efficient roasting, these materials should be mixed vigorously. For achieving 

appropriate mixing, it is thought to grind them together. The studies on that 

subject add pelletizing of the ground materials. This is done in order to minimize  

the weight loss, hence lithium loss during roasting.  In this study,   pelletizing  is   
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not included. The pictures of raw materials and the grinding machine are given 

in Figure 3.1. 

Figure 3.1. Pictures of raw materials and grinding machine a-) grinding machine 
b-) Lithium containing clay, c-) waste of boric acid plant, gypsum, d-) limestone   
 

3.2 ROASTING 

 The identification of the lithium phase is almost difficult in the clay since 

lithium content is in ppm. Therefore  it  is  assumed that lithium is with  silicate 

minerals with  the  formula Li2Si2O5. In  order  to  make  an  efficient  leach, this  
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lithium phase must be converted to a water soluble phase such  as Li2SO4 (water 

solubility is about 40 gr/lt). This can be achieved by roasting at high 

temperatures (higher than 800°C). During roasting the following reactions occur. 

CaSO4.2H2O + SiO2    ⇒    CaSiO3 + SO2 + ½ O2 + 2H2O                      (1) 

Li2Si2O5 +  SO2 + ½ O2  ⇒  Li2SO4 + 2SiO2                                             (2) 

 An important point to consider here is that the 2nd  reaction is reversible. 

Free SiO2 tends to react with Li2SO4 and results in lithium silicate mineral. 

Hence in order to prevent the back reaction, CaCO3 is added. This material does 

not stop the back reaction but limits it. CaO reacts with SiO2 to form CaSiO3. 

CO2 is lost to furnace atmosphere. An electric driven muffle furnace that can 

reach to the temperatures of 1200°C is used. The required temperature can be 

adjusted. However; the heating and cooling time can not be seen on the furnace. 

Roasting experiments are performed in a mullite crucible that can resist high 

temperatures.  The picture of the furnace and the roasted material in the crucible 

are given in Figure 3.2.   

 
 Figure 3.2. The muffle furnace and roasts in the crucible 
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3.3 LEACHING 

 After calcining, the roasts are weighted, the weight loss is recorded. 

Lithium analysis is applied to a portion of the roast and the other portion is 

leached with water.  Distilled water is used during the experiments, as other 

solvents such as sulfuric acid and hydrochloric acid are expensive.  Also they 

are such powerful solvents that they extract some undesired materials as well 

like iron (Fe), magnesium (Mg) and aluminium (Al). The reactor used for 

leaching has a volume of 1liter and is connected to a cryostat that sets the 

temperature to the desired point. However; during the experiments room 

temperature is used. This is due to high solubility of Li2SO4 in water (about 40 

gr/lt at 20°C). Moreover, it is tried not to include any more energy consuming 

items in the process by leaching at high temperatures. The reactor also has 6 

necks to dip in thermometers, pH meters and rods to take liquid samples. A 

mixer is dipped from the middle neck of the reactor to make a homogeneous 

mixing.  

When the literature is examined it is seen that mixing speed does not 

have an important affect on the leaching performance (Mordoğan et. al., 1995). 

Preliminary experiments are performed in order to see if it is important for 

Bigadiç clays. As a result, it is concluded that it does not have a considerable 

effect on leaching. Therefore mixing speed is set to 400 rpm based on 

preliminary experiments. The leaching experiments are performed with different 

time and solid to liquid ratio.  At the end of the leaching the slurry are filtered. 

By this,  solution is separated from the slurry. Filtration is performed by using 

the thinnest filter paper. Lithium analysis is applied to the solution and the solid 

part (which is a residue) is dried and analysed for lithium content. The final 

point is the calculation of the lithium extraction from the clay. Lithium analyses 

have been made using AAS (Atomic Absorption Spectrophotometer) which has 

lithium detection limit of 0.02 ppm. 

 

 The picture of the reactor can be seen in Figure 3.3. 
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Figure 3.3 The picture of reactor and cryostat 
 

Figure 3.4 shows the process flow chart of this study. 
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Figure 3.4. The process flow chart used in this study. 
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CHAPTER IV 
 

DESIGN, CONDUCT AND ANALYSIS OF THE EXPERIMENTS 
 

 

4.1. Design and Conduct of the Experiments 

 

4.1.1 Deciding on the Levels of Control Factors: 

 

Extraction of lithium from boron clays mainly comprises 3 steps; raw 

material preparation, roasting and leaching. 

In the raw material preparation step, the most important parameter is the 

addition ratio of gypsum and limestone to the clay. The studies that have been 

done, have showed that clay:gypsum:limestone optimum mixing ratio is about 

5:3:3 (Mordoğan et. al, 1994) or 5:2:2 (Lien, 1985). So in this study 5:3:3 ratio 

is treated as the center in choosing the levels of gypsum and limestone. In fact, if 

we increase the content of gypsum and limestone, it will not bring an additional 

raw material cost (as raw materials used are wastes) to the process if 

transportation cost is ignored. However; due to the back reaction characteristic 

of roasting and equilibrium concentration of leaching processes, the additional 

amount of gypsum and limestone should be closely examined.  

Roasting is the most important process as the conversion of lithium 

silicate minerals to lithium sulphate takes place in this process. As the reaction 

of conversion is reversible, the time and temperature of roasting need close 

attention. The addition of limestone (CaCO3) is for limiting the back reaction. 

CaCO3 decomposes to CaO and CO2 at about temperatures higher than 800°C 

and the decomposed product CaO reacts with free SiO2, and hence preventing 

the back reaction. The studies for setting the optimum roasting temperature  

result in  different  temperatures,  from   850°C  to 1000°C  due  to  the  different  
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characteristics of the processes and the used clays (Mordoğan et. al, 1994 and 

Lien, 1985). As the optimum roasting time strictly depends on the roasting 

temperature, its levels are based on the roasting temperature. Higher 

temperatures and prolonged time of roasting result in a decrease of extraction 

percentage. As a result, the roasting temperature levels are set at 850°C, 950°C 

and 1050°C, and levels of the time are chosen as 30, 60 and 120 minutes. 

 As the prolonged time and higher temperatures decrease the lithium 

content, it is believed that there occurs an interaction between time and 

temperature in that period. So in choosing the appropriate orthogonal array, this 

interaction is taken into account.   

 There are several important factors for leaching.  These are leaching 

temperature, mixing speed, leaching particle size, leaching time and leaching 

solid:liquid ratio. The reasons of ignoring temperature and stirring speed are 

explained in Chapter III. It is aimed not to make any regulation on the particle 

size of the leach feed. There has been made no operation on particle size and it  

has been used as it has left roasting, however, if there occurs strong 

agglomeration, the roasts have been ground. In the choice of leaching time and 

solid to liquid ratio, two important parameters are considered: The leaching 

equilibrium of the reaction, and the contamination of the solution with 

impurities such as Fe, Al and Mg. After examining the studies, leaching time of 

one hour with a solid to liquid ratio of about 0.1-0.4 is chosen as the most 

appropriate (Mordoğan et. al, 1994 and Lien, 1985). So in choosing the levels of 

leaching, these parameters are taken into consideration.  The chosen levels of the 

factors are shown Table 4.1.  
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Table 4.1. The levels of the factors 

Factors Level 1 Level 2 Level 3 

A. Gypsum/Clay Ratio* 1.5/5 3/5 4.5/5 

B. Roasting Temperature (°C) 850 950 1050 

C. Roasting Time (min) 60** 30 120 

D. Leach Solid to Liquid Ratio 0.1 0.2 0.4 

E. Leach Time (min) 30 60 120 

F. Limestone/Clay Ratio*  1.5/5 3/5 4.5/5 

* Gypsum and Limestone will also point the same factor (gypsum/clay ratio and 
limestone/clay ratio, respectively) hereafter. 
** At first 90 minutes was thought to be appropriate for the 2nd level. However; 
after some experiences, it is believed that 30 minutes is better.   
 

4.1.2. Designing the Experimental Layout 

For this experiment an orthogonal array is decided to be used for its 

various advantages (Phadke, 1989). In order to decide which orthogonal array is 

the most suitable one, we determined the degrees of freedom needed to estimate 

all of the main effects and important interaction effects. 

Factors   df 

           Gypsum   2 

      Roasting Temp.    2 

       Roasting Time   2 

     Leach S:L Ratio   2 

        Leach Time   2 

         Limestone   2 

       Overall Mean    1 

            TOTAL  13 

Also it is important to estimate the interaction between roasting time and 

roasting temperature. Therefore additional 4 degrees of freedom should be 

reserved for estimation of this interaction. So we need at least 17 experiments. It 

is clear that we need to have an orthogonal array with at least 3 levels, 8 

columns (6 for the main effects and 2 for the interaction) and 17 rows (run).  
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 When the orthogonal arrays available in the literature are examined, it is 

observed that L27 (313) is the most suitable one. If this array is used there are left 

four more columns for estimating any other interaction, and one level for 

estimating the error. Therefore, as roasting temperature seems to be the most 

important factor, the gypsum and roasting temperature interaction, and leaching 

solid to liquid ratio and roasting temperature interaction can be estimated as 

well.  

 As a result, the factors are assigned to the columns of the orthogonal 

array as shown in Table 4.2. 

 

Table 4.2. The assignment of factors to the columns of L27 (313) array 

Factors Column numbers df 

Gypsum Ratio 1 2 

Roasting Temperature 2 2 

Roasting Time 5 2 

Leaching S:L Ratio 6 2 

Leaching Time 7 2 

Limestone Ratio 10 2 

Gypsum x Roasting Temperature 3,4 4 

Roasting Temperature x Roasting Time 8,11 4 

Roasting Temperature x  

Leach Solid to Liquid Ratio 

9,12 4 

Error 13 2 

Overall Mean  1 

TOTAL  27 

 

The L27(313) O.A. and its interaction tables are given in Appendix 4A.1 

and 4A.2. The factors are assigned to columns according to interaction table of 

L27(313). 
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The experiments are repeated three times in order to effectively calculate 

the noise factors such as the variation of the contents of the raw materials, 

temperature variation in the furnace and leaching temperature.  

While performing the experiments, the samples for roasting are placed in 

the furnace when the temperature reaches the desired value and then are taken 

out as soon as the roasting time is completed. Two samples, which have the 

same roasting time and temperature, are roasted together. The results of the 

experiments are given in Table 4.3. 

 After the experiments are conducted; average, standard deviation and 

signal-to-noise ratio of the results belonging to each run (experimental setting) 

are computed.  

 After estimating the average and standard deviation, Signal-to-Noise 

ratio is calculated by using the Larger-the-Better criteria. The formula for this 

criterion is: 

 
For the 1st  experiment, the computation is given as follows: 

Results are: 13.76, 24.18 and 26.00     

 

η = -10LOG(0.0028237)    ⇒   η = 25.49175 

 

 The complete results of average, standard deviation and S/N ratio are 

given in Table 4.4. 

 

4.2. Analysis of the Results 

4.2.1. ANOVA 

ANOVA of the S/N ratio values is performed by using the statistical  

package program MINITAB. The ANOVA table obtained is given in Table 4.5.  
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 Table 4.3. The Results of The Experiments          
 Run A B C D E F EXTRACTION RESULTS (%)  
  Gypsum/Clay Ro. Te.,°C Ro. Ti., min Leach S/L Le. Ti., min Limestone/Clay 1 2 3  

 1 1.5/5 850 60 0.1 30 1.5/5 13.76 24.18 26.00  
 2 1.5/5 850 30 0.2 60 3/5 5.22 6.51 6.14  
 3 1.5/5 850 120 0.4 120 4.5/5 8.11 11.03 7.21  
 4 1.5/5 950 60 0.1 30 3/5 27.66 30.44 30.74  
 5 1.5/5 950 30 0.2 60 4.5/5 17.65 7.81 8.85  
 6 1.5/5 950 120 0.4 120 1.5/5 70.35 73.42 65.80  
 7 1.5/5 1050 60 0.1 30 4.5/5 11.97 6.29 8.72  
 8 1.5/5 1050 30 0.2 60 1.5/5 44.26 43.69 25.89  
 9 1.5/5 1050 120 0.4 120 3/5 36.13 50.68 25.73  
 10 3/5 850 60 0.2 120 4.5/5 8.15 6.56 4.90  
 11 3/5 850 30 0.4 30 1.5/5 6.93 4.34 4.65  

 12 3/5 850 120 0.1 60 4.5/5 27.65 6.71 10.99  
 13 3/5 950 60 0.2 120 1.5/5 55.70 64.63 55.86  

 14 3/5 950 30 0.4 30 3/5 39.52 18.27 13.42  
 15 3/5 950 120 0.1 60 4.5/5 22.95 23.36 19.19  
 16 3/5 1050 60 0.2 120 3/5 52.83 65.64 44.61  
 17 3/5 1050 30 0.4 30 4.5/5 10.55 28.40 28.65  
 18 3/5 1050 120 0.1 60 1.5/5 18.70 25.80 24.25  
 19 4.5/5 850 60 0.4 60 3/5 10.86 4.37 7.18  
 20 4.5/5 850 30 0.1 120 4.5/5 3.00 2.79 3.10  
 21 4.5/5 850 120 0.2 30 1.5/5 30.17 28.20 23.78  
 22 4.5/5 950 60 0.4 60 4.5/5 28.93 27.30 26.16  
 23 4.5/5 950 30 0.1 120 1.5/5 30.93 30.64 30.53  
 24 4.5/5 950 120 0.2 30 3/5 64.69 65.81 52.74  
 25 4.5/5 1050 60 0.4 60 1.5/5 11.45 14.06 15.52  
 26 4.5/5 1050 30 0.1 120 3/5 42.53 49.82 45.24  
 27 4.5/5 1050 120 0.2 30 4.5/5 46.80 65.75 54.91  
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Table 4.4. The Average, Standard Deviation and S/N Ratio of  Experiments 

 Run A B C D E F    
  Gypsum/Clay Ro.Te.,°C Ro.Ti., min Leach S/L Le.Ti. ,min Limestone/Clay AVER. STD.DEV. S/N RATIO  

 1 1.5/5 850 60 0.1 30 1.5/5 21.313 6.6044 25.49180  
 2 1.5/5 850 30 0.2 60 3/5 5.957 0.6643 15.38497  
 3 1.5/5 850 120 0.4 120 4.5/5 8.783 1.9970 18.47098  
 4 1.5/5 950 60 0.1 30 3/5 29.613 1.6983 29.39990  
 5 1.5/5 950 30 0.2 60 4.5/5 11.437 5.4060 19.66948  
 6 1.5/5 950 120 0.4 120 1.5/5 69.857 3.8339 36.85758  
 7 1.5/5 1050 60 0.1 30 4.5/5 8.993 2.8498 18.20008  
 8 1.5/5 1050 30 0.2 60 1.5/5 37.947 10.4453 30.74645  
 9 1.5/5 1050 120 0.4 120 3/5 37.513 12.5324 30.51278  
 10 3/5 850 60 0.2 120 4.5/5 6.537 1.6251 15.74346  
 11 3/5 850 30 0.4 30 1.5/5 5.307 1.4144 13.97356  
 12 3/5 850 120 0.1 60 4.5/5 15.117 11.0631 19.74724  

 13 3/5 950 60 0.2 120 1.5/5 58.730 5.1102 35.31552  
 14 3/5 950 30 0.4 30 3/5 23.737 13.8822 25.13866  

 15 3/5 950 120 0.1 60 4.5/5 21.833 2.2984 26.67787  
 16 3/5 1050 60 0.2 120 3/5 54.360 10.5982 34.38546  
 17 3/5 1050 30 0.4 30 4.5/5 22.533 10.3786 24.18595  
 18 3/5 1050 120 0.1 60 1.5/5 22.917 3.7331 26.94470  
 19 4.5/5 850 60 0.4 60 3/5 7.470 3.2547 15.72724  
 20 4.5/5 850 30 0.1 120 4.5/5 2.963 0.1582 9.41022  
 21 4.5/5 850 120 0.2 30 1.5/5 27.383 3.2723 28.61751  
 22 4.5/5 950 60 0.4 60 4.5/5 27.463 1.3922 28.75297  
 23 4.5/5 950 30 0.1 120 1.5/5 30.700 0.2066 29.74238  
 24 4.5/5 950 120 0.2 30 3/5 61.080 7.2443 35.58371  
 25 4.5/5 1050 60 0.4 60 1.5/5 13.677 2.0619 22.50835  
 26 4.5/5 1050 30 0.1 120 3/5 45.863 3.6848 33.17449  
 27 4.5/5 1050 120 0.2 30 4.5/5 55.820 9.5077 34.68712  
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Table 4.5. ANOVA of S/N Ratio Values 

Source df 
Sum of 

Squares 

Mean 

Square 
F P 

Gypsum 2 16.56 8.28 0.40 0.716 

Roasting Temp. 2 728.96 364.48 17.44 0.054 

Roasting Time 2 179.77 89.88 4.30 0.189 

Leach S/L Ratio 2 79.48 39.74 1.90 0.345 

Leaching Time 2 85.93 42.97 2.06 0.327 

Limestone 2 183.50 91.75 4.39 0.186 

Gypsum x Ro. Te. 4 32.64 8.16 0.39 0.808 

Ro. Te. x Ro. Time 4 118.68 29.67 1.42 0.453 

Ro. Te. x Leach S/L 4 56.47 14.12 0.68 0.670 

Error 2 41.81 20.90   

TOTAL 26 1523.81    

 

The results show that the interaction factors do not have any significant 

effect on the leaching of lithium. Also the interaction graphs prove this 

corollary. The interaction graphs are given in Figures 4.1, 4.2 and 4.3 for 

Gypsum x Roasting Temperature, Roasting Temperature x Roasting Time and 

Roasting Temperature x  Leach S/L Ratio, respectively.     

Figure 4.1. The interaction plot for Roasting Temperature x Gypsum  
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 The plot in Figure 4.1 implies not a strong interaction, however, we can 

conclude a slight interaction between roasting temperatures of 850°C and 950°C 

and gypsum ratios of 1.5 and 4.5.  

Figure 4.2. The interaction plot for Roasting Temperature x Roasting Time 

As it is seen from the plot, there is no interaction between 850-950°C of 

roasting temperatures. However; we can conclude that an interaction may exist 

for roasting temperatures more than 950°C and roasting time between 30-60 

minutes. 

Figure 4.3. The interaction plot for Roasting Temperature x Leach S/L Ratio  
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The interaction plot in Figure 4.3 indicates a possibility of a strong 

interaction for the leaching solid-liquid ratios of between 0.1 and 0.4.   

As ANOVA shows that the interaction terms are not significant within 

the experimental region, a new ANOVA is performed by pooling the interaction 

terms to error. New results are given in Table 4.6. 

 

Table 4.6 ANOVA of S/N Ratio without interaction terms  

Source df 
Sum of 

Squares 

Mean 

Square 
F P 

Gypsum 2 16.56 8.28 0.46 0.638 

Roasting Temperature 2 728.96 364.48 20.44 0.000 

Roasting Time 2 179.77 89.88 5.04 0.022 

Leach S/L Ratio 2 79.48 39.74 2.23 0.144 

Leaching Time 2 85.93 42.97 2.41 0.126 

Limestone 2 183.50 91.75 5.15 0.021 

Error 14 249.60 17.83   

TOTAL 26 1523.81    

 

When ANOVA of main factors are examined, it is observed that, gypsum 

has a very high p-value that it is not a significant factor. Therefore, it is thought 

to perform ANOVA without Gypsum. The results are given in Table 4.7. 
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Table 4.7. ANOVA of S/N Ratio without interaction terms and Gypsum 

Source df 
Sum of 

Squares 

Mean 

Square 
F P 

Roasting Temperature 2 728.96 364.48 21.91 0.000 

Roasting Time 2 179.77 89.88 5.40 0.016 

Leach S/L Ratio 2 79.48 39.74 2.39 0.124 

Leaching Time 2 85.93 42.97 2.58 0.107 

Limestone 2 183.50 91.75 5.52 0.015 

Error 16 266.16 16.64   

TOTAL 26 1523.81    

 

These results show that at the significance level of α=0.15, Roasting 

Temperature, Roasting Time, Leach S/L Ratio, Leaching Time and Limestone 

are significant.   

The residual plots of the model are given in Figure 4.4 and 4.5.  

Figure 4.4. The residuals versus fitted values of the model found by ANOVA for 

S/N ratio. 

 

 

 
 

 

39 

40302010

5

0

-5

Fitted Value

R
es

id
ua

l



 
Figure 4.5. Normal probability plot for the model found by ANOVA for 

S/N Ratio 

Both figures show no abnormality for validation of the assumptions of 

errors.  

The main effects plot is plotted. By using the main effects plot and level 

averages, the optimum point that increases S/N ratio is found.  

Table 4.8. Level averages of the factors 

Gypsum   Ro.Te. °C   

1.5 3 4.5 850 950 1050 

24.9705 24.6792 26.2471 18.0630 29.6820 28.3717 

      

Ro.Ti. min   Leach S/L   

30 60 120 0.1 0.2 0.4 

22.3807 25.0583 28.6777 24.3099 27.7926 24.0142 

      

Lea.Ti. min   Limestone   

30 60 120 1.5 3 4.5 

26.1420 22.9066 27.0681 27.7998 26.5616 21.7553 
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Figure 4.6. Main Effects Plots of Signal-to-Noise Ratio  

As it is seen from Figure 4.6, the optimum points are 2nd level for  

Roasting  Temperature,  3rd level  for  Roasting Time,   2nd  level  for  Leach  S/L  

Ratio, 3rd level for Leach Time and 1st level for Limestone. 

That is, if we assign letters to factors like; A for Gypsum, B for Roasting 

Temperature, C for Roasting Time, D for Leach S/L Ratio, E for Leach Time 

and F for Limestone, the notation of optimum points are; 

A3B2C3D2E3F1 

 Although gypsum has not been found significant, it has to be used in the 

experiment. Hence the level that seems to yield the highest extraction has been 

used for gypsum. We need to predict the results of the extraction percent and 

estimate the 95% confidence interval for this fit value. The superscripts imply 

the average effect of the factors.  

E(η) = T + (B2 – T) + (C3 – T) + (D2 – T) + (E3 – T) + (F1-T)                       [4.2] 

E(η) = 25.37 + (29.68 - 25.37) + (28.68 - 25.37) + (27.79 - 25.37) + (27.07 - 

25.37) + (27.80 – 25.37) 

E(η) = 25.37 + 4.31 + 3.31 + 2.42 + 1.70 + 2.43 

E(η) = 39.54 
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The confidence interval for signal to noise ratio should be calculated 

before conducting the experiment.  

 

 

Fα,1,ne  = Tabulated F-value for 1-α (α=0.95) confidence level with 1 and 

degrees of freedom of error  

Ve =  Pooled error variance 

 

 

 

 r= sample size for the confirmation experiment,  

 

 F0.05,1,16   = 4.49 

 Ve   =  16.64 

 NEFF  = 26 / 11 = 2.364 

 r = 1, as only one S/N ratio will be estimated from the experiments 

 

Therefore the value for S/N ratio of the confirmation experiment is 

expected to be between; 

 

  

η =       29.23 , 49.85      

 

with 95% confidence 
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In order to have an idea about the mean extraction at the optimal levels 

we can predict a value for the mean. In order to predict the mean more 

accurately, ANOVA has been performed on the individual results rather than the 

average of the replications. ANOVA table of the model for the mean can be seen 

in Table 4.9.  

 

Table 4.9. ANOVA table for the mean 

Source df 
Sum of 

Squares 

Mean 

Square 
F P 

Gypsum 2 376.8 188.4 3.37 0.041 

Roasting Temperature 2 10590 5295 94.71 0.000 

Roasting Time 2 3127.7 1563.9 27.97 0.000 

Leach S/L Ratio 2 2807.2 1403.6 25.11 0.000 

Leaching Time 2 3883.3 1941.7 34.73 0.000 

Limestone 2 3097.8 1548.9 27.70 0.000 

Ro. Te. x Ro. Ti. 4 2198.7 549.7 9.83 0.000 

Ro. Te. x Leach S/L 4 2254.2 563.5 10.08 0.000 

Error 60 3354.5 55.9   

TOTAL 80 31690.2    

 

In order to estimate the effects of factors the experiments have been 

treated individually. The residual plots for the mean model can be seen in 

Appendix 4A.3. The best level for roasting temperature conflicts with the best 

level of interaction between roasting temperature and leach solid to liquid ratio. 

The level averages for the mean and the comparison of the best levels can be 

found in Appendix 4A.4. Since we are aiming to maximize the mean extraction 

with minimal variation, the choice of best levels has been based on the S/N 

analysis. This is the combination A3B2C3D2E3F1.  The predicted value for the 

mean has been found as 73.13 for this combination.  

To predict the standard deviation at the optimal levels of the factors, the 

following formula of S/N can be used.   
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From Equation [4.4], s can be estimated by putting 39.54 and 73.13 for η 

and y respectively. However; solving for s will yield a negative value for s2. 

This might be due to the cumulative effect of prediction errors of both S/N Ratio 

and the mean. Hence we have decided to model the standard deviation and make 

a prediction directly from this model. ANOVA table of the model for standard 

deviation can be seen in Table 4.10. 

 

Table 4.10. ANOVA table for the standard deviation 

Source df 
Sum of 

Squares 

Mean 

Square 
F P 

Gypsum 2 47.787 23.893 9.51 0.014 

Roasting Temperature 2 74.433 37.217 14.81 0.005 

Roasting Time 2 22.926 11.463 4.56 0.062 

Leach S/L Ratio 2 30.213 15.107  6.01 0.037 

Leaching Time 2 20.973 10.486 4.17 0.073 

Limestone 2 60.124 30.062 11.96 0.008 

Ro. Te. x Ro. Ti. 4 53.451 13.363 5.32 0.036 

Ro. Te. x Leach S/L 4 118.978 29.744 11.84 0.005 

Error 6 15.079 2.513   

TOTAL 26 443.963    

 

The residual plots for the standard deviation model can be seen in 

Appendix 4A.5. The best levels considering both the mean and the standard 

deviation had been found based on S/N analysis as A3B2C3D2E3F1. The 

predicted value for standard deviation at these levels has been found as 2.514, 

and the computation of this value with the level averages can be found in 

Appendix 4A.6.   
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These fitted values of S/N, mean and standard deviation seem to be 

worth to try.  

The confirmation experiment has been performed twice. The results of 

the confirmation experiment yield the values of 56.87% and 67.79% with a 

standard deviation of 5.46. S/N ratio for these experiments has been found as 

35.794, which is in the prediction interval. This leads to a conclusion that the 

“optimum” settings found by using the Taguchi method are confirmed.  

In the following sections, we try to find even better settings for the 

design parameters by utilizing regression and response surface methodologies. 
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4.2. Regression Analysis 

 

4.2.1 Modelling the Mean Response 

 

In order to model the mean response, MINITAB package program is 

used. ANOVA has shown us that only linear terms will not be enough to explain 

the extraction of lithium from clays. However; it is worth to try regression 

analysis with only linear terms.  

µ = - 87.0 + 1.52*A + 0.110*B  +  0.166* C - 2.8*D +  0.103*E - 4.50*F    [4.5] 

 

Table 4.11. ANOVA for Regression Analysis for the mean including only main 

factors 

Source dF Sum of Squares Mean Squares F p 

Regression 6 4555.3 759.2 2.89 0.034 

Residual Error 20 5249.3 262.5 

TOTAL 26 9804.6 

 

R2 = 46.5%  R2
(adj)= 30.4%  S = 16.20  

Durbin Watson = 2.44 

 

 The residual versus fitted values plot shows a violation (Figure 4.7) of 

constant variance assumption of residuals, and also R2(adj) value is so low that 

the model will not be adequate enough to explain the mean extraction of lithium 

from boron clays. Besides these, Durbin-Watson statistic is so high. In Figure 8, 

normal probability plot of residuals can be seen. Table 4.12 shows the 

significance of β terms of the general linear model. This Table indicates that 

roasting temperature, roasting time and limestone are significant at the p (0.15) 

level of significance.  
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 Figure 4.7. Residual versus fitted values of the residuals of general linear 

model [4.5] with only main factors. 

Figure 4.8. Normal probability plot of the residuals of general linear 

model [4.5] with only main factors.  
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 Table 4.12. Significance of β terms of the General Linear Model [4.5] 

Predictor Coefficient Standard Error T p 

Constant -86.95 39.30 -2.21 0.039 

Gyspsum 1.519 2.546 0.60 0.557 

Roasting Temp.  0.11044 0.03819 2.89 0.009 

Roasting Time  0.16603 0.08333 1.99 0.060 

Leach S:L Ratio  -2.76 25 -0.11 0.913 

Leach Time 0.10307 0.08333 1.24 0.230 

Limestone -4.499 2.546 -1.77 0.092 

 

 The sequential sum of squares of the main factors are given in Appendix 

4A.7. 

Under these circumstances, it is decided to perform a new regression 

model by employing interaction and square terms.  

 

 We have 26 degrees of freedom to introduce to the new model. Main 

factors and square factors use 12 degrees of freedom. In order to estimate all 

two-way interaction terms, 15 degrees of freedom are needed. However; there 

are only 14 degrees of freedom to use so an interaction could not be estimated. 

This interaction is chosen as the one between Leach Time and Limestone. 

 MINITAB package program is used in order to model the quadratic 

regression with two-way interactions. However; while performing regression 

analysis, MINITAB has found some correlation between some interaction and 

quadratic factors. These are automatically disregarded from the regression 

analysis. The interaction factors that are correlated with other variables are  

A*E, C*E and D*E. The square factors that are correlated are C2, D2 and E2.  

 The regression model and the ANOVA of the regression obtained can be 

seen in Equation [4.6]. 
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 µ = -1332 + 17.2*A + 2.89*B – 0.105*C – 98.5*D + 0.631*E – 50.18*F      
                  +0.019*AB + 0.195*AC –1.49*AD + 5.20*AF – 0.001*BC  
                   -0.14*BD – 0.0006*BE + 0.055*BF + 3.75*CD – 0.013*CF  
                   -2.97*DF – 9.80*A2 – 0.0015*B2 – 3.49*F2                                 [4.6] 
 

Table 4.13. ANOVA for Regression Analysis for the mean including main, 

interaction and square factors 

Source dF Sum of Squares Mean Squares F p 

Regression 20 9736.54 486.83 42.94 0.000 

Residual Error 6 68.02 11.34 

TOTAL 26 9804.56 

 

R2 = 99.3 %  R2
(adj)= 97.0  S = 3.367  

Durbin Watson = 1.96 

 

 This model is much more adequate for explaining the mean extraction of 

lithium from boron clays. R2 and R2
(adj) values are adequately high. Standard 

deviation of the error is much smaller than the regression model including only 

main factors. Also Durbin-Watson statistic shows no correlation of errors. The 

residuals versus fitted values and normal probability plots are shown in Figures 

4.9 and 4.10, respectively.    
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 Figure 4.9. Residual vs fitted values of the residuals of quadratic model 

[4.6] with interaction factors. 

Figure 4.10. Normal probability plot of the residuals of quadratic model 

[4.6] with interaction factors.  
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 Residuals versus fitted values and normal probability plot indicate that 

errors have normal distribution with constant variance. With these and Durbin 

Watson test, it is inferred that the assumptions about errors for a adequate model 

is achieved. In that point, it is necessary to make a β significance test.  

 

Table 4.14. Significance of β terms of quadratic model [4.6] 

Predictor Coefficient Standard Error T p 

Constant -1332.1 129.5 -10.29 0.000 

A 17.17 17.08 1.01 0.354 

B 2.8857 0.2644 10.91 0.000 

C -0.1051 0.3143 -0.33 0.749 

D -98.52 95.90 -1.03 0.344 

E 0.6312 0.4228 1.49 0.186 

F -50.18 10.84 -4.63 0.004 

A*B 0.018944 0.007003 2.71 0.035 

A*C 0.19532 0.02154 9.07 0.000 

A*D -1.491 6.461 -0.23 0.825 

A*F 5.2019 0.4669 11.14 0.000 

B*C -0.0012118 0.0002335 -5.19 0.002 

B*D -0.14162 0.06711 -2.11 0.079 

B*E -0.0006306 0.0003968 -1.59 0.163 

B*F 0.05452 0.01212 4.50 0.004 

C*D 3.7501 0.8618 4.35 0.005 

C*F -0.01341 0.01557 -0.86 0.422 

D*F -2.967 4.474 -0.66 0.532 

A2 -9.804 2.563 -3.82 0.009 

B2 -0.0014914 0.0001375 -10.85 0.000 

F2 -3.4884 0.8082 -4.32 0.005 

  

The sequential sum of squares of the model are given in Appendix 4A.8. 
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 When the p-values of factors are examined, it is seen that some of the 

factors have significantly high values, which can lead the model deviate from 

being adequate. Therefore, it is thought to improve the p-values of the model by 

disregarding the ones that have a high p-value. This must be accomplished 

without sacrificing normality, constant variance and error correlation properties 

of the previous model.  

 The model improvement starts with disregarding the factor having the  

highest p-value. After disregarding a factor, all assumptions of the model are 

checked and looked for the best model.  

 Eventually, the model with valid normality, constant variance and no 

error correlation assumption, and large R2 and R2
(adj) values is the model that do 

not have the interaction factor, A*D. The model and ANOVA are given below. 

The main factors have been left in the model without considering their p-value.  

 

µ = - 1332 + 18.2*A + 2.89*B - 0.121*C - 108*D + 0.629*E - 50.2*F +   

0.0189*AB +  0.195*AC + 5.20*AF - 0.00121*BC - 0.142*BD  -

0.000631*BE  +  0.0545*BF + 3.82*CD -  0.0134*CF- 2.97*DF   -  

10.0*A2-0.00149*B2 - 3.49*F2                                                            [4.7] 

 

Table 4.15. ANOVA for the improved quadratic regression model [4.7] 

Source dF Sum of Squares Mean Squares F p 

Regression 19 9735.94 512.42 52.27 0.000 

Residual Error 7 68.62 9.80 

TOTAL 26 9804.56 

 

R2=99.3%  R2
(adj)= 97.4%  S=3.131 

Durbin Watson=1.99 

 

 This model is better than the previous one for both R2
(adj) value, S value 

and Durbin Watson statistic. The residual plots of the improved quadratic model 

can be seen in Figures 4.11 and 4.12.  
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 Figure 4.11. Residual vs fitted values of the residuals of improved 

quadratic model [4.7]. 

Figure 4.12. Normal probability plot of the residuals of improved 

quadratic model [4.7]. 
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The normal probability plot and residual versus fitted values plot of the 

residuals do not show any deviation from the residual assumptions. When we 

investigate the β significance value of the factors, there are still some interaction 

factors having high p-values such as the interactions between Roasting 

Temperature and Leaching Time, Roasting Time and Limestone Ratio, Leaching 

S/L Ratio and Limestone Ratio. The β significance table and the sequential sum 

of squares of the model are given in Table 4.16 and Appendix 4A.9. 

 

Table 4.16. Significance of β terms of the improved quadratic model [4.7] 

Predictor Coefficient Standard Error T p 

Constant -1331.6 120.4 -11.06 0.000 

A 18.19 15.34 1.19 0.354 

B 2.8857 0.2459 11.73 0.000 

C -0.1209 0.2853 -0.42 0.749 

D -108.21 80.18 -1.35 0.344 

E 0.6288 0.3930 1.60 0.186 

F -50.18 10.08 -4.98 0.004 

A*B 0.018944 0.006512 2.91 0.035 

A*C 0.19532 0.02003 9.75 0.000 

A*F 5.2019 0.4341 11.98 0.000 

B*C -0.0012118 0.0002172 -5.58 0.002 

B*D -0.14162 0.06241 -2.27 0.079 

B*E -0.0006306 0.0003690 -1.71 0.163 

B*F 0.05452 0.01127 4.84 0.004 

C*D 3.8247 0.7430 5.15 0.005 

C*F -0.01341 0.01448 -0.93 0.422 

D*F -2.967 4.160 -0.71 0.532 

A2 -10.02 2.220 -4.51 0.009 

B2 -0.0014914 0.0001278 -11.67 0.000 

F2 -3.4884 0.7515 -4.64 0.005 
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Then it is tried to drop these factors from the model and achieve all 

interaction and square factors with p-value less than 10%. However; when we 

have this model, we have seen that Durbin Watson statistic falls to 1.38 and this 

is an evidence of a positive correlation between the residuals. Also R2 and S 

value of this model is slightly worse.  

In appendix 4A.10, the quadratic regression model with no p-value 

greater than 10% can be found.  

As a result, it is decided to keep the improved quadratic model [4.7] as 

the most adequate one for the problem of extraction of lithium from boron clays.        
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4.2.2 Modelling the Standard Deviation 

 

 As we have made 3 repetitions for every run, we can make an analysis of 

standard deviation of the extraction values by regression. The standard deviation 

of the experimental results can be seen in Table 4.4. As the model for the mean 

shows that linear regression is not enough to explain the mean extraction of 

lithium, it is decided to perform modelling of the standard deviation by using 

quadratic and interaction factors. However; for illustrative purposes, the model 

that include only the main factors is tried and as expected very low values of R2 

and R2
(adj) is obtained (26.7% and 4.7%, respectively). The quadratic model and 

the ANOVA of the regression can be seen in equation [4.8] and Table 4.17. 

 
  s = 45 + 13.6*A - 0.122*B + 0.074*C - 102*D - 0.030*E + 1.8*F -            

0.00751*AB + 0.0264*AC - 7.24*AD + 0.624*AF - 0.000232*BC +  
       0.116*BD + 0.000009*BE + 0.0029*BF + 0.14*CD + 0.0137*CF +  
      4.05*DF - 1.48*A2 + 0.000076*B2 - 1.39*F2                                            [4.8] 
 

 

Table 4.17. ANOVA for quadratic regression analysis of the standard deviation 

Source dF Sum of Squares Mean Squares F p 

Regression 20 350.10 17.51 1.12 0.482 

Residual Error 6 93.86 15.64 

TOTAL 26 443.96 
 

R2 = 78.9%  R2
(adj) = 8.4%  S = 3.955     

Durbin Watson: 2.64 

There is a big difference between R2 and R2
(adj) value. This means that 

there are some unnecessary terms in the model. However; although there are 

unnecessary terms, the model only explains 78.9% of the standard deviation 

values. Also Durbin Watson test statistic is not acceptable. The residuals versus 

fitted values and normal probability plots are given in Figures 4.13 and 4.14, 

respectively. 
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Figure 4.13. Residuals versus fitted values plot of the quadratic 

regression model [4.8] for the standard deviation 

 

 Figure 4.14. Normal probability plot of the quadratic regression model 

[4.8] for the standard deviation 
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 Although the residuals versus fitted values and normal probability plots 

of the residuals do not show significant violation of constant variance and 

normal distribution assumptions, the β significance test of the factors show that 

none of the factors are significant at 10% confidence interval. The table of β 

significance test is given in Table 4.18.  

 

Table 4.18. Significance of β terms of quadratic model [4.8] 
Predictor Coefficient Standard Error T p 

Constant 45.1 152.1 0.30 0.777 

A 13.56 20.07 0.68 0.524 

B -0.1224 0.3106 -0.39 0.707 

C 0.0744 0.3692 0.20 0.847 

D -102.0 112.7 -0.91 0.400 

E -0.0302 0.4966 -0.06 0.953 

F 1.79 12.73 0.14 0.893 

A*B -0.007507 0.008226 -0.91 0.397 

A*C 0.02637 0.02530 1.04 0.337 

A*D -7.244 7.589 -0.95 0.377 

A*F 0.6242 0.5484 1.14 0.298 

B*C -0.0002319 0.0002743 -0.85 0.430 

B*D 0.11557 0.07883 1.47 0.193 

B*E 0.0000093 0.0004661 0.02 0.985 

B*F 0.00292 0.1424 0.20 0.844 

C*D 0.141 1.012 0.14 0.893 

C*F 0.01369 0.01829 0.75 0.482 

D*F 4.052 5.256 0.77 0.470 

A2 -1.480 3.011 -0.49 0.641 

B2 0.0000761 0.0001615 0.47 0.654 

F2 -1.3938 0.9494 -1.47 0.192 
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As it is seen from Table 4.18, none of the factors is significant at 10% 

significance level.  Some  trials  are  performed  in  order  to  have  the factors 

having p-value less than 10%. However; the largest R2
(adj)  value is obtained as 

50.6 which is still low and Durbin Watson statistic for this model is 2.70 

indicating a negative correlation of errors. The best achieved regression model 

can be seen in the Appendix 4A.11.  

 It is inferred that it is not possible to model the standard deviation 

without any transformation. It is decided to transform all standard deviation data 

by using logs2 transformation. The logs2 values are given in Appendix 4A.12.  

 The model and ANOVA of the regression analysis of the transformed 

standard deviation values can be seen in Equation [4.9] and Table 4.19.  

 

Log s2 = 9.1 + 1.81*A - 0.0249*B + 0.0583*C - 8.2*D - 0.058*E + 0.17*F 
-0.00003*AB + 0.00824*AC + 0.35*AD + 0.145*AF - 0 .000099*BC           
+ 0.0026*BD + 0.000054*BE + 0.00051*BF + 0.087*CD  
- 0.00035*CF + 0.33*DF - 0.499*A2 +0.000016*B2 - 0.185*F2    [4.9] 

 

Table 4.19. ANOVA for quadratic regression analysis for modelling log s2 

Source dF Sum of Squares Mean 
Squares 

F p 

Regression 20 21.0721 1.0536 1.28 0.408 

Residual Error 6 5.9576 0.8263 

TOTAL 26 26.0297 
 

R2 = 81.0%   R2
(adj) = 17.5%      S = 0.9090       

Durbin Watson= 2.12 

 The quadratic regression model for log s2 seems better than that of s, 

however, still R2
(adj) value is so low that this model is not enough to explain the 

standard deviation of extraction of lithium from boron clays. Durbin Watson 

statistic measure is close to 2. Hence it can be concluded that there occurs no 

correlation between the residuals of quadratic regression model for log s2. The 

residual versus fitted values and normal probability plots are given in Figures 

4.15 and 4.16. 
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Figure 4.15. Residuals versus fitted values plot of the quadratic 

regression model [4.9] for log s2 

 Figure 4.16. Normal probability plot of the quadratic regression model 
[4.9] for log s2 
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Although it is seen no problem in the plot of normal probability of 

residuals, residuals versus fitted values do not indicate constant variance. 

Moreover, β significance test of the parameters indicate that some improvements 

are needed to be made in order to have the model more explanatory. Table 4.20 

shows the β significance of the factors and sequential sum of squares can be 

seen in Appendix 4A.13. 

Table 4.20. Significance of β terms of quadratic model [4.9] for log s2 
Predictor Coefficient Standard Error T p 

Constant 9.10 34.96 0.26 0.803 

A 1.815 4.611 0.39 0.708 

B -0.02486 0.07139 -0.35 0.740 

C 0.05833 0.08486 0.69 0.518 

D -8.19 25.89 -0.32 0.762 

E -0.0577 0.1141 -0.51 0.631 

F 0.167 2.925 0.06 0.956 

A*B -0.000025 0.001891 -0.01 0.990 

A*C 0.008236 0.005814 1.42 0.206 

A*D 0.348 1.744 0.20 0.848 

A*F 0.1453 0.1260 1.15 0.293 

B*C -0.00009883 0.00006305 -1.57 0.168 

B*D 0.00260 0.01812 0.14 0.891 

B*E 0.0000543 0.0001071 0.51 0.630 

B*F 0.000507 0.003273 0.15 0.882 

C*D 0.0873 0.2327 0.38 0.720 

C*F -0.000353 0.004203 -0.08 0.936 

D*F 0.325 1.208 0.27 0.797 

A2 -0.4990 0.6921 -0.72 0.498 

B2 0.00001626 0.00003711 0.44 0.677 

F2 -0.1847 0.2182 -0.85 0.430 
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 As it is seen from the table of β significance, none of the factor has a p-

value less than 10%. This result together with the low value of R2
(adj)

 strongly 

suggest that some terms in the quadratic regression model are unnecessary. 

Therefore, some trials are performed to increase R2
(adj) and to decrease the 

remaining factors significance level. For this purpose, factors are removed from 

the model starting from the factor that has the largest p-value. After several trials 

of getting an adequate model, the best model having the largest R2
(adj) value with 

no factors having a p-value larger than 10% is obtained as in Equation [4.10]. 

ANOVA of this model is given in Table 4.21.   

 
Log s2 = - 4.00 + 0.0905*C + 0.00632*AC + 0.670*AD + 0.158*AF  
              -0.000106*BC + 0.00117*BF - 0.212*A2 + 0.000005*B2  
              - 0.271*F2        [4.10] 
 
 

Table 4.21. ANOVA for improvedquadratic regression analysis for log s2 

Source dF Sum of Squares Mean Squares F p 

Regression 9 20.2778 2.2531 6.66 0.000 

Residual Error 17 5.7519 0.3383 

TOTAL 26 26.0297 
 

R2 = 77.9%   R2
(adj) = 66.2%   S = 0.5817       

Durbin Watson= 2.43 

 

 There are significant improvements in the model in R2
(adj) value and S 

value. However; Durbin Watson statistics measure gets worse than the previous 

one. It is now important for checking the normal probability and residual versus 

fitted values plot. Figures 4.17 and 4.18 show the residual plots and Table 4.22 

shows β significance test. In Appendix 4A.14, the sequential sum of squares can 

be found.    
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Figure 4.17. Residuals versus fitted values plot of the improved quadratic 

regression model [4.10] for log s2 

Figure 4.18. Normal probability plot of the improved quadratic 

regression model [4.10] for log s2 
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Table 4.22. Significance of β terms of improved quadratic model [4.10] of log s2 
Predictor Coefficient Standard Error T p 

Constant -4.005 1.499 -2.67 0.016 

C 0.09051 0.03739 2.42 0.027 

A*C 0.006320 0.002397 2.64 0.017 

A*D 0.67 0.2775 2.41 0.027 

A*F 0.15803 0.07296 2.17 0.045 

B*C -0.00010596 0.00003840 -2.76 0.013 

B*F 0.0011689 0.0006075 1.92 0.071 

A2 -0.21231 0.04785 -4.44 0.000 

B2 0.00000468 0.00000191 2.45 0.025 

F2 -0.27210 0.09254 -2.93 0.009 

 

 As it is seen from Table 4.22, all the factors in the improved quadratic 

regression model are important with at least p significance level, but 

unfortunately Durbin Watson test statistic for this model indicates a negative 

correlation between the errors. Tabulated values of Durbin-Watson (Mendenhall 

et. al, 1996, p.825-826) indicate that negative correlation is possibly significant 

in this case. Moreover, the randomness in the residuals versus fitted values 

graph is not achieved yet, therefore it is worth to try some higher order terms 

such as A3, B3, C3, D3, E3, F3. 

 When the cubic terms are added to the improved quadratic model, there 

is no significant improvement in the model. In contrast, R2
(adj) is decreased to 

52.2% while R2 value is increased to 79.8. This wide gap between R2 and R2
(adj) 

is an indication of unnecessary terms in the model. The residual versus fitted 

values plot still needs improvement and Durbin Watson statistic decreases only 

little to 2.37 which is still an evidence for negative correlation. So some 

corrections are tried to be made on the model in order to decrease the gap 

between  R2 and   R2
(adj)  and   decreasing  the  Durbin-Watson statistics. Also     

it is aimed  to improve  the  residuals  versus  fitted  plot. The  best  model that is  
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achieved  can  be  seen  in  Equation  [4.11]  and  Table 4.23 shows the results of 

ANOVA.    

 

Log s2 = - 2.58 + 0.0592*C  + 0.00858*AC - 0.000081*BC + 0.000873*BF 
               - 0.0273*A3  + 0.0000000015*B3 + 10.6*D3 - 0.0298*F3              [4.11] 
 

Table 4.23. ANOVA for cubic regression analysis for log s2 

Source dF Sum of Squares Mean Squares F p 

Regression 8 19.1354 2.3919 6.24 0.001 

Residual Error 18 6.8943 0.3830 

TOTAL 26 26.0297 

 
R2 = 73.5%  R2

(adj) = 61.7%   S = 0.6189       

Durbin Watson = 2.09 

 

Although this model has a larger S value, smaller R2
(adj) value and 

smaller R2 value than the previous one, the Durbin Watson test statistic 

decreases to a level that we can assume there is no correlation between the 

residuals. The residuals versus fitted values and normal probability plot seem to 

be acceptable for all practical purposes. These plots can be seen in Figures 4.19 

and 4.20, respectively.  
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 Figure 4.19. Residuals versus fitted values plot of the cubic regression 

model [4.11] for log s2 

 

 Figure 4.20. Normal probability plot of cubic model [4.11] for log s2 
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 The β significance test of the factors and the sequential sum of squares 
can be seen in Table 4.24 and Appendix 4A.15, respectively. 
    

Table 4.24. Significance of β terms of cubic regression model for log s2 
Predictor Coefficient Standard Error T p 

Constant -2.579 1.094 -2.36 0.030 

C 0.05921 0.3772 1.57 0.134 

A*C 0.008584 0.002529 3.39 0.003 

B*C -0.00008092 0.0003786 2.31 0.033 

B*F 0.000873 0.00003874 -2.09 0.051 

A3 -0.02728 0.0065 -4.20 0.001 

B3 0.0000000015 0.00000000 2.46 0.024 

D3 10.609 4.543 2.34 0.031 

F3 -0.02979 0.01192 -2.50 0.022 

 

 
When Table 4.24 is examined, it is seen that roasting time has a p-value 

larger than 10%. However; removing roasting time from the model makes it  

worse  in  the manner  that R2
(adj)  has   been   decreased  to   58.8%  and Durbin 

Watson statistic has been increased to 2.55 indicating a negative correlation of 

residuals.  

 

 Eventually, standard deviation of extraction of lithium from boron clays 

can be modelled, however, this model is not so adequate to explain the standard 

deviation of the extraction results of lithium from boron clays. The best model  

fitted is given in Equation [4.11].  
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CHAPTER V 
 

OPTIMIZATION 
 

 In Chapter 4, functional relationships between the performance 

measures; mean and standard deviation, and control the factors (Gypsum, 

Roasting Temperature, Roasting Time, Leaching S/L Ratio, Leaching Time, and 

Limestone) have been modelled.  

 In this chapter, optimal factor levels are found by solving a non-linear 

programming problem. The problem can simply be stated as follows; 

 

 Maximize µ 
          A,B,C,D,E,F 

 subject to 

                              log s2 ≤ d 

 

Here, d is some limit that we can accept for log s2 value. Recall that in 

this study we would like to achieve maximum mean lithium extraction with as 

small variation as possible in the repeat extraction levels at the same factor 

settings. As far as the range of factor levels is concerned, we try both within and 

beyond the experimental region. 

For solving this problem, some optimization algorithms have been used. 

These are MINITAB Response Optimizer, GAMS Non-Linear Programming 

and Ridge Analysis.    

 In using MINITAB optimization, the optimum point differs based on the 

starting point that is defined to program. Therefore, one optimum point is found  

based on the program’s default starting point, and 9 more optimum points are 

found by specifying a different starting point each time. Same procedure has 

been applied for GAMS Non-Linear Programming. However; only one optimum 

is proposed by Ridge Analysis.  
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 Furthermore, an optimum point is obtained by GAMS Non-linear 

programming for the surface outside the experimental region.   

 

5.1 Minitab Response Optimizer 

 

MINITAB Response Optimizer requires a minimum and a target value 

for maximization problems. Therefore it is decided to define a minimum value 

of 70 and a target value of 82. These values are chosen because 70 is the largest 

average extraction that is reached by the designed experiments and 82 is the 

largest extraction of lithium from clays due to economic considerations in the 

literature. Minimization of log s2 could not be computed by MINITAB as it 

could not solve the problem of cubic models.  MINITAB response optimizer 

provides %95 prediction interval  for  both the mean  and  the standard deviation 

at the optimum. The optimal factor settings that have been found from the model 

[4.7] have been put to the model [4.11] and fitted value and 95% prediction 

interval has been found for log s2   

 As the response surface algorithm in MINITAB stops whenever it faces a 

point at which the first derivative is zero and as there are a lot of such points in 

the response surface area of lithium extraction, the points which are near 70 in 

the prediction interval has been treated as local (or global) optimum. In Table 

5.1, the values can be seen. The starting points and the optimum points found by 

MINITAB can be seen in Appendix 5A.1. 
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Table 5.1. The prediction intervals for mean and standard deviation computed by 

MINITAB Response Optimizer 

Optimum 

Points 
Mean Log s2 s 

% 95 Pred. Int. 

for Mean 

% 95 Pred. Int. 

for log s2 

1 61.439 1.142 3.724 (50.237, 72.641) (-0.309, 2.592) 

2 99.977 2.481 17.398 (71.812, 128.141) (0.982, 3.980) 

3 22.956 -1.069 0.292 (11.191, 34.722) (-2.593, 0.454) 

4 61.867 1.000 3.163 (47.254, 79.479) (-0.537, 2.537) 

5 56.206 1.475 5.464 (43.762, 68.650) (-0.092, 2.859) 

6 66.075 1.893 8.841 (51.932, 80.218) (0.460, 3.327) 

7 83.032 1.930 9.226 (68.024, 98.040) (0.283, 3.577) 

8 71.928 1.217 4.060 (60.136, 83.720) (-0.180, 2.614) 

9 85.779 1.850 8.414 (63.591, 107.967) (0.263, 3.436) 

10 31.390 0.033 1.038 (20.325, 42.455) (-1.384, 1.451) 

 

 As it is seen from Table 5.1, the prediction intervals for log s2 are very 

wide. This is due to the fact that it can not be modelled adequately. From these 

ten optimum points, three points are chosen and experiments are conducted. 

These points are the optimum points of 1, 4  and  7. Points 3, 5, 10 have not been 

tested as they have yielded low values for the mean. Points 6 and 8 have not 

been tested as they have relatively high variances and high roasting temperatures 

that in turn will affect the economy of the process. Instead, point 1 (which has a 

high roasting temperature) has been tested. Points 9 and 7 have similar measures 

for the mean and the standard deviation, however, point 7 has a narrower 

prediction interval for the mean.  Point 2 has a relatively high prediction for the  

standard deviation and also the mean estimated seems to be too high to obtain so 

it has not been tested. Point 4 has been chosen to try as it has relatively high 

mean value with low standard deviation. In order to estimate standard deviation, 

two repetitions have been applied for each experiment.  
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 Optimum No:1 

 For this experiment; gypsum ratio, roasting temperature, roasting time, 

leach solid/liquid ratio, leaching time and limestone ratio are  1.5, 987°C, 30 

min., 0.1, 120 min. and 1.5, respectively. The results of the experiments are 

61,39% and 63.32%. Both of the results are in the prediction interval for the 

mean. 

Standard deviation (log s2) of these experiments is 0.540, which is still in 

prediction interval for standard deviation (log s2).  

Hence we can easily conclude that this point has been modelled well by 

the regression model for the mean and log s2. However; we have had larger 

extraction values for lithium which was on the average 69.857 for the 

experiment number 6 in the orthogonal array design. It is certain that we could 

not have an improvement by conducting the experiments of this point.  

 

 Optimum No:4 

 For this experiment; gypsum ratio, roasting temperature, roasting time, 

leach solid/liquid ratio, leaching time and limestone ratio are  1.5, 878°C, 120 

min., 0.36, 120 min. and 1.5, respectively. The results of the experiments are 

43,13% and 43,08%. These points are just outside the lower limit of prediction 

interval for mean. 

 Standard deviation (log s2) of these two experiments is –2.912 which is 

outside the lower limit of prediction interval for log s2.  

 Therefore, it can be concluded that this point has not been modelled well 

by the regression model formulated for the mean and log s2. Moreover, we have 

not seen any improvement of maximization of extraction of lithium from clays. 

 

 Optimum No:7 

 For this experiment; gypsum ratio, roasting temperature, roasting time, 

leach solid/liquid ratio, leaching time and limestone ratio are  4.5, 850°C, 120 

min., 0.4, 120 min. and 1.5, respectively. The results of the experiments are 

15,76% and 29,63%. These points are very far from the lower limit of prediction 

interval for mean.  
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Standard deviation (log s2) of  these  two   experiments   is   1.983   

which  is in  the prediction interval for standard deviation (log s2).  

 So, this point can be modelled well by the regression for log s2, however, 

it has modelled very badly by the regression for the mean. Moreover, there has 

been no improvement for the extraction maximization of lithium from boron 

clays. 

 
 

 5.2 GAMS Non-Linear Programming: 
 
 In Minitab package program, it is not possible to find the optimum point 

for the models having cubic terms. Therefore log s2 could not have been 

considered by MINITAB Response Optimizer and optimum values and 

prediction intervals have not been found. In order to overcome this drawback, 

GAMS non-linear programming has been applied. Again 10 optimum points 

have been found by GAMS. Nine of these points have been found by defining a 

starting point and one without defining any starting point.  

In the GAMS program, the model for mean is tried to be maximized. It is 

asked to the program that the mean be smaller than 100 and the regression 

model for log s2  be smaller than 1. The non-linear program is given below:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
72 



Maximize  
Z=-1331.6+18.19*A+2.8857*B-0.1209*C-108.21*D+0.6288*E-50.18*F 

+0.018944*A*B+0.19532*A*C+5.2019*A*F-0.0012118*B*C-

0.14162*B*D-0.0006306*B*E+0.05452*B*F+3.8247*C*D- 

0.01341*C*F - 2.967*D*F - 10.02*A*A-0.0014914*B*B - 3.4884*F*F 

Subject to 

-2.579+0.05921*C+0.008584*A*C - 0.00008092*B*C + 0.000873*B*F 

-0.02728*A*A*A+0.0000000015*B*B*B+10.609*D*D*D- 

0.02979*F*F*F  ≤ 1 

-1331.6+18.19*A+2.8857*B-0.1209*C-108.21*D + 0.6288*E - 50.18*F 

+0.018944*A*B+0.19532*A*C+5.2019*A*F-0.0012118*B*C- 

0.14162*B*D-0.0006306*B*E+0.05452*B*F+3.8247*C*D- 

0.01341*C*F-2.967*D*F-10.02*A*A-0.0014914*B*B- 3.4884*F*F  

≤ 100  

 1.5 ≤ A ≤ 4.5 

 850 ≤ B ≤ 1050 

 30 ≤ C ≤ 120 

0.1 ≤ D ≤ 0.4 

30 ≤ E ≤ 120 

1.5 ≤ F ≤ 4.5 

 

The code for solving this non-linear optimization problem by GAMS 

Non-Linear programming package can be seen in Appendix 5A.2. Also in 

Appendix 5A.3 the starting points defined to the GAMS program and optimum 

points found by the program can be seen. GAMS is using the Abadie-Carpentier 

method while optimizing non-linear problems.  

 As the coefficient for cubic term of roasting temperature (B3) is very low 

(8 zeros after decimal) and as MINITAB has not given the values beyond 8 

digits after decimal, a coefficient has been assigned for this parameter. Th 

coefficient  of B3  has  been  assigned  as  0.0000000015. However;  due  to  that  
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assignment, the values of log s2 differ for GAMS and MINITAB program. So, 

fitted value and prediction interval of log s2 values for GAMS output is found by 

MINITAB.  

 The fitted values of extraction of optimum points found by GAMS and 

fitted values of log s2 and prediction intervals for both mean and log s2 found by 

MINITAB for these two performance measures can be seen in Table 5.2. 
 
Table 5.2. Mean values computed from GAMS and standard deviation with 

prediction intervals for both mean and log s2 computed by MINITAB Response 

Optimizer 

Optimum 

Points 
Mean Log s2 s 

% 95 Pred. Int. 

for Mean 

% 95 Pred. Int. 

for log s2 

1 74.692 1.492 5.572 (62.449, 86.935) (0.820, 2.902) 

2 74.692 1.492 5.572 (62.449, 86.935) (0.820, 2.902) 

3 74.692 1.492 5.572 (62.449, 86.935) (0.820, 2.902) 

4 74.919 1.732 7.345 (51.122, 98.715) (0.299, 3.164) 

5 99.967 2.026 10.304 (84.455, 115.480) (0.473, 3.579) 

6 74.919 1.732 7.345 (51.122, 98.715) (0.299, 3.164) 

7 74.692 1.492 5.572 (62.449, 86.935) (0.820, 2.902) 

8 27.627 1.025 3.255 (17.073, 38.181) (-0.498, 2.549) 

9 74.692 1.492 5.572 (62.449, 86.935) (0.820, 2.902) 

10 99.969 2.373 15.364 (83.675, 116.263) (0.890, 3.846) 

 

 As it is obvious from Table 5.2, five points (1, 2, 3, 7, 9) of the ten 

optimum points yield the same result. This point has been found by GAMS also 

without defining any starting point. Although, the fitted value for mean seems 

low, prediction intervals (compared with those of other points) for the mean and 

the standard deviation make it a valuable alternative to try. Point 4 and 6 have 

not been tested as they have yielded almost the same mean value with these five 

points. Point 8 has predicted a significantly low value for mean. Points 5 and 10 

have predicted high mean values. However; they have both high roasting 

temperature  and  time  and  wide  prediction intervals for the mean and standard 
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deviation. Therefore they have not been tried. So, the point where gypsum, 

roasting temperature, roasting time, leach S/L ratio, leaching time and limestone 

take the values of 2.787, 989, 30, 0.1, 120 and 2.512, respectively has been tried. 

 The results of the experiments yield the extraction values of %55.06 and 

%50.00. These results are both less than the lower limit of the prediction interval 

for the mean. The log s2 for these results is 1.107 which is inside the prediction 

intervals for standard deviation.     

 So, this point has been modelled well with the regression for standard 

deviation  (but standard  deviation has a wide gap) and could not have been 

modelled by the regression model for the mean. It should have been said that 

GAMS Non-linear programming could not predict the fitted values well for the 

mean values. Moreover, it has been seen that modelling of standard deviation 

with log s2 do not yield satisfactory results for GAMS. Apart from the misfit 

problem, there has been no any improvement achieved for extraction of lithium 

from boron clays. 

 

5.3 Ridge Analysis 

 Ridge Analysis is the technique of steepest ascent applied to second 

order surfaces.  

 It is worth to apply this technique to the regression model for the mean, 

however, it is not possible to apply it to the model of log s2 as this model is a 

third-order model.  The idea of the model has been explained in Chapter II. 

Therefore, the technique tries to solve the following equation; 

 (B- λI)x = -1/2 b              

In our model,  

 A B C D E F 
A -10.02 0.0095 0.098 0 0 2.6 
B 0.0095 -0.0015 -0.0006 -0.071 -0.00032 0.027 
C 0.098 -0.0006 0 1.912 0 -0.0067
D -0.75 -0.071 1.912 0 0 -1.484 
E 0 -0.00032 0 0 0 0 
F 2.6 0.027 -0.0067 -1.484 0 -3.49 
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B= 



 
 

 

 

 

 

 

λ is an arbitrary value and the eigenvalues of B is denoted by δ.  

 
The detailed formulation of the problem is given in the Appendix 5A.4.  

 
The eigenvalues, δ , of the matrix B is found using MATLAB. 

 The eigenvalues are; -10.9511, -3.4231, -1.2753, -0.013, 0.0001, 2.1392. 

 

So a GAMS program for solving the formulation of Ridge Analysis, 

which comprises 6 equations, 2 inequalities and 7 unknowns, is proposed and 

the code is given in Appendix 5A.5. The equations are; 

 

 (-10.02-λ)*A+0.0095*B+0.098*C+2.6*F= -9.095                                        [5.1] 

 0.0095*A-(0.0015+λ)*B-0.0006*C-0.071*D-0.00032*E+0.027*F=-1.443 [5.2]    

 0.098*A-0.0006*B-λ*C+1.912*D-0.0067*F=0.06045                                 [5.3] 

-0.071*B+1.912*C-λ*D-1.484*F=54.105                     [5.4] 

-0.00032*B-λ*E=-0.3144         [5.5] 

2.6*A+0.027*B-0.0067*C-1.484*D-(3.49+λ)*F=25.09     [5.6]   

λ   ≤ 2.1392           [5.7] 

λ   ≥ -10.9511                      [5.8] 

 

This is the program for finding the value of λ inside the region of 

eigenvalues of matrix B. The solution of the program yields the values of 3.16, 

983, 67, 0.187, 46, 2.6 and 0 for A, B, C, D, E, F and λ, respectively. According 

to ridge analysis technique this point is a local optimum.    
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18.19 
2.886 

-0.1209 
-108.21 
0.6288 
-50.18 

I is the identity 
matrix, 

 
b= 



The formulation for finding the value of λ (so that location of the global 

optimum) outside the region of eigenvalues of matrix B yield an infeasible 

solution. That means ridge analysis could not propose a global optimum for this 

model. The model and solution can be seen in Appendix 5A.6. 

MINITAB has been used for finding the mean and standard deviation of 

local optimum value proposed by Ridge Analysis. The fitted values and 

prediction intervals for both performance measures are estimated by using 

MINITAB. The fitted value for mean is 59.90 and prediction interval is  (45.895, 

73.898). The fitted value for standard deviation (log s2) is 1.587 and the 

prediction interval is (0.216, 2.958). Although the prediction interval for 

standard deviation is wide, prediction interval for mean makes this point a 

candidate to be tried.  

 Therefore two experiments have been performed and the results are; 

77.49% and 72,91%. The standard deviation (log s2) for these results is 1.021. 

One of the results is just inside the prediction interval and the other is just 

outside the prediction interval. Also, standard deviation is inside the prediction 

interval. It can be concluded that the regression model fitted for mean and 

standard deviation can predict the results of the Ridge Analysis well.  

 Apart from the adequacy of the regression model for this point, what is 

more important is, an improvement in extraction of lithium has been achieved. 

77.49% is the best result that has ever been obtained.   

 

 5.4 Optimization Outside the Response Surface 

 

 By changing the limits of the factors that have been introduced to the 

GAMS non-linear program, it is possible to find out optimum points outside the 

experimental region. Again the same algorithm of MINITAB Response 

Optimizer and GAMS non-linear programming have been applied to outside the 

experimental region. 10 optimum points have been computed by GAMS. As we 

have been dealing with outside region, by nature the model could not be used to 

predict the results of the experiment. However; it is decided to use GAMS and  
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the predicted results are found  as 100 for the mean and less than 1.4 for log s2 

that makes s being less than 5. While choosing the experiments to conduct, 

another important criterion that has been considered is the economy of the 

process. For example; roasting temperatures and leaching time have been chosen 

as low as possible. 10 optimum points that have been computed by GAMS 

outside the  experimental  region can be seen  in  Table 5.3.     

 
Table 5.3. The optimum points found by GAMS outside the experimental region 

Opt. 

No 
A B C D E F s Mean 

1 2.159 852 145 0.341 240 0.764 1.464 100 

2 2.068 810 127 0.500 42 0.500 3.548 100 

3 2.734 906 108 0.500 38 0.910 3.158 100 

4 2.943 851 111 0.500 44 0.843 4.592 100 

5 5.000 930 127 0.500 70 0.910 2.150 100 

6 2.488 821 119 0.500 42 0.500 3.981 100 

7 4.622 900 166 0.329 70 0.537 2.934 100 

8 1.498 825 139 0.442 240 1.496 2.523 100 

9 2.643 921 105 0.500 50 1.064 3.162 100 

10 1.921 944 111 0.500 240 1.709 3.162 100 

 

 When we consider the economy of the process, the 2nd  and 6th  optimum 

points seem to be the most economical processes as the roasting temperature is 

low; as in the vicinity of 800°C, and leaching time is also low; just about 45 

minutes. Therefore, 6th experiment has been conducted twice. However; the 

results have been surprisingly low; 24.48% and 29.79%. As such a low values 

are obtained for extraction of lithium from clays at very low temperatures, it has 

been thought to make one more experiment with higher roasting temperatures. 

From Table 5.3, the most suitable and relatively economic one is the 3rd 

optimum point. Hence this point has been conducted twice.  
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The results have not been as low as those of the 6th point but they have 

been far from being an global optimum for the extraction of lithium from boron 

clays. The results have been 61.61% and 53.63%. These situations can be 

observed for outside the experimental region, since the response surface may 

change their shapes at another region.  
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CHAPTER VI 
 

AN ATTEMPT TO IMPROVE THE OPTIMUM POINT 
 

 6.1. An Improved Experimental Design and Analysis 

 

In Chapter 5, we have tried to model the mean and standard deviation of 

extraction of lithium from boron clays. We have benefited from the response 

surface modelling for achieving extraction as high as possible. However; except 

for Ridge Analysis, no improvement can be made. Ridge Analysis has yielded 

the results of 77.49% and 72.91%, which 77.49% is the highest value ever 

obtained. However; the roasting temperature has been so high (around 980°C) 

that extraction will not be economical. It is aimed in this chapter to get an 

optimum with less cost.  

 Therefore, it has been thought to add the information obtained from the 

optimum points tried to our response surfaces so that a new model can be set up. 

Following this, a total of 6 points tried before have been appended to the 

experimental layout (three of these have been found using MINITAB, and the 

rest from ANOVA, GAMS Non-linear programming and Ridge Analysis). 

Furthermore, one more point had been tried out of curiosity after investigating 

the literature and experiencing the results of the experiments, the chemical 

mechanism of roasting temperature and solubility equilibrium of leaching. At 

this point, gypsum, roasting temperature, roasting time, leach S/L ratio, leach 

time and limestone take the values of 1.5, 918°C, 120 min., 0.17, 120 min. and 

1.5 respectively. Although the fitted value (22.58%) and the prediction interval 

(-2.30, 47.47) of the regression model for the mean does not show good results, 

this point had been tried. The results of the experiment have been 73.76% and 

70.46%, which are higher values than many obtained so far except Ridge 

Analysis results. Therefore, this point has been added to the response surface 

modelling,  as well.  The  seven  points  that  have  been  treated  as a part of  the  
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experimental design and added to the model can be seen in Table 6.1. 

 

Table 6.1 The points that have been added to the model 

No Found from A B C D E F 

1 GAMS 2.772 984 30 0.1 120 2.458 

2 Ridge Analy. 3.178 986 67 0.187 33 2.6 

3 MINITAB 4.5 850 120 0.4 120 1.5 

4 MINITAB 1.5 987 30 0.1 120 1.5 

5 MINITAB 1.5 878 120 0.36 120 1.5 

6 ANOVA 4.5 950 120 0.2 120 1.5 

7 Experience 1.5 918 120 0.17 120 1.5 

 

 These points have been appended in the experimental design. The model 

for the mean extraction has been found after several attempts in order to satisfy 

the assumptions for residuals. The best model that has been formulated with the 

ANOVA table can be seen in Equation [6.1] and in Table 6.2. The starting 

model can be seen in Appendix 6A.1.  

 

    µ =  769 + 78.2*A - 1.85*B - 1.38*C + 343*D - 9.46*E + 266*F 
            + 0.0181*AB - 0.254*AC + 93.2*AD + 5.12*AF - 0.00115*BC  

- 0.135*BD + 0.00819*BE - 0.297*BF + 9.09*CD + 0.0116*CE 
- 0.0124*CF - 4.09*DE - 0.584*EF - 17.4*A2 + 0.00114*B2 +  
+ 0.00614*C2 – 1864*D2 + 0.0162*E2 + 8.23*F2                              [6.1] 
 

 
Table 6.2 ANOVA for Regression Analysis for model comprising optimum 

points 

Source dF Sum of Squares Mean Squares F p 

Regression 25 16252.85 650.11 68.46 0.000 

Residual Error 8 75.97 9.50 

TOTAL 33 16328.83 

 
R2 = 99.5%  R2

(adj) = 98.1%   S = 3.082        

Durbin-Watson statistic = 1.96 
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 The model has expectedly high value of R2
(adj), and the Durbin-Watson 

statistic shows no correlation between the residuals. p-value of the model is so 

low that it can be concluded that this model is significant. The residuals versus 

fitted values plot and the normal probability plot can be seen Figures 6.1 and 

6.2, respectively.  

 Figure 6.1. The residuals versus fitted values plot for the regression 

model [6.1] including optimum points. 

 Figure 6.2. The normal probability plot of residuals for the regression 

model [6.1] including optimum points. 
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 Both plots show no violation of the assumptions made for residuals. 

Residual versus fitted values plot shows that the variance of the residuals is 

constant. Normal probability plot resembles a straight line leading in a 

conclusion for normal distribution of residuals.  

 The β significance table of the parameters can be seen in Table 6.3.  
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Table 6.3. Significance of β terms of the model [6.1] including optimum points 
Predictor Coefficient Standard Error T p 

Constant 768.8 332.8 2.31 0.050 

A 78.16 13.52 5.78 0.000 

B -1.8507 0.7148 -2.59 0.032 

C -1.3787 0.4912 -2.81 0.023 

D 342.71 72.37 4.74 0.001 

E -9.458 1.507 -6.28 0.000 

F 266.01 42.32 6.29 0.000 

A*B 0.018113 0.006303 2.87 0.021 

A*C -0.25436 0.05986 -4.25 0.003 

A*D 93.18 20.50 4.55 0.002 

A*F 5.1191 0.4145 12.35 0.000 

B*C -0.0011513 0.0002031 -5.67 0.000 

B*D -0.13523 0.06076 -2.23 0.057 

B*E 0.008193 0.001166 7.03 0.000 

B*F -0.29740 0.04633 -6.42 0.000 

C*D 9.0914 0.8654 10.51 0.000 

C*E 0.011571 0.001322 8.75 0.000 

C*F -0.01238 0.01421 -0.87 0.409 

D*E -4.0865 0.7233 -5.65 0.000 

E*F -0.58447 0.08325 -7.02 0.000 

A2 -17.383 2.087 -8.33 0.000 

B2 0.0011381 0.0003914 2.91 0.020 

C2 0.006138 0.003136 1.96 0.086 

D2 -1863.7 225.5 -8.27 0.000 

E2 0.016426 0.002986 5.44 0.001 

F2 8.235 1.666 4.94 0.001 
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The β significance table has implied that every term has a p-value of at 

most 10% except roasting time and limestone interaction factor. However; 

excluding this term from the model makes it worse in the manner that Durbin-

Watson statistic shows a positive correlation. The model with no factor having 

p-value higher than 10% and the sum of squares of the best model can be seen in 

Appendix 6A.2 and 6A.3. Therefore this model is thought to be the best 

regression model that comprises optimum points for mean.  

At this point, it will be beneficial to look for log s2 model. The 

formulation and the ANOVA of the log s2 model can be seen below.  

 
Log s2 = 386 - 2.40*A - 0.979*B + 0.441*C + 309*D - 1.48*E + 63.8*F  

-0.0762*AC + 28.9*AD + 0.240*AE  -0.000081*BC + 0.00180*BE 
             -0.0697*BF + 3.12*CD - 0.00450*CE - 3.66*DE - 0.117*EF 
             - 4.17*A2 +0.000546*B2 – 536*D2 + 0.00134*E2 + 2.16*F2             [6.2] 
 

Table 6.4. ANOVA for Regression Analysis for model  of log s2 comprising 

optimum points 

Source dF Sum of Squares Mean Squares F p 

Regression 21 36.8068 1.7527 3.26 0.019 

Residual Error 12 6.4433 0.5369 

TOTAL 33 43.2501 

 

R2 = 85.1%  R2
(adj) = 59.0%   S = 0.7328       

Durbin-Watson statistic = 2.07 
 

 The Durbin-Watson statistic of the model shows no correlation between 

the residuals. R2 value is 85.1% and R2
(adj) value is 59% which is low value. 

Moreover, the gap between the values of R2 and R2
(adj) is wide. This means that 

we have some unnecessary terms in our model. However; trying to decrease the 

number of factors in the model do not improve the adequacy of the model so that 

this model has been chosen as the best model for log s2 with the optimum points 

included. The residuals versus fitted values and normal probability plot have 

implied  that  the assumptions  made  about  the residuals are satisfied. The plots    
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and the β significance test of the factors can be seen in the following pages. 

 

Figure 6.3. The residual versus fitted values plot for the regression model of log 

s2 [6.2] including optimum points  

Figure 6.4. The normal probability plot of residuals for the regression 

model of log s2 [6.2]  including optimum points  
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Table 6.5. Significance of β terms of the regression model [6.2] including 
optimum points for log s2 

Predictor Coefficient Standard Error T p 

Constant 386.3 100.0 3.86 0.002 

A -2.397 2.581 -0.93 0.371 

B -0.9791 0.2496 -3.92 0.002 

C 0.4412 0.1380 3.20 0.008 

D 308.64 86.16 3.58 0.004 

E -1.4801 0.3342 -4.43 0.001 

F 63.80 15.63 4.08 0.002 

A*C -0.07619 0.2346 -3.25 0.007 

A*D 28.917 7.496 3.86 0.002 

A*E 0.23968 0.06506 3.68 0.003 

B*C -0.00008124 0.00004605 -1.76 0.103 

B*E 0.0018038 0.0004253 4.24 0.001 

B*F -0.06965 0.01727 -4.03 0.002 

C*D 3.1239 0.8306 3.76 0.003 

C*E -0.004496 0.001396 -3.22 0.007 

D*E -3.6604 0.9857 -3.71 0.003 

E*F -0.11725 0.03032 -3.87 0.002 

A2 -4.168 1.043 -4.00 0.002 

B2 0.0005459 0.0001381 3.95 0.002 

D2 -536.4 144.3 -3.72 0.003 

E2 0.0013444 0.0003905 3.44 0.005 

F2 2.1556 0.5963 3.61 0.004 

 

 Modelling of log s2 with optimum points included could not have been 

modelled adequately. However; this model is simpler than the previous one. 
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MINITAB Response Optimizer is used to obtain new optimal points.  

and see if both models could predict the results of the experiment. Fortunately, 

as log s2 have been modelled with addition of quadratic terms, it is now possible 

to make a dual approach to the optimization using MINITAB. In other words, In 

MINITAB Response Optimizer we can define limits for both the mean and log 

s2 and require an optimum point that will maximize extraction with minimum 

variation. Therefore, for mean a minimum value of 70 and a target value of 100 

whereas for log s2, a maximum value of 1.6 (s will be 6.31 then) and a target 

value of 1 (s will be 3.162 then) have been defined as limits for MINITAB 

Response Optimizer. Same algorithm with the one that has been applied in the 

previous chapters has been applied. The Optimizer has found 10 points. The 

starting and optimum points can be seen in Appendix 6A.4 and the mean and the 

log s2 values with the prediction interval for both measures can be seen in Table 

6.6.  

 

Table 6.6. The prediction intervals for the mean and the standard deviation 

computed by MINITAB Response Optimizer that use models [6.1] and [6.2] 

Optimum 

Points 
Mean Log s2 s 

% 95 Pred. Int. 

for Mean 

% 95 Pred. Int. 

for log s2 

1 71.930 0.669 2.160 (61.908, 81.953) (-1.572, 2.910) 

2 80.423 1.640 6.607 (69.620, 91.226) (-0.703, 3.982) 

3 74.437 0.999 3.159 (64.067, 84.807) (-1.234, 3.233) 

4 84.229 5.427 517.01 (73.729, 94.730) (1.510, 9.343) 

5 63.522 2.059 10.703 (53.701, 73.343) (-0.561, 4.678) 

6 94.599 6.367 1525.81 (82.016, 107.182) (2.209, 10.526) 

7 123.874 -10.646 4.8x10-6 (75.216, 172.532) (-23.273, 1.982) 

8 95.439 1.387 4.937 (80.563, 110.314) (-1.393, 4.167) 

9 125.099 15.432 5.2x107 (99.660, 150.538) (7.622, 23.201) 

10 86.509 0.892 2.793 (75.316, 97.702) (-1.557, 3.341) 
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From Table 6.6, it can be seen that standard deviation has a wide gap for 

most of the points. The smallest standard deviation are obtained at points 1 and 

10 which we have already tested (point 10 is approximately the same as the 

point found by Ridge Analysis and point 1 has earlier been found by intuition). 

Log s2 for points 10 and 1 are 1.021 and 0.736, respectively. They are both in 

the prediction interval for log s2. However; recall that the mean extraction results 

obtained from these two experiments have not been satisfactorily and 

economically high (highest value for point 10 is 77.49%, and for point 1 is 

73.76%). Hence, it is decided to look for a point to get higher mean extraction 

values more economically at the expense of standard deviation. Undesirability of  

low roasting temperatures has eliminated points 3, 8, 9, 2 and 6. Point 7 has been 

found without defining any starting point and it is shown here for illustrative 

purposes. Also experiences about the extraction mechanism has shown that 

roasting temperatures about 850°C result in low yields. Hence we are left with 

only two alternatives; points 4 and 5. Although point 5 has a narrower prediction 

interval for log s2, point 4 has predicted mean extraction values much higher 

with a narrower prediction interval. Therefore it is decided to conduct 

experiments for point 4. Gypsum, roasting temperatures, roasting time, leach 

solid to liquid ratio, leaching time and limestone take the values of 1.5, 915, 120, 

0.26, 120 and 1.5, respectively.  

At first, two experiments have been conducted for this point and the 

results have been: 74.87 and 83.01%. The standard deviation of these two 

experiments is 5.756 (log s2 is 1.520) which is an acceptable value. More 

importantly both of the results have been between the prediction interval limits 

for the mean. Also 83.01% is the largest extraction value of lithium from boron 

clays obtained experimentally. Hence we have conducted 4 more repetitions at 

this point to assure the persistence of these results and the results are; 83.84%, 

85.54%, 86.39% and 89.22%. All of them are in the prediction interval (73.729, 

94.730) for  the mean  and  they  are the highest that have been achieved so far. 

The  mean  of all these six experiments is 83.81% and the  standard  deviation  is  
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4.888. (log s2 is 1.378) which is still an acceptable value although it is outside 

the prediction interval (1.510, 9.343) for log s2 .From these 6 experiments, the 

lowest 3 mean values (74.87%, 83.01%, 83.84%) and the highest 3 mean values 

(85.54%, 86.39%, 89.22%) have been grouped with each other and Signal-to-

Noise ratios have been calculated. For the lower group, S/N ratio is 38.097 and 

for the higher group, 38.794. They are much better than the ANOVA results. As 

a result, it can be concluded that the model for the means including the optimum 

points has successfully found the optimum (or a highly desirable point) and can 

predict the results well. The model is adequate at that point.  

  Gaining knowledge from these experiments and examining the literature 

has led us to think of an experiment at increased time of roasting and leaching 

and beyond the experimental region. For this purpose, point 7 of Table 6.1 has 

been used. Only roasting leaching time has been altered. Firstly the experiments 

have been performed at 120 minutes of roasting time and 180 minutes of 

leaching time. The results that have been obtained were 82,89% and 82.22%, 

(log s2 is –0.649) which are not significantly different from the optimum point, 

that have been found from model including the optimum points. 

Furthermore as a last experiment, increasing of roasting and leaching 

time by 60 minutes have been thought. The results of the experiment show 

values of 86.70% and 93.53% (log s2 is 1.368). These results have been the 

highest of all experiments that have been conducted and log s2 is an acceptable 

value. However; as the roasting and leaching time prolonged by a significant 

value, the comparison of economic value of these results and the optimum point, 

found by the model including the local optima, should be considered. 

As a result, this study can claim that in the experimental region at least 

74.87% and at most 89.22% (both are in the prediction interval) mean extraction 

has been achieved with an acceptable standard deviation.  The points that would 

yield this result with an economical process should be 1.5, 915°C, 120, 0.26, 120 

and 1.5 for gypsum, roasting temperature, roasting time, leach solid to liquid 

ratio, leaching time and limestone, respectively. Higher extraction values can be 

achieved but increasing roasting and leaching time will affect the economy of 

the process significantly.  
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For illustrative purposes, contour plots of roasting temperature versus 

leaching solid to liquid ratio drawn for both the mean and log s2 can be seen 

from Figures 6.5 and 6.6. 

Figure 6.5. Contour plot of roasting temperature versus leaching solid to 

liquid ratio for mean 

Figure 6.6.  Contour plot of roasting temperature versus leaching solid to 

liquid ratio for log s2 
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6.2. Comparison of Results to Relevant Literature Work 

  

There are some studies that have tried to extract lithium from clays. 

These studies have been pointed out in Chapter II. From these, the most 

important and the relevant ones are Mordoğan et. al. (1995), Beşkardeş et. al. 

(1992) and Lien (1985). Mordoğan et. al. (1995) and Beşkardeş et. al (1992) 

have studied the boron clays whereas Lien (1985) has studied montmorillonite 

type clay which does not contain boron. The optimum points that have been 

found by these studies and the economic analysis of them can be seen in Table 

6.7. Crocker et. al. (1988) is a modification of the study of Lien (1985) in order 

to decrease the cost of the process by decreasing the raw materials.   

 

Table 6.7. Comparison of Results to Other Studies 

 This 

Study 

Mordoğan 

1995 

Beşkardeş 

1992 

Crocker 

1988 

Field Bigadiç Kırka Bigadiç Nevada 

Lithium Content (ppm) 2000 2800 2007 6000 

Optimum Points      

Clay 5 5 5 5 

Gypsum 1.5 0.834 1.5 2 

Roasting Temp. (°C) 915 900 850 900 

Roasting Time (min.) 120 120 120 120 

Leaching S/L Ratio 0.26 0.1 0.5 0.665 

Leaching Time (min.) 120 60 ---- 5 

Limestone 1.5 0 1.5 2 

Performance 
Measures 

    

Average Extraction (%) 83.81 77.00 72.78 84.00 

Cost ($/kg Li2CO3) 6.91 ---- 10.65 4.45 

Standard Deviation 4.89 ---- ---- ---- 

 

As it is seen from Table 6.7, the optimum point found in this study is somewhat  
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similar to those of the other studies, although in this study natural and waste raw  

materials are used, which reduces cost and saves the environment. 

The extraction values achieved in this study are the highest for boron 

clays and nearly the same with those of Crocker et. al. (1988). Mordoğan et. al. 

(1995) have studied Kırka clays which has a different composition than Bigadiç 

clays so they do not need to use limestone. The main difference of this study 

from other studies is high leaching time, however, it is seen from Figure 4.6 that 

30 minutes of leaching time can be enough for high extraction. A confirmation 

experiment has been done for decreasing leaching time (other points remaining 

the same) and has resulted in about 80% extraction. Further experiments are still 

being conducted. Another important factor is leaching solid to liquid ratio which 

is high for this study compared to Beşkardeş et. al. (1992) and Crocker et. al. 

(1988). This factor is important in the sense that high liquid amount needs more 

water to evaporate and this in turn increases the cost significantly. Experiments 

are still being conducted in order to increase the solid to liquid ratio. The 

author’s opinion is that there will not be high differences in the extraction values 

for that factor.  

  The cost of producing lithium carbonate from clays is lowest for 

Crocker et. al’s (1988) study but this is mainly due to the higher lithium content 

of the clay used in that study.  The detailed cost analysis made for this study by 

a similar approach with Crocker et. al (1988) is given in Chapter VII.   

Only this study has focused on variation of the extraction results. This 

performance measure has not been considered in the other studies. An 

acceptable standard deviation (4.89) has been achieved in this study.     
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CHAPTER VII 
 

ECONOMIC IMPACT AND ANALYSIS OF THE STUDY 

 

 This study aims to design the extraction process so that high extraction 

results are achieved without costly control on noise factors. Here, major savings 

come from the use of limestone directly from the nature and gypsum as a waste 

product of boric acid production. In traditional practice, to achieve high lithium 

extraction results reagent grade raw materials are used which add further cost to 

process. Hence, we have made a cost analysis in order to see overall savings 

resulted from this study. In this analysis we have used the study of  Crocker et. 

al. (1988) for comparison. The results of the annual operating cost analysis are 

summarized in Table 7.1. 

It has been intended to develop a rough cost estimate assuming the worst 

case and the cost analysis is done based on processing 1000 tons/day. According 

to Crocker et. al. (1988) clay:gypsum:limestone ratio is 5:2:2, however we have 

found the optimum ratio as 5:1.5:5:1.5. Therefore, in Crocker et. al. (1988) 

about 1900 tons/day of raw materials can be processed, while we can process 

about 1600 tons/day of raw materials. Furthermore, some cost figures such as 

those for depreciation, taxes, insurance, balls, chemicals, and process water for 

our case have been found simply by adjusting the corresponding Crocker et. al. 

(1988) figures by the capacity (i.e. by multiplying them by 1600/1900). 

Evaporation and leaching costs have been taken as the same.  
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Table 7.1. Comparison of operating cost of the proposed lithium extraction 

process to that of Crocker et. al. (1988) 

 Crocker et. al. (1988), $ This study, $ 
 Annual kg Li2CO3 Annual kg Li2CO3 
Lithium content (ppm) 6000 2000 
I. Direct Costs     
A. Raw Materials     
      Clay      0 0.000 0 0.000 
      Limestone 3.395.700 0.437 0 0.000 
      Gypsum 3.326.400 0.428 1.414.000 0.514 
      Soda Ash 2.313.000 0.297 936.000 0.342 
      Balls 122.300 0.015 103.000 0.037 
      Chemicals     3.600 0.002 3.000 0.001 
                Total 9.161.000 1.179 2.456.000 0.894 
B. Utilities     
      Electric Power 1.190.600 0.152 1.920.000 0.698 
      Process Water         63.000 0.009 53.000 0.019 
      Fuel  8.240.100 1.057 6.294.000 2.289 
                Total 9.493.700 1.218 8.267.000 3.006 
C. Direct Labor     
      Labor 1.437.100 0.186 189.000 0.069 
      Supervision 215.600 0.029 28.000 0.010 
                Total 1.652.700 0.215 217.000 0.079 
D. Maintenance     
      Labor 1.437.100 0.218 224.000 0.081 
      Supervision 340.000 0.045 45.000 0.016 
      Materials 1.700.100 0.218 1.432.000 0.521 
                Total 3.740.100 0.471 1.701.000 0.619 
E. Payroll Overhead 1.292.400 0.166 170.000 0.062 
F. Operating Supplies 748.000 0.098 340.000 0.124 
TOTAL DIRECT COST 26.087.900 3.347 13.151.000 4.782 
II. Indirect Costs 2.157.100 0.278 767.000 0.279 
III. Fixed Costs     
       Taxes 811.400 0.105 684.000 0.249 
       Insurance 811.400 0.105 684.000 0.249 
     Depreciation, 20 yr 4.755.500 0.612 4.005.000 1.456 

TOTAL 
PRODUCTION COST 34.623.300 4.45 19.291.000 7.014 

Annual Production 
(ton) 7785 2750 

Waste Reducing Gain ----- ----- -1.200.000 -0.436 
TOTAL 

PRODUCTION COST 34.623.300 4.45 18.091.000 6.578 
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In Crocker et. al. (1988), unit cost of electricity is taken as 0.047 $/kW.h, 

however, for Turkey unit cost of electricity is assumed as 0.09 $/kW.h. Crocker 

et. al. (1988) have used heavy oil for fuel (0.85 $/gal and 1 gallon gives 153.000 

Btu of heat) and we have used natural gas as the fuel (0.02 $/1000 kcal). Labor 

cost is 11.75 $/hr in Crocker et. al. (1988) and we have taken the labor cost as 

13.500 $/annual per person on the average.  

 Some cost figures seem to be higher with respect to unit cost of Li2CO3. 

This is due to the fact that in our study annual production of Li2CO3 is about 

three times less than Crocker et. al. (1988) study as the lithium content of 

Bigadiç clays is much lower (2000 ppm) than that of Crocker et. Al. (1988) 

study (6000 ppm).  

Although it is intended to develop an estimate for the worst case, 

evaporation cost (that will be added to fuel part) has been taken as the same as 

that of Crocker et. al (1988) study, although we have higher water amount to 

evaporate, hence higher cost. 

Some cost figures such as those for gypsum and waste reducing gain can 

not be displayed here as they are confidential for Eti Holding. Waste reducing 

gain has been estimated assuming that the leaching residue will find an 

application area. This point is discussed in detail later both in this section and in 

Chapter 8.   

 The operating cost of Li2CO3 from boron clays that contain 2000 ppm 

lithium has been estimated as 6.578 $/kg whereas, the same figure for Crocker 

et. al. (1988) study is 4.45 $/kg. On the other hand, if the study done by Crocker 

et. al (1988) had lithium content of 2000 ppm in their clays, then the operating 

cost would roughly be around 13.35$/kg. In this study, the ratio of raw materials 

to clay has been decreased and also the raw materials that will not bring any 

additional cost to Eti Holding, Inc have been used. This has brought about 50% 

savings in the operating cost. However; when we consider the import price of 

Li2CO3 in Turkey in year 2002 (3.98$/kg) this process is not be preferable as of 

the current time. If the selling price of Li2CO3 in the world market is about 

3.5$/kg, then, in order for this process to be preferable Bigadiç clays should 

contain around 3500  ppm lithium,  or  Li2CO3  selling  price  should  increase to  
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about 6 $/kg.  

Another important point to consider is the application of the residue of 

the leaching process. This residue is a waste in this study, however, by changing 

the amounts of raw materials (hence probably decreasing extraction yield) this 

residue can be used in other industries. This adjustment will bring additional 

cost reduction to process. An economic off-set should be made with the possible 

usage of the residue and extraction percentage. Moreover, possible application 

of the leaching residue will result in a significant benefit to society such as 

decreasing further the solid wastes to environment. In case that this residue is 

not used, about 30% waste reduction can been achieved at the optimal settings.  

 While making the cost analysis, natural gas has been used as the fuel 

source and it is seen that it has added about 35% cost to the process. Decreasing 

the cost of fuel as well as the cost of electricity (about 10% cost to the process) 

will bring significant cost improvements. Also pelletizing has been added in the 

cost analysis. However; a pilot scale study should be conducted to decide 

whether pelletizing is necessary or not.  

 The price of Li2CO3 has increased about 5-10% in year 2001 and it is 

predicted that the price will increase in the following years. So the price trend of 

Li2CO3 should be followed to determine when the proposed extraction process 

need to be put in action.   

 In addition to all these, the amount and grade of lithium reserves of 

boron clays (especially Bigadiç clays) should be determined and if a field 

containing about 3000 ppm lithium is found, it should be stored in a separate 

place. An estimation of process cost in that case might indicate that extracting 

lithium locally using the proposed approach is more economical than importing 

it. 
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CHAPTER VIII 
 

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 
 

 In mining industry, it has not been straightforward to make a 

standardization as the industry strongly depends on natural factors. In this study, 

a methodology has been demonstrated for achieving the desired result (lithium 

extraction) independent of the grade of the raw materials that has been input. All 

the raw materials have been chosen as they are solid wastes from production 

facilities or gangue minerals. In other words, the need for standardization is 

sought to be reduced.  This study specifically has been concentrated on the 

extraction of lithium from boron clays by using a solid waste of boric acid 

production, gypsum and a calcium carbonate rich field in boron mines that could 

not been utilized, otherwise.  

 In this study, evaluation of optimum extraction of lithium from boron 

clays has been examined. The procedure has been based on two main 

performance measures; mean of extraction and the standard deviation of the 

extraction values. Statistical experimental design principles more specifically 

orthogonal arrays have been used in such a study for the first time to the best of 

our knowledge.  

 The objective of robust extraction of lithium is to find optimal settings of 

parameters which produce the maximum extraction with minimum variation 

around this maximum.  

 In this study, guidelines for the conduct of experiments have been 

developed and data collection and transformation methods have been presented. 

Data analysis has been performed for modelling both the mean and the 

standard deviation. A methodology called S/N transformation comprising both 

of these performance measures has been utilized.  
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While seeking to reach the optimum settings of parameters, 4 different 

optimization algorithms have been used. These are ANOVA, Regression 

modelling, Non-linear programming, and response surface methods applied to 

second-order surfaces, Ridge Analysis. A widely used method of robust design, 

ANOVA, has been performed by making Signal-to-Noise ratio transformation of 

data. The results obtained from ANOVA do not yield satisfactory extraction 

values. The reason for this lack of achieving may be two fold; ANOVA has 

taken only the linear terms into consideration, and we are confined to only the 

experimental levels of the factors for the optimum. 

Modelling through regression has been separated into two parts. The 

mean and the standard deviation has been modelled. MINITAB 13.3 package 

program has been used for modelling. Mean has been modelled with high values 

of adjusted multiple coefficient of determination R2
(adj). Also the assumptions 

about the residuals for mean has been met satisfactorily. No correlation has been 

observed for errors. Prediction intervals for mean mostly have been narrow 

enough. The standard deviation could not be modelled as adequately as the 

mean. Although residuals confirm all assumptions and no correlations have been 

observed between them, there has been a wide gap between multiple coefficient 

of determination (R2) and adjusted multiple coefficient of determination (R2
(adj)). 

Prediction intervals for the standard deviation have been too wide. The 

confirmation experiments for regression modelling have shown variability 

among different points for both the mean and the standard deviation. However; 

an improvement from the experimental results obtained could not be achieved 

by the tested optimal points. For this case, a further modelling have been tried 

and this modelling is based on the addition of optimal points to the first model. 

This model has shown an adequate fit to the mean whereas standard deviation 

still could not be modelled as adequately as the mean. There are several reasons 

for this lack of fit. One and the most important reason is that the raw materials 

used for this study have been chosen from nature as they are and have not been 

processed for standardization before beginning of the tests.  
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Especially, limestone CaCO3 content has shown a significant variability.  

The model that has treated the optimal points as a part of experimental design 

has concluded in an extraction of lithium that has been the highest of all tests. 

Also the standard deviation at these optimal settings is found experimentally to 

be acceptable although it could not be predicted by the model of the standard 

deviation. 

 Another optimization tool that has been tried in this study is Non-linear 

programming. Dual responses have been tried to be solved for this purpose; 

maximization of the mean of extraction of lithium and minimization of the 

standard deviation around the mean. Non-linear programming has been made by 

using GAMS software. The results obtained from this study has yielded sub-

optimal points which have not shown a significant improvement of the 

experimentally obtained results. Also by incorporating the non-linear 

optimization technique, some points outside the experimental region that can 

lead to the desired results have been found. While computing these points, 

economic considerations have been considered and the points that might bring 

cost reduction have been tried. However; satisfactory extraction values could not 

be achieved, either. 

 The last optimization algorithm that has been used in this study is the 

method that has been applied to second-order surfaces of response surface 

methodology, Ridge Analysis. This method has comprised some matrix algebra 

and MATLAB package program has been used for solving the equations. Ridge 

Analysis have predicted the results of the experiment for both performance 

measures satisfactorily.  Moreover, it has yielded an optimum value that has 

been higher than the previous results of the experimental region. However; this 

optimum point could not be treated as the global optimum as the algorithm 

suggests that it is a local optimum. Furthermore, this optimum point has a 

drawback that the roasting temperature is very high at this point.  

     An economic off-set should be calculated for other factors. As the 

roasting process is a reversible process, less time is needed for completion of 

converting  process  for  higher temperatures than for lower temperatures. So for 
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deciding on optimal settings, this study has presented two solutions. If lower 

roasting temperature will be more suitable, then the result obtained from 

modelling of the mean by adding optimum points to the experimental region 

should be used. The settings for this optimum are 1.5, 915°C, 120 minutes, 0.26, 

120 minutes and 1.5 for gypsum, roasting temperature, roasting time, leaching 

solid to liquid ratio, leaching time and limestone, respectively. If less time of 

roasting time will be seen more adequate for extraction, the results obtained 

from Ridge Analysis, should be used. The settings for the parameters are 3.178, 

986°C, 67 minutes, 0.187, 33 minutes, 2.6 for the same order of factors.  

 Extraction of lithium from boron clays has had a solid waste at the end of 

the leaching process. The raw materials other than the lithium containing clay 

must be chosen for evaluation of this solid waste. This study is unique in the 

sense that natural limestone has been used as CaCO3 source and waste product 

of boric acid is used as gypsum source. These two raw materials will not bring 

any additional cost to the extraction process as they are owned by Eti Holding, 

Inc. Moreover, using these wastes will decrease the need hence cost for storing 

them. Therefore, an important parameter to consider here is the amount of 

limestone and gypsum used in lithium extraction. As another solid waste has 

obtained during the extraction process, the optimal settings for raw materials can 

be modified in a way to utilise that solid waste. For this purpose, pelletizing can 

be introduced to the process. The author’s opinion is that it will be crucial to 

make a study for utilising the solid waste of lithium extraction in order to 

decrease the economy of the process significantly.  

In this study, experiments have been made based on clay amount. 40 

grams of clay have been used and gypsum and limestone ratio have been chosen 

with respect to that value. For example, at the optimal settings, gypsum/clay 

ratio and limestone/clay ratio are both 1.5/5 meaning that 12 grams of gypsum 

and limestone have been used. This will add to totally 64 grams. After the 

leaching process, about 45 grams of solid waste are left. This means that at the 

optimal settings about 30% reduction can be achieved for the wastes.  Moreover, 

by just using natural raw materials, about 78% cost reduction for extraction have  
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been gained compared with the study made by Crocket et. al. (1988). To add up, 

this study not only extracts lithium in an economic way but also attempts to 

decrease the solid wastes of Eti Holding, Inc.          

 The results of the cost analysis show that if import price of lithium 

increases more than 50%, if we find enough clays that contain about 3500 ppm 

lithium and if fuel and electricity prices decrease, then it is economically 

feasible and more advantageous for Turkey to produce its own lithium (and 

export the excess) by using the proposed extraction process. Apart from the cost 

considerations, this proposed process has a social benefit to the society in the 

manner that the solid wastes to the nature are decreased by significantly.  

Another important research that should follow this study is the 

precipitation of lithium. Lithium carbonate is the most widely used compound of 

lithium and the studies in literature (Lien, 1985, Beşkardeş, 1992) have been 

concentrated on it. The optimal settings for the precipitation of lithium can be 

found by following a similar approach.    

It has been well known to the researchers of robust design that tolerance 

design should have been performed after robust design. This study needs to be 

followed by a tolerance design study as the raw materials used in extracting 

lithium are all solid wastes and they show great variability (especially limestone) 

in their beneficial portion for extraction of lithium. In such a study, the 

allowable variation for lithium content of clay, limestone’s CaCO3 content and 

gypsum’s CaSO4.2H2O content or lower limits of lithium content of the clays, 

calcium carbonate (CaCO3) content of limestone and calcium sulphate dihydrate 

content (CaSO4.2H2O) of gypsum can be defined for optimum extraction of 

lithium from boron clays with much smaller variation than the variation obtained 

in this study. This will further reduce variation of the results. As a part of the 

tolerance design, a detailed cost analysis should be conducted for producing 

lithium carbonate or any other lithium compound. In order to make the cost 

analysis more accurately, the grade and reserves of lithium content of boron 

clays should have been determined.  
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 Appendix 4A.1. L27 (313) Orthogonal Array 
Run Columns 

 1 2 3 4 5 6 7 8 9 10 11 12 13 
              

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 2 2 2 2 2 2 2 2 2 
3 1 1 1 1 3 3 3 3 3 3 3 3 3 
              

4 1 2 2 2 1 1 1 2 2 2 3 3 3 
5 1 2 2 2 2 2 2 3 3 3 1 1 1 
6 1 2 2 2 3 3 3 1 1 1 2 2 2 
              

7 1 3 3 3 1 1 1 3 3 3 2 2 2 
8 1 3 3 3 2 2 2 1 1 1 3 3 3 
9 1 3 3 3 3 3 3 2 2 2 1 1 1 
              
              

10 2 1 2 3 1 2 3 1 2 3 1 2 3 
11 2 1 2 3 2 3 1 2 3 1 2 3 1 
12 2 1 2 3 3 1 2 3 1 2 3 1 2 
              

13 2 2 3 1 1 2 3 2 3 1 3 1 2 
14 2 2 3 1 2 3 1 3 1 2 1 2 3 
15 2 2 3 1 3 1 2 1 2 3 2 3 1 
              

16 2 3 1 2 1 2 3 3 1 2 2 3 1 
17 2 3 1 2 2 3 1 1 2 3 3 1 2 
18 2 3 1 2 3 1 2 2 3 1 1 2 3 
              
              

19 3 1 3 2 1 3 2 1 3 2 1 3 2 
20 3 1 3 2 2 1 3 2 1 3 2 1 3 
21 3 1 3 2 3 2 1 3 2 1 3 2 1 
              

22 3 2 1 3 1 3 2 2 1 3 3 2 1 
23 3 2 1 3 2 1 3 3 2 1 1 3 2 
24 3 2 1 3 3 2 1 1 3 2 2 1 3 
              

25 3 3 2 1 1 3 2 3 2 1 2 1 3 
26 3 3 2 1 2 1 3 1 3 2 3 2 1 
27 3 3 2 1 3 2 1 2 1 3 1 3 2 
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Appendix 4A.2. Interaction Table for L27 (313) 
Column Column  

 1 2 3 4 5 6 7 8 9 10 11 12 13 
              

1 (1) 3 2 2 6 5 5 9 8 8 12 11 11 
  4 4 3 7 7 6 10 10 9 13 13 12 
              
2  (2) 1 1 8 9 10 5 6 7 5 6 7 
   4 3 11 12 13 11 12 13 8 9 10 
              
3   (3) 1 9 10 8 7 5 6 6 7 5 
    2 13 11 12 12 13 11 10 8 9 
              
4    (4) 10 8 9 6 7 5 7 5 6 
     12 13 11 13 11 12 9 10 8 
              
5     (5) 1 1 2 3 4 2 4 3 
      7 6 11 13 12 8 10 9 
              
6      (6) 1 4 2 3 3 2 4 
       5 13 12 11 10 9 8 
              
7       (7) 3 4 2 4 3 2 
        12 11 13 9 8 10 
              
8        (8) 1 1 2 3 4 
         10 9 5 7 6 
              
9         (9) 1 4 2 3 
          8 7 6 5 
              

10          (10) 3 4 2 
           6 5 7 
              

11           (11) 1 1 
            13 12 
              

12            (12) 1 
             11 
              

13             (13) 
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Appendix 4A.3. Residual Plots for the model of mean 
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Appendix 4A.4. Level Averages For Mean  

 

Gypsum   Ro.Te. °C   

1.5 3 4.5 850 950 1050 

25.71 25.67 30.27 11.20 37.16 33.29 

      

Ro.Ti. min   Leach S/L   

30 60 120 0.1 0.2 0.4 

20.72 25.35 35.59 22.15 35.47 24.04 

      

Le.Ti. min   Limestone   

30 60 120 1.5 3 4.5 

28.42 18.20 35.03 31.98 31.19 18.48 

      

Ro. Te. x Ro. Ti.  Ro. Te. x Leach S/L  

850 x 30 4.74  850 x 0.1 13.13  

850 x 60  11.77  850 x 0.2  13.29  

850 x 120 17.09  850 x 0.4 7.19  

950 x 30 21.96  950 x 0.1 27.38  

950 x 60 38.60  950 x 0.2 43.75  

950 x 120 50.92  950 x 0.4 40.35  

1050 x 30 35.45  1050 x 0.1 25.92  

1050 x 60 25.68  1050 x 0.2 49.38  

1050 x 120  38.75  1050 x 0.4  24.57  
 
 

There are two combinations for determining the optimum levels since 

interaction of roasting temperature and leach solid to liquid ratio has the highest 

level of B3D2 combination. So the first combination includes the optimum levels 

of A3B2C3D2E3F1 and the second combination includes the optimum levels A3B3 

C3D2E3F1. The estimation of the expected value of the mean is as follows: 
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COMBINATION 1: 
 

  
From the level averages table; 
 
E(y) = 27.22 + (30.27-27.22) + (37.16-27.22) + (35.59-27.22) + (35.47-27.22) + 

(35.03-27.22) + (31.98-27.22) + (32.61-27.22) + (25.56-27.22) 

E(y) = 27.22 + 3.05 + 9.94 + 8.37 + 8.25 + 7.81 + 4.76 + 5.39 – 1.66  
        = 73.13 

 
 
COMBINATION 2: 

 
 
From the level averages table; 
 
E(y) = 27.22 + (30.27-27.22) + (33.29-27.22) + (35.59-27.22) + (35.47-27.22) + 

(35.03-27.22) + (31.98-27.22) + (24.31-27.22) + (35.06-27.22) 

E(y) = 27.22 + 3.05 + 6.07 + 8.37 + 8.25 + 7.81 + 4.76 – 2.91 + 7.84  
        = 70.46 

 
 As the first combination predicts higher extraction value, it is better to 

use this. Moreover, as roasting temperature is lower in the first combination, it 

will be economical to treat this combination as the optimum for mean. 
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Appendix 4A.5. Residual plots for the model of standard deviation 
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Appendix 4A.6. Level Averages for Standard Deviation 
 
 
Gypsum   Ro.Te. °C   

1.5 3 4.5 850 950 1050 

5.115 6.678 3.420 3.339 4.564 7.310 

      

Ro.Ti. min   Leach S/L   

30 60 120 0.1 0.2 0.4 

5.138 3.911 6.165 3.589 5.986 5.639 

      

Le.Ti. min   Limestone   

30 60 120 1.5 3 4.5 

6.317 4.480 4.416 4.076 7.180 3.957 

      

Ro. Te. x Ro. Ti.  Ro. Te. x Leach S/L  

850 x 30 0.746  850 x 0.1 5.942  

850 x 60  3.828  850 x 0.2  1.854  

850 x 120 5.444  850 x 0.4 2.222  

950 x 30 6.498  950 x 0.1 1.401  

950 x 60 2.734  950 x 0.2 5.920  

950 x 120 4.459  950 x 0.4 6.369  

1050 x 30 8.170  1050 x 0.1 3.423  

1050 x 60 5.170  1050 x 0.2 10.184  

1050 x 120  8.591  1050 x 0.4  8.324  
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Computation of the predicted standard deviation based on the optimum points of 
S/N Analysis: 
 
 

  
From the level averages table; 
 
E(σ) =  5.071 + (3.420-5.071) + (4.564–5.071) + (6.165-5.071) + (5.986-5.071) 

+ (4.416-5.071) + (4.076-5.071) + (3.872-5.071) + (5.512-5.071) 

 

E(σ) = 5.071 – 1.651 – 0.507  + 1.094 +  0.915 – 0.655 - 0.995  - 1.199 + 0.441  
        = 2.514 
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Appendix 4A.7. The regression model with only main factors 
 
 
The regression equation is 
Mean = - 87.0 + 1.52*A + 0.110*B + 0.166*C - 2.8*D  +  0.103*E - 4.50*F 
 
Predictor            Coef          SE Coef           T             P 
Constant       -86.95          39.30            -2.21          0.039 
A                      1.519          2.546           0.60          0.557 
B                      0.11044      0.03819       2.89          0.009 
C                      0.16603      0.08333       1.99          0.060 
D                    -2.76          25.00            -0.11          0.913 
E                      0.10307      0.08333       1.24          0.230 
F                    -4.499          2.546          -1.77          0.092 
 
S = 16.20             R-Sq = 46.5%          R-Sq(adj) = 30.4% 
 
Analysis of Variance 
 
Source                      DF          SS               MS            F                P 
Regression                6          4555.3         759.2        2.89         0.034 
Residual Error         20         5249.3          262.5 
Total                       26         9804.6 
 
Source             DF              Seq SS 
A                       1                  93.4 

B                       1              2195.5 
C                       1              1042.0 
D                       1                   3.2 
E                        1               401.5 
F                        1               819.7 
 
Unusual Observations 
Obs        A        Mean        Fit           SE Fit     Residual        St Resid 
 18       3.00      22.92       52.65          8.25       -29.73            -2.13R  
 25       4.50      13.68       44.14          8.50       -30.46            -2.21R  
 
R denotes an observation with a large standardized residual 
 
Durbin-Watson statistic = 2.44 
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Appendix 4A.8. The regression of the quadratic model   
 
A*E is highly correlated with other X variables 
A*E has been removed from the equation 
 
C*E is highly correlated with other X variables 
C*E has been removed from the equation 
 
D*E is highly correlated with other X variables 
D*E has been removed from the equation 
 
C*C is highly correlated with other X variables 
C*C has been removed from the equation 
 
D*D is highly correlated with other X variables 
D*D has been removed from the equation 
 
E*E is highly correlated with other X variables 
E*E has been removed from the equation 
 
The regression equation is 

Mean = - 1332 + 17.2*A + 2.89*B - 0.105*C - 98.5*D + 0.631*E - 50.2*F +  
  0.0189*AB + 0.195*AC - 1.49*AD + 5.20*AF - 0.00121*BC - 

0.142*BD -0.000631*BE +  0.0545*BF + 3.75*CD - 0.0134*CF - 
2.97*DF - 9.80*A2 -0.00149*B2 - 3.49*F2 

 
Predictor                  Coef            SE Coef              T               P 
Contant                 -1332.1            129.5            -10.29        0.000 
A                              17.17            17.08                1.01        0.354 
B                            2.8857          0.2644              10.91        0.000 
C                           -0.1051          0.3143              -0.33         0.749 
D                            -98.52            95.90               -1.03        0.344 
E                            0.6312          0.4228                1.49         0.186 
F                             -50.18            10.84               -4.63         0.004 
A*B                   0.018944       0.007003                2.71         0.035 
A*C                     0.19532         0.02154                9.07         0.000 
A*D                       -1.491              6.461              -0.23         0.825 
A*F                       5.2019            0.4669              11.14         0.000 
B*C                -0.0012118      0.0002335               -5.19        0.002 
B*D                    -0.14162          0.06711               -2.11        0.079 
B*E                 -0.0006306      0.0003968               -1.59        0.163 
B*F                      0.05452          0.01212                 4.50        0.004 
C*D                        3.7501            0.8618                4.35        0.005 
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C*F                      -0.01341         0.01557               -0.86         0.422 
D*F                         -2.967             4.474                -0.66         0.532 
A2                            -9.804              2.563               -3.82          0.009 
B2                   -0.0014914          0.0001375          -10.85         0.000 
F2                         -3.4884                0.8082            -4.32          0.005 
 
S = 3.367       R-Sq = 99.3%     R-Sq(adj) = 97.0% 
 
Analysis of Variance 
Source            DF            SS               MS          F          P 
Regression        20      9736.54        486.83     42.94    0.000 
Residual Error     6          68.02         11.34 
Total                 26      9804.56 
 
Source       DF           Seq SS 
A                 1             93.42 
B                 1          2195.49 
C                 1          1041.97 
D                 1                3.20 
E                  1            401.55 
F                  1            819.68 
A*B             1              70.78 
A*C             1            657.35 
A*D             1            280.31 
A*F             1           1090.42 
B*C             1             293.39 
B*D             1              42.70 
B*E             1             170.07 
B*F             1             622.66 
C*D             1            103.84 
C*F             1                 7.60 
D*F             1                 4.99 
A2                 1             291.40 
B2                 1            1334.51 
F2                1              211.22 
Unusual Observations 
Obs            Gypsum         Mean        Fit         SE Fit      Residual       St Resid 
8                   1.50            37.947     38.320      3.356        -0.374         -1.39 X 
18                 3.00            22.917     22.842      3.367          0.075          1.39 X 
25                 4.50            13.677     13.378      3.360          0.299           1.39 X 
X denotes an observation whose X value gives it large influence. 
Durbin-Watson statistic = 1.96 
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Appendix 4A.9. Regression Analysis for Improved Quadratic Model:  
 
The regression equation is 
Mean = -1332 +18.2*A +2.89*B -0.121*C -108*D +0.629*E -50.2*F 

+0.0189*AB+0.195*AC +5.20*AF - 0.00121*BC-0.142*BD-
0.000631*BE + 0.0545*BF+ 3.82*CD-0.0134*CF-2.97*DF-10.0*A2- 
0.00149*B2- 3.49*F2 

     
Predictor                Coef             SE Coef              T                     P 
Constant            -1331.6              120.4            -11.06             0.000 
A                           18.19              15.34               1.19             0.275 
B                         2.8857             0.2459             11.73             0.000 
C                        -0.1209             0.2853             -0.42             0.684 
D                        -108.21               80.18             -1.35             0.219 
E                          0.6288             0.3930              1.60             0.154 
F                           -50.18               10.08             -4.98            0.002 
A*B                 0.018944         0.006512               2.91            0.023 
A*C                   0.19532           0.02003               9.75            0.000 
A*F                     5.2019              0.4341            11.98             0.000 
B*C             -0.0012118        0.0002172             -5.58             0.001 
B*D                 -0.14162            0.06241             -2.27             0.058 
B*E              -0.0006306        0.0003690             -1.71             0.131 
B*F                   0.05452            0.01127              4.84              0.002 
C*D                    3.8247              0.7430              5.15              0.001 
C*F                  -0.01341           0.01448             -0.93              0.385 
D*F                     -2.967                4.160             -0.71              0.499 
A2                      -10.020                2.220             -4.51              0.003 
B2                -0.0014914         0.0001278          -11.67               0.000 
F2                      -3.4884               0.7515            -4.64                0.002 
 
S = 3.131       R-Sq = 99.3%     R-Sq(adj) = 97.4% 
 
Analysis of Variance 
 
Source                     DF               SS              MS              F            P 
Regression               19         9735.94         512.42        52.27      0.000 
Residual Error           7              68.62             9.80 
Total                        26          9804.56 
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Source             DF             Seq SS 
A                      1                 93.42 
B                      1              2195.49 
C                      1              1041.97 
D                      1                    3.20 
E                       1                401.55 
F                       1                819.68 
A*B                  1                  70.78 
A*C                  1                 657.35 
A*F                  1               1090.42 
B*C                  1                  293.39 
B*D                  1                    42.70 
B*E                   1                  170.07 
B*F                   1                  824.40 
C*D                  1                  122.09 
C*F                   1                     7.60 
D*F                   1                    4.99 
A2                      1                 351.11 
B2                      1                1334.51 
F2                       1                  211.22 
 
Unusual Observations 
Obs            Jips         Ort.         Fit          SE Fit        Residual          St Resid 
18              3.00       22.917   22.773       3.118            0.144             0.51 X 
 
X denotes an observation whose X value gives it large influence. 

 
Durbin-Watson statistic = 1.99 
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Appendix 4A.10. Regression Analysis for Mean with no factor having p-
value greater than 10%. 
 
The regression equation is 
Mean = -1319+30.9*A+2.88*B-0.330*C-170*D-0.0334*E- 43.9*F+0.0162*AB 

+0.195*AC+5.15*AF-0.00117*BC-0.125*BD+0.0419*BF+4.37*CD-  
11.6*A2 -0.00149*B2- 2.65*F2 

 
Predictor                  Coef              SE Coef                  T                 P 
Constant             -1318.7                  127.3              -10.36          0.000 
A                            30.86                  14.81                 2.08          0.064 
B                          2.8807                0.2603               11.07           0.000 
C                        -0.3298                0.2807                -1.17            0.267 
D                        -170.38                  78.33                -2.18            0.055 
E                       -0.03342              0.06971                -0.48            0.642 
F                         -43.885                  9.413                -4.66            0.001 
A*B                 0.016191             0.006378                2.54            0.029 
A*C                   0.19532               0.02120                 9.21           0.000 
A*F                     5.1540                 0.4569               11.28           0.000 
B*C              -0.0011670           0.0002213               -5.27            0.000 
B*D                  -0.12538               0.06360               -1.97            0.077 
B*F                  0.041905             0.009020                4.65             0.001 
C*D                     4.3652                 0.7116                6.13             0.000 
A2                       -11.581                   2.142               -5.41             0.000 
B2                 -0.0014914           0.0001353              -11.02             0.000 
F2                       -2.6476                 0.6014                -4.40             0.001 
 
S = 3.314       R-Sq = 98.9%     R-Sq(adj) = 97.1% 
 
Analysis of Variance 
 
Source                       DF             SS              MS             F              P 
Regression                16           9694.71      605.92       55.16       0.000 
Residual Error           10             109.85        10.98 
Total                          26           9804.56 
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Source              DF           Seq SS 
A                        1              93.42 
B                        1           2195.49 
C                        1           1041.97 
D                        1                 3.20 
E                        1              401.55 
F                        1              819.68 
A*B                   1                70.78 
A*C                   1              657.35 
A*F                   1             1090.42 
B*C                   1               293.39 
B*D                   1                 42.70 
B*F                    1               991.83 
C*D                   1                124.40 
A2                      1                 321.12 
B2                       1               1334.51 
F2                       1                   212.92 
 
 
 
Durbin-Watson statistic = 1.38 
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Appendix 4A.11. The Best Regression Model for s. 
 
The regression equation is 
s = - 1.53 - 79.6*D + 6.42*F  + 0.0380*AC - 6.64*AD + 0.659*AF-

0.000113*BC +       0.115*BD - 0.619*A2 - 1.41*F2 C6C6 
 
 
Predictor                Coef             SE Coef                T              P 
Constant             -1.525                5.034              -0.30         0.766 
D                         -79.61                27.37              -2.91         0.010 
F                           6.420                3.366               1.91         0.074 
A*C                  0.03805            0.01361               2.80         0.012 
A*D                    -6.639                4.249              -1.56         0.137 
A*F                    0.6591              0.3541                1.86         0.080 
B*C           -0.00011261      0.00004762              -2.36          0.030 
B*D                  0.11453            0.02821               4.06           0.001 
A2                      -0.6188              0.2371              -2.61          0.018 
F2                       -1.4062             0.5268               -2.67          0.016 
 
S = 2.904       R-Sq = 67.7%     R-Sq(adj) = 50.6% 
 
Analysis of Variance 
Source                   DF            SS              MS               F            P 
Regression             9          300.633       33.404          3.96       0.007 
Residual Error      17          143.330         8.431 
Total                     26   443.963 
 
Source               DF               Seq SS 
D                          1                13.215 
F                           1                  0.063 
A*C                      1                  2.783 
A*D                      1                 32.281 
A*F                       1                  4.337 
B*C                       1                  0.497 
B*D                       1              129.973 
A2                          1                  57.423 
F2                           1                  60.060 
 
Unusual Observations 
Obs       D                 s                Fit            SE Fit           Residual           St Resid 

2          0.200        0 .664          7.051         1.518             -6.386              -2.58R  
R denotes an observation with a large standardized residual 
 
Durbin-Watson statistic = 2.70 
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Appendix 4A.12. The Values of Log s2: 
 
 

Run No s log s2 
1 6.6044 1.6397 
2 0.6643 -0.3553 
3 1.9970 0.6008 
4 1.6983 0.4600 
5 5.4060 1.4658 
6 3.8339 1.1673 
7 2.8498 0.9096 
8 10.4453 2.0378 
9 12.5324 2.1961 
10 1.6251 0.4218 
11 1.4144 0.3011 
12 11.0631 2.0878 
13 5.1102 1.4169 
14 13.8822 2.2849 
15 2.2984 0.7228 
16 10.5982 2.0505 
17 10.3786 2.0323 
18 3.7331 1.1441 
19 3.2547 1.0250 
20 0.1582 -1.60148 
21 3.2723 1.0297 
22 1.3922 0.2874 
23 0.2066 -1.3696 
24 7.2443 1.7200 
25 2.0619 0.6285 
26 3.6848 1.1328 
27 9.5077 1.9562 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

125 



Appendix 4A.13. The regression model for log s2 

 
* A*E is highly correlated with other X variables 
* A*E has been removed from the equation 
 
* C*E is highly correlated with other X variables 
* C*E has been removed from the equation 
 
* D*E is highly correlated with other X variables 
* D*E has been removed from the equation 
 
* C2 is highly correlated with other X variables 
* C2 has been removed from the equation 
 
* D2 is highly correlated with other X variables 
* D2 has been removed from the equation 
 
* E2 is highly correlated with other X variables 
* E2 has been removed from the equation 
 
The regression equation is 
Log s2 = 9.1 + 1.81*A  - 0.0249*B + 0.0583*C - 8.2*D - 0.058*E + 0.17*F -   

0.00003*AB + 0.00824*AC + 0.35*AD + 0.145*AF -0.000099*BC  
             + 0.0026*BD +0.000054*BE  + 0.00051*BF + 0.087*CD - 0.00035*CF 
            + 0.33*DF - 0.499 A2 +0.000016*B2- 0.185*F2 
 

Predictor                  Coef             SE Coef                  T               P 
Constant                   9.10                34.96                 0.26           0.803 
A                             1.815                4.611                 0.39           0.708 
B                        -0.02486            0.07139                -0.35           0.740 
C                         0.05833            0.08486                  0.69           0.518 
D                             -8.19                 25.89                -0.32           0.762 
E                          -0.0577               0.1141                -0.51           0.631 
F                             0.167                 2.925                 0.06            0.956 
A*B                -0.000025            0.001891                -0.01           0.990 
A*C                 0.008236            0.005814                 1.42            0.206 
A*D                      0.348                   1.744                 0.20            0.848 
A*F                     0.1453                 0.1260                 1.15            0.293 
B*C            -0.00009883         0.00006305               -1.57            0.168 
B*D                    0.00260              0.01812                 0.14            0.891 
B*E                 0.0000543           0.0001071                0.51            0.630 
B*F                   0.000507             0.003273                0.15            0.882 
C*D                      0.0873                 0.2327                0.38             0.720 
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C*F                   -0.000353                  0.004203           -0.08         0.936 
D*F                          0.325                        1.208            0.27         0.797 
A2                         -0.4990                       0.6921          -0.72         0.498 
B2                  0.00001626                0.00003711           0.44          0.677 
F2                         -0.1847                        0.2182          -0.85          0.430 
 
S = 0.9090      R-Sq = 81.0%     R-Sq(adj) = 17.5% 
 
Analysis of Variance 
Source                 DF               SS             MS              F            P 
Regression           20         21.0721        1.0536          1.28    0.408 
Residual Error       6           4.9576         0.8263 
Total                   26         26.0297 
 
Source       DF      Seq SS 
A                 1      1.5683 
B                 1      4.4391 
C                 1      2.4724 
D                1      1.0978 
E                 1       2.1192 
F                 1      0.0801 
A*B           1      0.0000 
A*C           1      1.4998 
A*D           1      0.0062 
A*F           1      0.4114 
B*C           1      2.4293 
B*D           1      0.0234 
B*E           1      1.9276 
B*F           1      0.0165 
C*D           1      1.3937 
C*F           1      0.0086 
D*F           1      0.0599 
A2              1      0.7683 
B2              1      0.1585 
F2               1      0.5919 
 
Unusual Observations 
Obs         Gypsum          Log s2        Fit          SE Fit        Residual        St Resid 

8                 1.50              2.038       2.027       0.906            0.011           0.15 X 
18               3.00              1.144       1.146       0.909           -0.002         -0.15 X 
25               4.50              0.629       0.637       0.907           -0.009         -0.15 X 
X denotes an observation whose X value gives it large influence. 
Durbin-Watson statistic = 2.12 
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Appendix 4A.14. Regression Analysis for improved quadratic model of log 
s2 
 
The regression equation is 
Log s2 = - 4.00 + 0.0905*C + 0.00632*AC + 0.670*AD + 0.158*AF -

0.000106*BC +   0.00117*BF - 0.212 A2 +0.000005*B2 -0.271*F2 
 
Predictor                Coef           SE Coef               T              P 
Constant              -4.005              1.499             -2.67        0.016 
C                        0.09051         0.03739              2.42         0.027 
A*C                 0.006320       0.002397              2.64         0.017 
A*D                    0.6700           0.2775               2.41         0.027 
A*F                  0.15803          0.07296               2.17        0.045 
B*C           -0.00010596    0.00003840             -2.76         0.013 
B*F              0.0011689       0.0006075              1.92         0.071 
A2                   -0.21231           0.04785             -4.44         0.000 
B2               0.00000468     0.00000191              2.45         0.025 
F2                    -0.27120           0.09254             -2.93         0.009 
 
S = 0.5817      R-Sq = 77.9%     R-Sq(adj) = 66.2% 
 
Analysis of Variance 
Source                  DF             SS               MS             F             P 
Regression             9        20.2778          2.2531         6.66      0.000 
Residual Error     17           5.7519          0.3383 
Total                   26     26.0297 
 
Source       DF           Seq SS 
C                 1             2.4724 
A*C           1               0.1371 
A*D           1              0.3631 
A*F           1               0.8135 
B*C           1               1.7253 
B*F           1               2.3838 
A2              1               3.7372 
B2              1               5.7395 
F2              1                2.9059 
 
Unusual Observations 
Obs          Ro.Ti.       Log s2         Fit        SEFit         Residual    St Resid 
2                  30          -0.355       0.650       0.336           -1.006       -2.12R  
5                  30           1.466       0.496       0.357             0.970        2.11R  
R denotes an observation with a large standardized residual 
Durbin-Watson statistic = 2.43 
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Appendix 4A.15. Regression Analysis for log s2 with cubic terms 
 
 
The regression equation is 
Log s2 = - 2.58 + 0.0592*C + 0.00858*AC -0.000081*BC +0.000873*BF - 

0.0273*A3     +0.000000*B3 + 10.6*D3 - 0.0298*F3 
 
Predictor              Coef              SE Coef                 T               P 
Constant            -2.579                 1.094             -2.36           0.030 
C                     0.05921              0.03772              1.57          0.134 
A*C              0.008584            0.002529              3.39           0.003 
B*C         -0.00008092        0.00003874             -2.09           0.051 
B*F             0.0008730          0.0003786              2.31           0.033 
A3                -0.027280            0.006500             -4.20           0.001 
B3              0.00000000        0.00000000              2.46           0.024 
D3                     10.609                   4.543              2.34           0.031 
F3                  -0.02979               0.01192             -2.50           0.022 
 
S = 0.6189      R-Sq = 73.5%     R-Sq(adj) = 61.7% 
 
Analysis of Variance 
 
Source                 DF             SS              MS              F              P 
Regression            8         19.1354        2.3919         6.24         0.001 
Residual Error     18           6.8943     0.3830 
Total                    26         26.0297 
 
Source             DF           Seq SS 
C                       1             2.4724 
A*C                  1              0.1371 
B*C                  1              1.5948 
B*F                  1              0.0021 
A3                     1              5.6569 
B3                     1              4.6278 
D3                     1              2.2535 
F3                      1              2.3907 
 
Unusual Observations 
Obs             Ro.Ti.         Log s2          Fit        SE Fit         Residual       St Resid 
1                    60              1.640        0.367       0.283            1.273            2.31R  
2                    30             -0.355        0.751       0.342          -1.107           -2.15R  
 
R denotes an observation with a large standardized residual 
Durbin-Watson statistic = 2.09 
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Appendix 5A.1. The Starting and Optimum Points for Minitab Response Optimizer 
 

 STARTING POINTS OPTIMUM POINTS 

POINTS 
Gypsum 

Ratio 

Roast. 

Temp. 

(°C) 

Roasting 

Time 

(min) 

Leach 

S/L 

Ratio 

Leach 

Time 

(min) 

Limestone

Ratio 

Gypsum 

Ratio 

Roast. 

Temp. 

(°C) 

Roasting 

Time 

(min) 

Leach 

S/L 

Ratio 

Leach 

Time 

(min) 

Limestone 

Ratio 

1 1.5 987 30 0.1 120 1.5 1.5 987 30 0.1 120 1.5 

2 3.23  900  120 0.4 40 2.32 3.23  900  120 0.4 40 2.32 

3 4.5 900 30 0.1 120 1.5 4.5 900 30 0.1 120 1.5 

4 1.5 878 120 0.36 120 1.5 1.5 878 120 0.36 120 1.5 

5 3 950 60 0.2 60 3 3 950 60 0.2 60 3 

6 2 1000 100 0.4 60 2 2 1000 100 0.4 60 2 

7 NO STARTING POINT 4.5 850 120 0.4 120 1.5 

8 3 970 30 0.2 120 3 3 970 30 0.112 120 2.41 

9 4.5 900 120 0.4 30 1.5 4.5 900 120 0.4 30 1.5 

10 4.5 950 60 0.3 30 4.5 4.5 950 60 0.3 30 4.5 
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Appendix 5A.2. GAMS Input Program 
 
variable S, Z; 
positive variable A, B, C, D, E, F; 
EQUATIONS OB,  EQ, EQ100, EQS, A1, A2,B1, B2 , 
C1,C2,D1,D2,E1,E2,F1,F2; 
 
OB.. Z=e= -1331.6 + 18.19*A+ 2.8857*B - 0.1209*C - 108.21*D + 0.6288*E -   
50.18*F + 0.018944*A*B + 0.19532*A*C + 5.2019*A*F - 0.0012118*B*C - 
0.14162*B*D -0.0006306*B*E + 0.05452*B*F + 3.8247*C*D - 0.01341*C*F - 
2.967*D*F - 10.02*A*A-0.0014914*B*B - 3.4884*F*F; 

 

EQ.. -2.579 + 0.05921*C + 0.008584*A*C - 0.00008092*B*C + 0.000873*B*F 
-0.02728*A*A*A+0.0000000015*B*B*B+10.609*D*D*D-
0.02979*F*F*F =l=1; 

 
EQ100..  -1331.6 + 18.19*A+ 2.8857*B - 0.1209*C - 108.21*D + 0.6288*E -      
50.18*F +0.018944*A*B + 0.19532*A*C + 5.2019*A*F - 0.0012118*B*C - 
0.14162*B*D -0.0006306*B*E + 0.05452*B*F + 3.8247*C*D - 0.01341*C*F 
- 2.967*D*F - 10.02*A*A-0.0014914*B*B - 3.4884*F*F=l=100 ; 

 

EQS..-2.579 + 0.05921*C + 0.008584*A*C - 0.00008092*B*C + 
0.000873*B*F -0.02728*A*A*A + 0.0000000015*B*B*B + 
10.609*D*D*D -    0.02979*F*F*F =e=S; 

 
A1..     A=l=4.5; 
A2..     A=g=1.5; 
B1..     B=l=1050; 
B2..     B=g=850; 
C1..     C=l=120; 
C2..     C=g=30; 
D1..     D=l=0.4; 
D2..     D=g=0.1; 
E1..     E=l=120; 
E2..     E=g=30; 
F1..     F=l=4.5; 
F2..     F=g=1.5; 
 
         MODEL ATIL1 /ALL/ ; 
         SOLVE ATIL1 USING NLP MAXIMIZING Z; 
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Appendix 5A.3. The Starting and Optimum Points for GAMS Non-Linear Programming 
 
 

 STARTING POINTS OPTIMUM POINTS 

POINTS 
Gypsum 

Ratio 

Roast. 

Temp. 

(°C) 

Roasting 

Time 

(min) 

Leach 

S/L 

Ratio 

Leach 

Time 

(min) 

Limestone

Ratio 

Gypsum 

Ratio 

Roast. 

Temp. 

(°C) 

Roasting 

Time 

(min) 

Leach 

S/L 

Ratio 

Leach 

Time 

(min) 

Limestone 

Ratio 

1 3 950 60 0.2 60 3 2.787 989 30 0.1 120 2.512 

2 2 900 75 0.1 120 2 2.787 989 30 0.1 120 2.512 

3 2.9 990 31 0.11 120 2.52 2.787 989 30 0.1 120 2.512 

4 3 850 30 0.3 45 2 2.876 1013 30 0.1 30 2.768 

5 4.5 1000 120 0.4 120 1.5 4.02 959 120 0.4 120 1.5 

6 4.5 1000 30 0.1 30 4.5 2.876 1013 30 0.1 30 2.768 

7 NO STARTING POINT 2.787 989 30 0.1 120 2.512 

8 1.5 875 60 0.4 120 4.5 1.5 966 120 0.4 120 4.5 

9 4 900 30 0.1 90 1.5 2.787 989 30 0.1 120 2.512 

10 3.75 925 100 0.25 100 2.25 3.209 980 115 0.4 120 2.12 
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    C1 C2 C3 C4 C5 C6   
   C1 -10.02 0.0095 0.098 0 0 2.6   
  B= C2 0.0095 -0.0015 -0.0006 -0.071 -0.00032 0.027   

   C3 0.098 -0.0006 0 1.912 0 -0.0067   

   C4 -0.75 -0.071 1.912 0 0 -1.484   
   C5 0 -0.00032 0 0 0 0   
   C6 2.6 0.027 -0.0067 -1.484 0 -3.49   
            

   C1 C2 C3 C4 C5 C6    
  C1 -10.02-L 0.0095 0.098 -0.75 0 2.6          X1  18.19 

 B-LI= C2 0.0095 -0.0015-L -0.0006 -0.071 -0.00032 0.027          X2  2.886 

  C3 0.098 -0.0006 -L 1.912 0 -0.0067          X3    -0.5 = -0.1209 

  C4 -0.75 -0.071 1.912 -L 0 -1.484         X4  -108.21 

  C5 0 -0.00032 0 0 -L 0         X5  0.6288 
  C6 2.6 0.027 -0.0067 -1.484 0 -3.49-L         X6  -50.18 

  EIGENVALUES         

  -10.9511          
  -3.4231          
  -1.2753          
  -0.0013          
  0.0001          
  2.1392          
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Appendix 5A.5. Solving of Ridge Analysis for λ Inside the Region of the 
Experiments 
 
 
Variable G,Z; 
    positive variable A, B, C, D, E, F, L; 
    EQUATIONS OB, P, Q, R, S, T, U, V, Y, X; 
 
    OB.. Z=e=1; 
    P.. (-10.02-L)*A+0.0095*B+0.098*C+2.6*F=e=-9.095; 
    Q.. 0.0095*A-(0.0015+L)*B-0.0006*C-0.071*D-0.00032*E+0.027*F=e=-    

1.443; 
    R.. 0.098*A-0.0006*B-L*C+1.912*D-0.0067*F=e=0.06045; 
    S.. -0.071*B+1.912*C-L*D-1.484*F=e=54.105; 
    T.. -0.00032*B-L*E=e=-0.3144; 
    U.. 2.6*A+0.027*B-0.0067*C-1.484*D-(3.49+L)*F=e=25.09; 
    V.. L=l=2.1392; 
    Y.. L=g=-10.9511; 
    X.. G=e=L; 
 
             MODEL ATIL2 /ALL/ ; 
             SOLVE ATIL2 USING NLP MAXIMIZING Z ; 
 
 

SOLUTION PROPOSED BY GAMS  
 
                       LOWER     LEVEL     UPPER    MARGINAL 
VAR G              -INF              .            +INF               . 
VAR Z              -INF         1.000         +INF               . 
VAR A                 .             3.155         +INF               . 
VAR B                 .         982.500         +INF               . 
VAR C                 .           66.764         +INF               . 
VAR D                .             0.187         +INF               . 
VAR E                 .          46.404          +INF               . 
VAR F                 .            2.555          +INF               . 
VAR L                 .                .              +INF             EPS 
 
**** λ=0 is the solution for the case that –10.391<λ<2.1392 
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Appendix 5A.6. Solving of Ridge Analysis for λ Outside the Region of the 
Experiments 
 
 
Variable G,Z; 
    positive variable A, B, C, D, E, F, L; 
    EQUATIONS OB, P, Q, R, S, T, U, V, Y, X; 
 
    OB.. Z=e=1; 
    P.. (-10.02-L)*A+0.0095*B+0.098*C+2.6*F=e=-9.095; 
    Q.. 0.0095*A-(0.0015+L)*B-0.0006*C-0.071*D-0.00032*E+0.027*F=e=-

1.443; 
    R.. 0.098*A-0.0006*B-L*C+1.912*D-0.0067*F=e=0.06045; 
    S.. -0.071*B+1.912*C-L*D-1.484*F=e=54.105; 
    T.. -0.00032*B-L*E=e=-0.3144; 
    U.. 2.6*A+0.027*B-0.0067*C-1.484*D-(3.49+L)*F=e=25.09; 
    V.. L=g=2.1392; 
    Y.. L=l=-10.9511; 
    X.. G=e=L; 
 
             MODEL ATIL2 /ALL/ ; 
             SOLVE ATIL2 USING NLP MAXIMIZING Z ; 
 
 

SOLUTION PROPOSED BY GAMS  
 
                        
SOLVER STATUS     1 NORMAL COMPLETION 
**** MODEL STATUS      5 LOCALLY INFEASIBLE 
**** OBJECTIVE VALUE                1.0000 
** Infeasible solution. There are no superbasic variables.    
 
 

 LOWER     LEVEL     UPPER    MARGINAL 
VAR G              -INF              .            +INF               . 
VAR Z              -INF         1.000         +INF               . 
VAR A                 .             3.155         +INF               . 
VAR B                 .         982.500         +INF               . 
VAR C                 .           66.764         +INF               . 
VAR D                .             0.187         +INF               . 
VAR E                 .          46.404          +INF               . 
VAR F                 .            2.555          +INF               . 
VAR L                 .                .              +INF             EPS 
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Appendix 6A.1. The Starting Model for Mean Including Optimum Points  

 
 
The regression equation is 
Ort. = 1013+67.4*A-2.55*B-0.61*C+708*D-10.0*E+312*F 
       +0.0189*AB-0.313*AC+112*AD+0.261*AE+5.20*AF 
       -0.00121*BC-0.142*BD+0.00944*B-0.348*BF+12.3*CD+0.00611*CE-

0.0134*CF-8.39*DE-2.97*DF-0.671*EF-     
20.7*A2+0.00153*B2+0.00418*C22322*D2+0.0158*E2+9.94*F2 

 
Predictor              Coef           SE Coef       T              P 
Constant           1013.0               507.9      1.99     0.093 
A                         67.39              24.49       2.75    0.033 
B                        -2.552              1.309      -1.95    0.099 
C                        -0.608              1.431      -0.42    0.686 
D                         707.8              619.2       1.14    0.297 
E                      -10.047              1.806      -5.56    0.001 
F                        312.31             82.40       3.79    0.009 
A*B              0.018944        0.007003       2.71    0.035 
A*C                 -0.3132            0.1153      -2.72    0.035 
A*D                 111.57               36.70       3.04    0.023 
A*E                  0.2606             0.4480       0.58    0.582 
A*F                  5.2019             0.4669      11.14    0.000 
B*C           -0.0012118       0.0002335      -5.19    0.002 
B*D              -0.14162            0.06711      -2.11    0.079 
B*E              0.009438          0.002241       4.21    0.006 
B*F              -0.34824            0.09107      -3.82    0.009 
C*D                 12.322                5.422       2.27    0.063 
C*E              0.006107          0.009801       0.62    0.556 
C*F               -0.01341           0.01557      -0.86    0.422 
D*E                   -8.391              7.310      -1.15    0.295 
D*F                  -2.967               4.474      -0.66    0.532 
E*F                 -0.6713             0.1587      -4.23    0.006 
A2                   -20.699               5.789      -3.58    0.012 
B2               0.0015293       0.0007258       2.11    0.080 
C2                 0.004180         0.004917       0.85    0.428 
D2                   -2322.4               797.9      -2.91    0.027 
E2                 0.015767         0.003582       4.40    0.005 
F2                       9.937               3.123       3.18    0.019 
 
S = 3.367       R-Sq = 99.6%     R-Sq(adj) = 97.7% 
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Analysis of Variance 
 
Source                    DF           SS              MS              F            P 
Regression             27      16260.81       602.25        53.12    0.000 
Residual Error         6            68.02         11.34 
Total                      33      16328.83 
 
Source       DF      Seq SS 
A                 1       11.65 
B                 1     2464.23 
C                1     1646.34 
D                1      334.88 
E                1     1238.54 
F                1     1849.67 
A*B           1      161.83 
A*C           1      171.29 
A*D           1      154.45 
A*E           1     1295.18 
A*F           1      976.63 
B*C           1      263.47 
B*D           1       17.57 
B*E           1       25.98 
B*F           1      463.35 
C*D           1       21.84 
C*E           1     2083.92 
C*F           1        4.96 
D*E           1      698.48 
D*F           1        6.09 
E*F           1      520.25 
A2             1      785.81 
B2             1      443.22 
C2             1      208.88 
D2            1      114.72 
E2             1      182.79 
F2             1      114.77 
 
Unusual Observations 
Obs    Gyp   Ort.    Fit    SE Fit   Residual  St Resid 
8       1.50  37.947  38.320   3.356    -0.374    -1.39 X 
18     3.00  22.917  22.842   3.367     0.075     1.39 X 
25     4.50  13.677  13.378   3.360     0.299     1.39 X 
28     1.50  62.355  62.355   3.367    -0.000       *  X 
29     1.50  72.110  72.110   3.367    -0.000       *  X 
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30     1.50  43.105  43.105   3.367    -0.000       *  X 
31     3.18  75.200  75.200   3.367    -0.000       *  X 
32    2.77   52.530  52.530   3.367    -0.000       *  X  
33    4.50   62.330  62.330   3.367    -0.000       *  X 
34    4.50   22.695  22.695   3.367    -0.000       *  X 
X denotes an observation whose X value gives it large influence. 
Durbin-Watson statistic = 1.98 
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Appendix 6A.2. The Regression Model Comprising Optimum Points With 
No Factor Having P-Value Greater Than 10% 
 
Regression Analysis: Mean versus Gypsum; Ro.Te.; ... 
The regression equation is 
Mean = 703 + 77.4*A - 1.70*B - 1.36*C + 337*D- 9.14*E + 255*F + 
0.0163*AB-0.248*AC + 90.6*AD+ 5.10*AF - 0.00115*BC - 0.121*BD + 
0.00792*BE -0.287*BF + 8.95*CD + 0.0116*CE - 4.09*DE - 0.567*EF - 
17.0*A2 +  0.00106*B2 + 0.00582*C2 – 1842*D2 + 0.0157*E2 + 7.87*F2 
 
Predictor                   Coef             SE Coef        T           P 
Constant                  702.9                319.7       2.20    0.055 
A                             77.44                 13.32       5.82    0.000 
B                          -1.7035               0.6852      -2.49    0.035 
C                          -1.3554               0.4839      -2.80    0.021 
D                           337.09                 71.11       4.74    0.001 
E                            -9.141                 1.443      -6.34    0.000 
F                           255.44                  40.00       6.39    0.000 
A*B                  0.016252            0.005850       2.78    0.021 
A*C                   -0.24790              0.05860      -4.23    0.002 
A*D                        90.57                  20.01       4.53    0.001 
A*F                       5.1048                0.4086      12.49    0.000 
B*C                -0.0011496          0.0002003      -5.74    0.000 
B*D                   -0.12117               0.05779      -2.10    0.065 
B*E                   0.007921             0.001108       7.15    0.000 
B*F                    -0.28658              0.04403      -6.51    0.000 
C*D                       8.9461                0.8377      10.68    0.000 
C*E                    0.011551            0.001304       8.86    0.000 
D*E                      -4.0862                0.7136      -5.73    0.000 
E*F                     -0.56656              0.07959      -7.12    0.000 
A2                          -16.963                 2.004      -8.47    0.000 
B2                      0.0010576         0.0003752       2.82    0.020 
C2                        0.005822           0.003073       1.89    0.091 
D2                          -1842.2                 221.1      -8.33    0.000 
E2                         0.015701          0.002881       5.45    0.000 
F2                               7.874                1.592       4.94    0.001 

S = 3.040       R-Sq = 99.5%     R-Sq(adj) = 98.1% 
 
Analysis of Variance 
Source               DF           SS             MS            F            P 
Regression         24   16245.64       676.90       73.23    0.000 
Residual Error     9          83.19          9.24 
Total                 33    16328.83 
Durbin-Watson statistic = 1.64 
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Appendix 6A.3. The Best Regression Model Comprising Optimum Points 
 

Regression Analysis: Mean versus Gypsum; Ro.Te; .. 

The regression equation is 
  Mean =  769 + 78.2*A - 1.85*B - 1.38*C + 343*D - 9.46*E + 266*F 
            + 0.0181*AB - 0.254*AC + 93.2*AD + 5.12*AF - 0.00115*BC  

- 0.135*BD + 0.00819*BE - 0.297*BF + 9.09*CD + 0.0116*CE 
- 0.0124*CF - 4.09*DE - 0.584*EF - 17.4*A2 + 0.00114*B2 +  
+ 0.00614*C2 – 1864*D2 + 0.0162*E2 + 8.23*F2 

 

Predictor             Coef          SE Coef        T          P 
Constant            768.8             332.8       2.31    0.050 
A                        78.16             13.52       5.78    0.000 
B                     -1.8507           0.7148      -2.59    0.032 
C                     -1.3787           0.4912      -2.81    0.023 
D                      342.71             72.37       4.74    0.001 
E                       -9.458             1.507      -6.28    0.000 
F                       266.01            42.32       6.29    0.000 
A*B             0.018113       0.006303       2.87     0.021 
A*C              -0.25436        0.05986      -4.25     0.003 
A*D                   93.18            20.50       4.55      0.002 
A*F                  5.1191          0.4145      12.35    0.000 
B*C           -0.0011513    0.0002031      -5.67    0.000 
B*D               -0.13523       0.06076      -2.23     0.057 
B*E               0.008193     0.001166       7.03     0.000 
B*F               -0.29740       0.04633      -6.42     0.000 
C*D                 9.0914         0.8654      10.51     0.000 
C*E              0.011571     0.001322       8.75     0.000 
C*F               -0.01238       0.01421      -0.87    0.409 
D*E                 -4.0865         0.7233      -5.65    0.000 
E*F               -0.58447        0.08325      -7.02    0.000 
A2                   -17.383            2.087      -8.33    0.000 
B2               0.0011381   0.0003914       2.91     0.020 
C2                 0.006138     0.003136       1.96     0.086 
D2                   -1863.7           225.5      -8.27     0.000 
E2                 0.016246     0.002986       5.44     0.001 
F2                       8.235           1.666       4.94     0.001 
 
S = 3.082       R-Sq = 99.5%     R-Sq(adj) = 98.1% 
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Analysis of Variance 
Source              DF         SS              MS              F             P 
Regression        25   16252.85       650.11     68.46    0.000 
Residual Error    8         75.97           9.50 
Total                33   16328.83 
 
Source       DF      Seq SS 
A                1       11.65 
B                1     2464.23 
C                1     1646.34 
D                1      334.88 
E                 1     1238.54 
F                 1     1849.67 
A*B           1      161.83 
A*C           1      171.29 
A*D           1      154.45 
A*F           1     1815.20 
B*C           1      314.76 
B*D           1       15.69 
B*E           1       80.25 
B*F           1      271.47 
C*D           1        7.86 
C*E           1       50.33 
C*F           1        0.22 
D*E           1      580.79 
E*F           1      600.13 
A2             1     1077.26 
B2             1     1052.49 
C2             1     1580.49 
D2            1      482.01 
E2             1       59.07 
F2             1      231.95 
 
Unusual Observations 
Obs       Gypsum       Mean      Fit    SE Fit       Residual      St Resid 
33            4.50           62.330  62.171  3.069          0.159      0.56 X 
X denotes an observation whose X value gives it large influence. 

Durbin-Watson statistic = 1.96 
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              Appendix 6A.4. The Starting and Optimum Points for Minitab Response Optimizer for maximizing extraction  
              while minimizing variation 
 

 STARTING POINTS OPTIMUM POINTS 

POINTS 
Gypsum 

Ratio 

Roast. 

Temp. 

(°C) 

Roasting 

Time 

(min) 

Leach 

S/L 

Ratio 

Leach 

Time 

(min) 

Limestone 

Ratio 

Gypsum 

Ratio 

Roast. 

Temp. 

(°C) 

Roasting 

Time 

(min) 

Leach 

S/L 

Ratio 

Leach 

Time 

(min) 

Limestone 

Ratio 

1 1.5 918 120 0.17 120 1.5 1.5 918 120 0.17 120 1.5 

2 1.5 940 120  0.15 120 1.5 1.53 940 120  0.15 120 1.5 

3 1.5 950 120 0.17 120 2 1.57 950 120 0.15 120 1.77 

4 1.5 915 120 0.26 120 1.5 1.5 915 120 0.26 120 1.5 

5 1.5 915 120 0.25 120 2 1.5 915 120 0.25 120 2 

6 1.5 940 120 0.2 120 1.5 1.5 940 120 0.2 120 1.5 

7 NO STARTING POINT 4.5 850 120 0.1 30 4.5 

8 1.5 1000 60 0.4 45 1.5 4.39 1000 59 0.31 41 4.5 

9 1.5 1050 30 0.1 120 1.5 1.5 1050 30 0.1 120 1.5 

10 3.178 986 67 0.187 33 2.6 3.178 986 67 0.18 30 3.03 

 
 
 

 

144



 


