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ABSTRACT

ROBUST DESIGN OF LITHIUM EXTRACTION FROM BORON
CLAYS BY USING STATISTICAL DESIGN AND ANALYSIS
OF EXPERIMENTS

Biiytikburg, Atil
M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Giilser Koksal

September 2003, 144 pages

In this thesis, it is aimed to design lithium extraction from boron clays
using statistical design of experiments and robust design methodologies. There
are several factors affecting extraction of lithium from clays. The most important
of these factors have been limited to a number of six which have been gypsum to
clay ratio, roasting temperature, roasting time, leaching solid to liquid ratio,
leaching time and limestone to clay ratio. For every factor, three levels have
been chosen and an experiment has been designed. After performing three
replications for each of the experimental run, signal to noise ratio
transformation, ANOVA, regression analysis and response surface methodology
have been applied on the results of the experiments. Optimization and
confirmation experiments have been made sequentially to find factor settings
that maximize lithium extraction with minimal variation. The mean of the
maximum extraction has been observed as 83.81% with a standard deviation
of 4.89 and the 95% prediction interval for the mean extraction is (73.729,
94.730). This result is in agreement with the studies that have been made in
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the literature. However; this study is unique in the sense that lithium is extracted
from boron clays by using limestone directly from the nature, and gypsum as a
waste product of boric acid production. Since these two materials add about 20%
cost to the extraction process, the results of this study become important.
Moreover, in this study it has been shown that statistical design of experiments

help mining industry to reduce the need for standardization.

Keywords: Statistical Design of Experiments, Taguchi Method, Robust Design,
Response Surface Methodology, Lithium Extraction, Boron Clays
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Oz

BOR KILLERINDEN LITYUM KAZANIMININ ISTATISTIKSEL
DENEY TASARIMI VE ANALIZI YOLUYLA
ROBUST TASARIMI

Biiyiikburg, Atil

Yiiksek Lisans, Endiistri Miihendisligi
Tez Yoneticisi: Dog. Dr. Giilser Koksal

Eylil 2003, 144 Sayfa

Bu tez c¢alismasinda, bor killerinden lityumun kazanilmasinin,
istatistiksel deney tasarimi ve robust tasarim metotlar1 uygulanarak tasarlanmasi
amaclanmistir. Lityumun killerden kazanimi etkileyen cgesitli faktorler vardir.
Bunlar i¢inde en 6nemlileri alt1 faktdrde sinirlanmistir. Bunlar jipsin kile oran,
kavurma sicakligl, kavurma siiresi, licin kat1 sivi orani, li¢ siiresi, kiregtaginin
kile oramidir. Her parametre icin iic seviye secilecek sekilde, deney
tasarlanmistir. Her deney i¢in ii¢ tekrar yapildiktan sonra, sinyal/giiriiltii orani
doniistimii, ANOVA, regresyon analizi ve cevap ylizeyi metotlari, deney
sonugclar lizerinde uygulanmistir. En yiiksek lityumun ¢éziinmesini ve en diistik
sapmay1 saglayacak faktor seviyelerinin bulunmasi i¢in  optimizasyon ve
dogrulama deneyleri bir onceki sonuglar kullanilarak yapilmistir. Deneyler
sonucunda ortalama lityum kazanimi %483.81 olurken, standard sapma 4.89
olarak hesaplanmis, %95 tahmin araligi ise (73.729, 94.730) olarak
bulunmustur. Elde edilen bu sonuglar, literatiirde yapilmis olan killerden lityum
kazanimi c¢aligmalar1 ile uyumluluk gostermektedir. Ancak bu calismada
killerden lityum kazanimina yeni bir bakis agis1 getirilmis ve proses esnasinda
kullanilan kirectasinin dogrudan dogadan saglanmasi, jips olarak ise borik asit

A\



iretiminde aci8a ¢ikan kati atigin kullanilmasi disliniilmiistiir. Bu iki
hammaddenin toplam proses ekonomisine yaklasik %Z20’lik bir maliyet
getirdigi géz oniine alindiginda ¢ok 6nemli oldugu diistiniilmektedir. Ayrica bu
calismada madencilik sektoriinde standardizasyona duyulan ihtiyacin

istatistiksel deney tasariminin yardimiyla azaltilabilecegi gosterilmistir.

Anahtar Kelimeler: Istatistiksel Deney Tasarimi, Taguchi Metodu, Robust

Tasarim, Cevap Yiizeyi Metodolojisi, Lityum Kazanimi, Bor Killeri
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CHAPTER I

INTRODUCTION

The aim of this study is to use statistical experimental design and
analysis of these experiments in order to maximize the extraction of lithium
from the clays of the boron fields. While achieving this aim, it is tried to make
the lithium extraction robust to the variations in the process. Taguchi’s Ly; (3")
orthogonal array has been chosen as the statistical experimental design. In order
to analyse the robustness of the process, three replications have been performed.
Signal-to-Noise (S/N) ratio, Analysis of Variance (ANOVA) and Regression
Analysis (for both mean and standard deviation) and Response Surface
Methodology have been used in order to maximize the mean of lithium
extraction and minimize the variation.

The widest application areas of lithium and its compounds are in several
industries such as glass, ceramics, lubricants, pharmaceutics, metallurgy and
batteries (Fishwick, 1974). In the ceramic industry, lithium is used as an additive
to frits and glazes to reduce the viscosity. In the pharmaceutics industry, it is
used in the synthesis of vitamin A and in the treatment of manic-depressive
disorders. As lithium has high energy density, it is a desirable electrode material
in batteries. Lithium compounds like lithium carbonate (Li,COs3) is added to the
aluminium electrolysis cells in order to increase current efficiency and thereby

decreasing the power consumption (Fishwick, 1974).



It is known that lithium occurs in boron fields (Mordogan et. al., 1995,
Beskardes et. al., 1992 and Biiyiikburg et. al., 2002) all of which owned by a
state-hold company, Eti Holding, Inc. Therefore, from the clays of boron
minerals, lithium has been tried to be extracted and production of Li,CO3 has
been aimed. In this study a different approach has been suggested for the
extraction process design. This approach has been based on using raw materials
that can be obtained from the facilities and fields of Eti Holding, Inc. Therefore,
the raw material cost will be minimized so that no payment will be made for
purchasing these raw materials. The studies in literature have not used or have
not had any chance to use such an approach.

There are several factors affecting the Li,CO; production from clays.
The production steps can be simplified as pelletizing, roasting, leaching,
evaporation, precipitation and filtering.

The first and main part of the process is to take lithium into the solution.
The most important parameters of taking lithium into solution can be classified
as; raw material to clay ratio, roasting temperature, roasting time, leaching time
and leaching solid to liquid ratio. In order to perform the experiments, three
levels for each factor have been determined and Taguchi’s L,7(3") orthogonal
array is chosen in order to estimate the main effects and some of interactions. To
perform robust analysis and study the variations, three replications for each run
have been obtained. S/N ratio has been estimated and analysis of variance
(ANOVA) has been performed. The regression analyses for both the mean and
the standard deviation have been conducted. In order to achieve the maximum
solubility, response surface methodology has been used and it has been tried to
find the global optimum of extraction by employing the GAMS non-linear
programming and the methodology of response surfaces for 2™ order surfaces,
Ridge Analysis. Although after completing the designed experiments maximum
extraction has been identified as 73%, applying optimization methods has
increased the extraction to about 83% on the average. These methodologies have
not been applied commonly in mining industry, without making any

standardization to the best of our knowledge.



In Chapter II, the background on the methods used in this study has been
provided. In Chapter III, problem definition and the experimental procedure
have been explained. In Chapter IV, the design, analysis and conduct of
experiments have been explained. In Chapter V, the optimization study has been
reported. In Chapter VI, an attempt to improve the optimum points has been
presented. In Chapter VII, a cost analysis for this study has been made. Finally
in Chapter VIII, the results obtained from this study have been discussed and

suggestions for future work have been made.



CHAPTER I

LITERATURE SURVEY

2.1. Background On Lithium Extraction

In this study, lithium has been extracted from boron fields by applying
roasting and leaching processes simultaneously, and the experiments have been
performed by using orthogonal arrays, and analysis of experiments (ANOVA,
Regression) has been performed. On the results gained from regression,
response surface and robust design methodologies have been applied.

Lithium is the third element of the periodic table coming after hydrogen
and helium. It is the lightest metal and its atomic weight is 6.938. The name
lithium originates from the Greek word “lithos” that means stone. The first
identification of lithium was in the 19" century by Johan August Arfvedson.
Arfvedson had analysed the content of a mineral later called spodumene
[LiAl(Si1,06)] and saw that an accounted portion of the ore was not identified
(Kroschwitz, 1994). Further work resulted in extraction of a compound that had
unknown chemical properties. However; it was not until 1855 that lithium was
extracted as a free metal by the studies of Robert Bunsen and Augustus
Matthienson. They achieved these by electrolysis of lithium chloride. In 1923,
Metallgesellschaft AG in Germany did the first commercial production of
lithium. The first production of lithium on an appreciable scale was during
1900’s as spodumene mineral of Etta Mine in the Black Hills of South Dakota.
The large increase of lithium and its derivatives production were in the middle
of 1950’s due to the thermonuclear program of Atomic Energy Commission
(AEC). The program had been completed in 1960 and the lithium producers
have been left with an excess capacity. However; after 1960 new application
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areas of lithium were found.

The average concentration of lithium in earth’s crust is about 0,006%
and it is supposed that there exists 0,1 ppm lithium in seawater. The main
sources of lithium are clays, minerals and brines. However; current commercial
production is made from minerals and brines. The commercially important
lithium minerals are spodumene, lepidolite, petalite and amblygonite (Saller and
O’Driscoll, 2000). These minerals are either used directly in certain applications
or they are converted in the lithium compounds such as Li,COs;, LiCl, LiOH.
Li,COs production is made both from minerals and brines. The production is
made mainly from brines as this is easier and cheaper than mineral processing.

A smectit-type clay which contained minimum lithium content of about
4500 ppm 1is called hectorite. This type of clay is not currently used for
producing lithium but instead is used directly in different applications. Some
studies were performed (Lien, 1985, May et. al., 1980 and Edlund, 1983) in
order to extract lithium from these clays and then producing Li,COs.

Lithium carbonate (Li,COs3) is the most important compound of lithium,
which is a raw material for various industries as explained in Chapter 1. Li,CO;
is produced commercially from minerals and brines. The production route from
minerals includes crushing of spodumene mineral and applying of flotation in
order to produce concentrate. Then the concentrate goes through a heating
process at about 1100°C and the crystal structure of spodumene is altered so it
becomes more reactive to sulfuric acid. The mixture of finely ground converted
spodumene and sulfuric acid is heated to 250°C and forms lithium sulphate
which is a water soluble compound. After leaching with water, insoluble
compounds are separated by filtration. Lithium carbonate is achieved by reacting
lithium sulphate and sodium carbonate (Na,COs) (Ober, 2001). As this process
is energy intensive, producing lithium carbonate is expensive when compared
with the production from brines and the production is shifting to that side. The
production from brines mainly includes evaporation, filtration, and precipitation
steps. The schematic diagram of Li,COj; production from the world’s largest
lithium containing brine (Salar de Atacama, Chile), is shown in Figure 2.1.

5
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Ooi et. al. (1986) have claimed that if the application of lithium in
thermonuclear fusion will come to the stage, the known lithium reserves will not
be enough to supply this demand, and extraction of lithium from the sea water
will be needed regardless of the low concentration which is 0.17 ppm. However;
before coming to the extraction from sea water, the recovery from lithium
bearing clays are to be thought. By this point of view, various studies have been
performed in order to extract lithium from clays. The methods to extract lithium
can be classified as water disaggregation, sulfuric acid leaching, acid baking-
water leaching, alkaline roast-water leach, sulfate roast-water leach, chloride
roast-water leach, multiple reagent roast-water leach (May et. al., 1980),
selective chlorination (Davidson, 1981) and lime-gypsum roasting-water leach
(Edlund, 1983 and Lien, 1985). Among all these, lime-gypsum roasting-water
leach is the most promising method. Edlund (1983) tries to optimize the lime-
gypsum ratios and roasting parameters. He conducts the experiment in different
atmospheres such as N,+CO atmosphere, CO+H,O+N, atmosphere.
Clay:Lime:Gypsum ratio 5:3:3 is found as the optimum. The calcination time is
prolonged to 4 hours and experiments are conducted for hours between 1-4. The
results indicate that calcination temperature of 900°C yields the best results for
batch production with a rotary furnace. According to the same study, in an
electrically heated furnace the extraction yield has increased for all
temperatures. Lien (1985) makes an extensive study for producing Li,CO;3 from
a montmorillonite-type clay containing %0,6 lithium. He also sets the
clay:lime:gypsum ratio to 5:3:3 as optimum and conducts the experiments in the
calcination temperature range of 750-1100°C for 1 hour. Lien (1985) concludes
that 78-82% of lithium in the clay can be recovered. He also estimates the
production cost of Li,CO;3 and finds the cost as 1.4 fold larger than market price
of Li,COs. The process flow chart is given in Figure 2.2.
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Extraction of lithium from boron fields has been the subject of Turkish
researchers (Mordogan et.al, 1995 and Beskardes et.al, 1992). Mordogan et. al.
(1995) conclude that 77% of lithium from Kirka clays can be recovered by
adding 16,67% gypsum to the clay but no lime. Calcination temperature and
time set as 900°C and 2 hours as optimum. Leaching time and solid:liquid ratio
used are 1 hour and 0.1 respectively. Beskardes et. al. (1992) mainly concern
with the application of Bigadi¢ clays for industrial use and try to investigate the
economy of recovering lithium. They conclude that the cost of recovering

lithium is 10,95%/kg which is about 3 times the selling price of Li,COs.

2.2. Background on Design and Analysis of Experiments for

Optimization

In this study, natural lime-waste gypsum roasting-water leach method
has been used in order to extract lithium from boron fields. The experiments
have been performed by using Taguchi’s L,; (3") orthogonal array and analysed
by using robust design methodologies. S/N Ratio, ANOVA, regression and
response surface are the methods that have been used to analyse the experiments
and optimize the extraction of lithium.

After World War II, Japan faced the problem of reconstruction the
country. The main problem was from good-quality raw material, high-quality
manufacturing equipment and skilled engineers (Phadke, 1989). To meet this
challenge, Genichi Taguchi was assigned and he developed the foundations of
Robust Design. The Robust Design method provides a systematic and efficient
approach in order to get close to the optimum by having the product functional,
exhibiting high performance and robust to variations (Erdogan, 2000).

The robust design methodology strives for:

1. Making product performance insensitive to raw material which in turn
leads to independence from the grade or quality of the raw material or

components in the process.



2. Making the design robust to the manufacturing variation in order to
reduce labor and material cost for rework.

3. Having the design less sensitive to operating environment so that the
reliability improves and operating cost decreases.

4. Using a novel development process, which will help, in using the
engineering time more productively.

In order to achieve these aims, robust design simply tries to minimize the
sensitivity of the process or product to the variation caused by uncontrollable
factors without sacrificing the main aim, optimizing the mean (minimize,
maximize or on target). The optimum settings of the controllable factors are
found and set to minimize the variation. Robust Design involves eight steps
which can be grouped into three categories as planning experiments, conducting

them and analyzing and conforming the results (Phadke, 1989).

Planning the experiment contains;

a- lIdentifying of the main function

b- Identify noise factors and testing conditions for quality loss

c- Decide on the quality characteristic to observe and the objective
function to be optimized

d- lIdentifying and levelling of the control factors

e- Choosing the most suitable experiment design and data analysis
procedure

Performing the experiments contains;

/- Conducting the experiments

Analyzing and conforming the results consists of;

g- Analyzing the data and determining of optimum levels for control

factors
h- Conduct the confirmation experiments and planning future actions
The Robust Design method developed by Taguchi has two major tools;

signal-to-noise ratio and orthogonal arrays.
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When we intentionally deal with the problem of minimizing the variation
and the optimization of the response simultaneously, we can transform our data
such that we can observe the variation and the mean. Taguchi recommended the
transformation of the raw data to signal-to-noise ratio (S/N). S/N ratio
consolidates several repetitions (at least two data points are required) into one
value which reflects the amount of variation (Ross, 1988). In Robust Design,
S/N ratio is used as the objective function to be maximized.

A process simply consists of input, controllable and uncontrollable

factors and output as shown in Figure 2.3.

Uncontrollable Factors

Input Output
PROCESS >

A 4

? Conrollable

‘ Factors
Figure 2.3. General model of a process

In S/N ratio terminology, the controllable factors for a fixed target or
static problem can be considered as signal factors and these can be intentionally
adjusted to accomplish a controlled change in the output of the system.
Uncontrollable factors are named as noise factors and these are known to affect
a system’s performance. However; the settings of these factors can not be
controlled or it is not feasible to control them in actual operation. Noise factors
can be split into three categories as inner noise, outer noise and between-
products noise. Inner noise is the internal source of variability in a product’s
function such as deterioration of components in response to aging. Outer noise is
the one that is external sources of variability like operating environment;

temperature, humidity. Between-products noise is caused by the variability in
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the manufacturing procedures or equipment. Welding amperage can be an
example for such a noise.

Using S/N ratio we can simply analyze the results of the experiments
involving multiple runs, instead of extended and time-consuming analysis. S/N
ratio lets the selection of the optimum objective with minimum variation around
the target.

A classical example can be given to show the idea of S/N ratio. Let us
consider a radio that the signal factor is the power of the radio signal and
noise factor is interference of storm. The clearness of radio signal is the target
and the storm interference is variation. The most desirable situation is strong
signal and little interference whereas the least desirable situation is weak signal
and strong interference. So maximizing radio signal/storm interference will be
the most suited case for our problem.

There are three types of S/N ratios for static cases;

- Nominal-the-Best

- Smaller-the-Better

- Larger-the-Better
Nominal-the-Best: Nominal-the-best is the correct type when we have the
following conditions;

L: Quality Loss =0 when p:Target=m, and c.:Deviation=0
To simplify, nominal-the best is a measurable characteristic with a specific user-

defined target. The transformation to S/N ratio can be made by the following

formula:
—2
n=10LOGZ [2.1]
s
where;
n = symbol for S/N; (dB)
Z Vi
y = mean = =— n= number of data points, y;= the result of the i" data
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s = std.dev. =

Smaller-the-Better: If we have the following criteria;

L: Quality Loss =0 when p=0 and c.:Deviation=0

then Smaller-the-Better type S/N ratio can be used. This simply corresponds to
the target of achieving zero which is the smallest obtainable value, without
negative values. If the system is capable of attaining both negative and positive
values, then this is a case for Nominal-the-Best type.

The transformation formula for smaller-the-best type is:

n =-10LOGYV, vV, = lz y? [2.2]
n iz

where; n= number of replications
yi = i" value
The specific examples for smaller-the-better type problems are direct evaluation

of energy, leakage of any matter (gas, solid, liquid) or pollution.

Larger-the-Better: When we have the following requirement;

L: Quality Loss =0 when p=+00, and c.:Deviation=0

then the larger-the-better type is the most suitable one. If a system will be
defined as perfect when it approaches to infinity, larger-the-better should be
used. Dr.Taguchi recommends to use the inverse of the target of zero which is
similar to opposite of smaller-the-better type. Therefore the transformation to the

S/N ratio can be performed by the formula:

n =-10LOGYV, V- lziz [2.3]
nic y;

Weld strength, profit, material strength and fuel efficiency can be the examples

of larger-the-better type.
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Another tool used in Robust Design methodology is orthogonal arrays.
Orthogonal array is a type of statistical design of experiments and are called
matrix experiments also. Ronald Fisher who introduced analysis of variance
(ANOVA) was the primary founder of the statistically designed experiments. He
first applied this method in agricultural studies and later statistically designed
experiments have found wide applications in Medical and R&D activities. There
are various kind of designs such as; one factor at a time, full factorial, fractional
factorial, central composite design and orthogonal arrays. In designing,
conducting and analyzing an experiment, there are major steps (Ross, 1988).
These can be listed as:

1. Selection of factors and/or interactions to be evaluated
Selection of number of levels for the factors
Selection of the appropriate orthogonal arrays
Assignment of factors and/or interactions to columns
Conducting tests

Analyzing tests

A

Making the confirmation experiments

Orthogonal array is the foundation for designing an experiment in
Taguchi methodology. Orthogonal means being balanced and not mixed. In
statististical terminology, orthogonal means statistically independent. Notation
of orthogonal arrays is L, (b®) where “L” is an symbol for orthogonal array, “a”
stands for the number of experiments required for this array, “b” shows the
number of test levels for each factor and “c” points out the number of factors
that this array can examine. For example Ly (3") tells that this array requires 27
experiments, and with these, thirteen 3 level factors can be analysed.

In statistical terminology a matrix is said to be orthogonal if following
two criteria occur ;

= all possible combinations of test levels occur between pairs of

columns

= and each of these combinations occur an equal number of times

14



There are several orthogonal arrays that are used. The most widely
ones are L4(2%), Lg(27), Lo(3%), L12(2"), L16(4”), Lis (2'x37), L1s(5°), L»7(3") and
L3»(2*"). There are other orthogonal arrays that are less common such as
L20(219), L98(715x21), L121(1112), L169(1314). It is possible to create new
orthogonal arrays by merging colums of the most widely used ones. Some
examples for such arrays are; L13(6'x3%), L7(9'x3%), Lgi(9'%) and L128(441x24).
Unal (2001) lists all these orthogonal arrays and in Phadke (1989), interaction
tables and linear graphs of the most commonly used arrays can be found.

After performing the experiments, the analysis and model fitting of the
experimental data come into nature. Model fitting is made by using regression.
Regression analysis is called simple regression when the model contains only
one factor. If there are more than one factor in the model, then multiple
regression is performed to fit a model. When the model contains only linear

terms then this model fitting is called multiple linear regression, and denoted by:

y=Bot BiXi + PoXo + ..+ PiXi + € [2.4]
When the model contains square and interaction terms then the model is called
quadratic regression and the model is formulated as:

k Kk k
=By + Zﬂjxj + Zzﬂjmxjxm + Zﬂjjx/z‘
j=1 Jj=1

j=lm=1

[2.5]

for j<m

In order to find the optimum point in the model, response surface
methodology can be used. An experimenter wishes to have the optimum point in
his/her experimental region. An appropriate way to see whether the global
optimum lies in the experimental region is to apply response surface methods.
For a regression problem including only the linear terms in x;’s, it is easy for
response methodology to reach to optimum by using the method called steepest
ascent. This method basically tries to reach the optimum by moving b; units in,
say X direction for every b, units in, say X, direction starting at the centre
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(0,0) of the experimental design if X; and X, are the only variables. Thus, the
steps along the path are proportional to the regression coefficients ([3;’s)
(Montgomery, 1997). If second order model is necessary to explain the
relationship, ridge analysis can be used.

The technique of ridge analysis was first suggested by A.E.Hoerl (1959)
and later urged by R.W.Hoerl (1985). It is developed form of the steepest ascent
that will apply to second-order surfaces and finds its origin in Box and Wilson
(1951) (Box and Draper, 1987).

The method simply comprises the following:

Consider the 2™ order response surface in k variables x, Xa...., Xy that
1=Dbo+ bx; + byxs + ... + bixi + byx;2 + baoxa® + .. + bk +

bxixs + bisxixz+ ... +bk_1’ka_1Xk [2.6]

Suppose a sphere centring at the origin [usually (0,0....,0)] and having
radius R is drawn. Then it is certain that somewhere in the sphere there will be a
maximum and elsewhere a minimum. Also depending on the type of quadratic
surface [2.6] values of p which are local maxima or minima, that is maxima and
minima for all nearby points on the sphere, but not absolute maxima or minima
when all points of the sphere are taken into consideration (Box and Draper,
1987).

For ridge analysis, application of the method of Lagrange multipliers

leads to the following equations, which must be solved for X = (x, xa,.. .,xk)/:

(B-Al)x=-1/2b [2.7]
b11 1/2b21 1/2b1k b1
b
B: 1/2b12 bzz I/szk b= 2
by
12b1x  1/2by bk
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Let the eigenvalues of the matrix B be denoted by p; (i=1,...,k). Then, det (B-
ul) = 0 will provide the eigenvalues. Suppose that the largest eigenvalue for B is
ur, and the smallest eigenvalue is ps. Some assignment values to A is given and
equation [2.7] is solved and values for xi, X»....,xx are computed. Whether the
assigned A value is outside the interval [pus pr] or inside the interval gives the

decision of the point, X = (Xi, X2,...,Xx) as local or global maxima or minima

(Box and Draper, 1987).

Contour plots and response surface graphs are two basic constitutes of
response surface methodologies that help the researcher visualise the surfaces
more easily. An example adapted from literature showing the response surface
graphs and contour plots with the pathway that should be followed while

conducting response surface methodology are given in Figures 2.4 and 2.5.

Applications of response surfaces can be read from Ozler (1997), Myers
(1971), Myers et. al. (1989), Lin et. al. (1995), Handle et. al. (1997) and Myers
et. al. (1999). Applications of robust design can be found in Koolen (1998),
Koksal et. al. (1998), Koksal (1992), Menon et. al. (2002) and Khoei et. al.
(2002).
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Figure 2.4. The flow diagram of Response Surface Methodology (Abacioglu,

1999)
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Figure 2.5. Contour plot and a response surface (George et.al, 2000).

19



CHAPTER Il

PROBLEM DEFINITION AND EXPERIMENTAL PROCEDURE

Boron minerals in Turkey are completely owned by Eti Bor, a subsidiary
of Eti Holding. Boron minerals are found in four different places in Turkey.
Three different boron minerals are mined in these four locations. Colemanite
(CayB6011.5H,0) mineral is mined in Kestelek (Bursa), in Bigadi¢ (Balikesir)
and in Emet (Kiitahya). Ulexite (NaCaBs09.8H,0) is mined in Bigadi¢ and
Tincal (Na,B407.10H,0) is mined in Kirka (Eskisehir). After extracting the run-
of-mine ore, physical (crushing, washing, sieving and so on) processes should be
applied to recover the mineral. These processes are applied in order to separate
the valuable part of the ore (B,O3;) from relatively less valuable part (clay,
limestone, marn, tuff) totally named as gangue minerals. These gangue minerals
are stored in tailings pond as slurry or solid. Some studies have been conducted
to beneficiate the clay minerals of boron fields. Some of the studies concentrate
on extracting the lithium content of Bigadic clays. Bigadi¢ clays contain nearly
about 2500 ppm lithium (Mordogan et. al., 1995 and Biiylikburg et. al., 2002)
and this can be a potential source for future use.

The extraction of lithium comprises mixing of raw materials, roasting
them and leaching with water. After taking lithium in the solution, it is
concentrated by evaporation and then precipitated by the addition of Na,CO:s.
Therefore we can roughly divide Li,COj; production into two stages; extraction
(taking into solution) and precipitation (reacting with Na,CO;). Extraction
mostly affects the yield of the whole process as the solid part of the leaching is a
residue. Extraction includes three processes; raw material preparation (crushing,
grinding), roasting, leaching. During these processes, many factors cause
variation that affect the extraction yield. These factors are listed in Table 3.1.
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Table 3.1. Factors Affecting the Extraction of Lithium

Process Factors Affecting Lithium Extraction

Mixing ratios

The contents of the raw materials:

a. CaS04.2H,0 content of gypsum*

Raw Material Preparation b. CaCO3 content of limestone*

c. Lithium content of clay*

Measurement Error

a. Calibration of balance

Roasting temperature

Roasting Roasting time

Temperature variation in the furnace

Leaching time

Leaching solid to liquid ratio

Leaching temperature

Stirring speed

Leaching Leaching particle size

Measurement Error

a. Calibration of balance

b. Accuracy of container

c. Chemical Analyses

* The contents vary since the raw materials are from nature (limestone) or
wastes (clay and gypsum).

As there is no industrial production of lithium from clays, probably some
of the factors affecting the process have been neglected. Some of the factors
listed above are control factors and some are noise factors. However; in order to
simulate the production environment, some controllable factors not studied and
certain predetermined levels are used for them. Moreover; to control some of the
factors will bring additional cost to the process. This is especially valid for
bringing the contents of the raw materials to minimum value (standardization).

However; standardization has not been taken into consideration in this study and
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contents of the raw materials have been left as a noise factor. In real production
environment; as the capacities are so high, the measurements about weighting
are to be based on tonnage and some variation in weighting of the solids and
measuring the volume of the liquid may occur. In this study, the measurements
have been made accurately so such errors in the production environment have
not been simulated. Another important noise factor that can affect the yield of
the extraction is, temperature variation in the furnace. In the real production
environment, temperature can not be kept consistently at given levels or this is
not desired, as it will increase the cost. In this study, a furnace that shows £10°C
variation has been used in order to simulate the production environment.
Leaching temperature is another important factor that can affect the solubility of
lithium sulphate, hence extraction. As the room temperature solubility of lithium
sulphate is 40 gr/lt, it is not needed to work at high leaching temperatures.
Moreover, leaching will be made at room temperature in the real production
environment so this factor can be simulated, however, as solubility increases
with increasing temperature, in this study it is not claimed to have robustness
against leaching temperatures other than the room temperature. Stirring speed is
another factor that can not be followed accurately in the production
environment. Therefore, in this study stirring speed has been let to variate £10
rotations per minute. That means the stirring speed has been left to vary between
400-420 (410£10) rpm so that noise factor can be simulated well. Leaching
particle size is another factor. However; as leaching in the real production
environment will be made with powder particles (particle size less than 200 )
and as in this study the average particle size has been set around 74, this factor
has been simulated well. In this study, pelletizing has not been made although it
has been made in other studies in literature (Beskardes et. al. 1992, Mordogan et.
al., 1995 and Lien 1985). The results of this study do not show a considerable
difference from those studies. However; if pelletizing is needed in the real
production environment due to high dusting environment in roasting process,
then leaching particle size should be taken into consideration. Other factors

such as clay:gypsum:limestone mixing ratio, roasting temperature, roasting
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time, leaching solid to liquid ratio and leaching time have been chosen as the
control factors in this study. Another important noise factor is accuracy of
chemical analyses. In order to overcome this factor a mass balance has been set
up and if there occurs larger than 15% difference in mass balance then analyses
and/or experiments have been repeated.
3.1 RAW MATERIAL PREPARATION

Three raw materials are used in extracting lithium. First one is the clay
from boron fields and the others are gypsum and limestone. The studies about
extracting lithium from clays present that the process is cost-sensitive.
(Beskardes, 1992 and Lien, 1985). In order to decrease the cost, the reagents
(gypsum and limestone) are not purchased from chemical suppliers or from
mining companies. Instead the materials that belong the Eti Holding are tried.
Instead of purchasing gypsum from outside markets, solid waste of boric acid
production plant is used. Chemical analyses of this waste show that it can be a
candidate to be used instead of gypsum. Also in Bigadi¢ mine, there is a place
rich in limestone content. Therefore the limestone used in the experiments are
from Bigadi¢ fields which belong to Eti Holding. Also the chemical analyses of
this pit show a great hope to substitute limestone. The chemical analyses of the
samples are given in Table 3.2.

Table 3.2. The chemical analyses of raw materials

Sample CaO (%) | CO, (%) SO, (%) Li (ppm) | SiO; (%)
Limestone 49,74 38,37 0,26 64 791
Gypsum 27,89 0,64 50,26 98 5,84
Clay 10,03 4,55 0,21 2150 39,01

As these materials are natural, the chemical analyses show variability.

All the materials are crushed under a size of 1,3 cm. In order to have an
efficient roasting, these materials should be mixed vigorously. For achieving
appropriate mixing, it is thought to grind them together. The studies on that
subject add pelletizing of the ground materials. This is done in order to minimize

the weight loss, hence lithium loss during roasting. In this study, pelletizing is
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not included. The pictures of raw materials and the grinding machine are given
in Figure 3.1.

Wl

Figure 3.1. Pictures of raw materials and grinding machine a-) grinding machine
b-) Lithium containing clay, c-) waste of boric acid plant, gypsum, d-) limestone

3.2 ROASTING
The identification of the lithium phase is almost difficult in the clay since
lithium content is in ppm. Therefore it is assumed that lithium is with silicate

minerals with the formula Li,S1,0s. In order to make an efficient leach, this
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lithium phase must be converted to a water soluble phase such as Li,SO4 (water
solubility is about 40 gr/lt). This can be achieved by roasting at high
temperatures (higher than 800°C). During roasting the following reactions occur.
CaS04.2H,0 +Si0; = CaSiOs + SO, + %2 O, + 2H,0 (1)
Li;Si;0s5 + SO, + % O, = LiSO4 + 2Si0; (2)

An important point to consider here is that the 2"® reaction is reversible.
Free SiO, tends to react with Li,SO4 and results in lithium silicate mineral.
Hence in order to prevent the back reaction, CaCOj is added. This material does
not stop the back reaction but limits it. CaO reacts with SiO, to form CaSiOs.
CO; is lost to furnace atmosphere. An electric driven muffle furnace that can
reach to the temperatures of 1200°C is used. The required temperature can be
adjusted. However; the heating and cooling time can not be seen on the furnace.
Roasting experiments are performed in a mullite crucible that can resist high
temperatures. The picture of the furnace and the roasted material in the crucible

are given in Figure 3.2.

Figure 3.2. The muffle furnace and roasts in the crucible
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3.3 LEACHING

After calcining, the roasts are weighted, the weight loss is recorded.
Lithium analysis is applied to a portion of the roast and the other portion is
leached with water. Distilled water is used during the experiments, as other
solvents such as sulfuric acid and hydrochloric acid are expensive. Also they
are such powerful solvents that they extract some undesired materials as well
like iron (Fe), magnesium (Mg) and aluminium (Al). The reactor used for
leaching has a volume of lliter and is connected to a cryostat that sets the
temperature to the desired point. However; during the experiments room
temperature is used. This is due to high solubility of Li,SO4 in water (about 40
gr/lt at 20°C). Moreover, it is tried not to include any more energy consuming
items in the process by leaching at high temperatures. The reactor also has 6
necks to dip in thermometers, pH meters and rods to take liquid samples. A
mixer is dipped from the middle neck of the reactor to make a homogeneous
mixing.

When the literature is examined it is seen that mixing speed does not
have an important affect on the leaching performance (Mordogan et. al., 1995).
Preliminary experiments are performed in order to see if it is important for
Bigadig clays. As a result, it is concluded that it does not have a considerable
effect on leaching. Therefore mixing speed is set to 400 rpm based on
preliminary experiments. The leaching experiments are performed with different
time and solid to liquid ratio. At the end of the leaching the slurry are filtered.
By this, solution is separated from the slurry. Filtration is performed by using
the thinnest filter paper. Lithium analysis is applied to the solution and the solid
part (which is a residue) is dried and analysed for lithium content. The final
point is the calculation of the lithium extraction from the clay. Lithium analyses
have been made using AAS (Atomic Absorption Spectrophotometer) which has
lithium detection limit of 0.02 ppm.

The picture of the reactor can be seen in Figure 3.3.
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Figure 3.3 The picture of reactor and cryostat

Figure 3.4 shows the process flow chart of this study.
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Figure 3.4. The process flow chart used in this study.
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CHAPTER IV

DESIGN, CONDUCT AND ANALYSIS OF THE EXPERIMENTS

4.1. Design and Conduct of the Experiments

4.1.1 Deciding on the Levels of Control Factors:

Extraction of lithium from boron clays mainly comprises 3 steps; raw
material preparation, roasting and leaching.

In the raw material preparation step, the most important parameter is the
addition ratio of gypsum and limestone to the clay. The studies that have been
done, have showed that clay:gypsum:limestone optimum mixing ratio is about
5:3:3 (Mordogan et. al, 1994) or 5:2:2 (Lien, 1985). So in this study 5:3:3 ratio
is treated as the center in choosing the levels of gypsum and limestone. In fact, if
we increase the content of gypsum and limestone, it will not bring an additional
raw material cost (as raw materials used are wastes) to the process if
transportation cost is ignored. However; due to the back reaction characteristic
of roasting and equilibrium concentration of leaching processes, the additional
amount of gypsum and limestone should be closely examined.

Roasting is the most important process as the conversion of lithium
silicate minerals to lithium sulphate takes place in this process. As the reaction
of conversion is reversible, the time and temperature of roasting need close
attention. The addition of limestone (CaCOs) is for limiting the back reaction.
CaCO; decomposes to CaO and CO; at about temperatures higher than 800°C
and the decomposed product CaO reacts with free SiO,, and hence preventing
the back reaction. The studies for setting the optimum roasting temperature

result in different temperatures, from 850°C to 1000°C due to the different
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characteristics of the processes and the used clays (Mordogan et. al, 1994 and
Lien, 1985). As the optimum roasting time strictly depends on the roasting
temperature, its levels are based on the roasting temperature. Higher
temperatures and prolonged time of roasting result in a decrease of extraction
percentage. As a result, the roasting temperature levels are set at 850°C, 950°C
and 1050°C, and levels of the time are chosen as 30, 60 and 120 minutes.

As the prolonged time and higher temperatures decrease the lithium
content, it is believed that there occurs an interaction between time and
temperature in that period. So in choosing the appropriate orthogonal array, this
interaction is taken into account.

There are several important factors for leaching. These are leaching
temperature, mixing speed, leaching particle size, leaching time and leaching
solid:liquid ratio. The reasons of ignoring temperature and stirring speed are
explained in Chapter III. It is aimed not to make any regulation on the particle
size of the leach feed. There has been made no operation on particle size and it
has been used as it has left roasting, however, if there occurs strong
agglomeration, the roasts have been ground. In the choice of leaching time and
solid to liquid ratio, two important parameters are considered: The leaching
equilibrium of the reaction, and the contamination of the solution with
impurities such as Fe, Al and Mg. After examining the studies, leaching time of
one hour with a solid to liquid ratio of about 0.1-0.4 is chosen as the most
appropriate (Mordogan et. al, 1994 and Lien, 1985). So in choosing the levels of
leaching, these parameters are taken into consideration. The chosen levels of the

factors are shown Table 4.1.
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Table 4.1. The levels of the factors

Factors Level 1 Level 2 Level 3
A. Gypsum/Clay Ratio* 1.5/5 3/5 4.5/5
B. Roasting Temperature (°C) 850 950 1050
C. Roasting Time (min) 60** 30 120
D. Leach Solid to Liquid Ratio 0.1 0.2 0.4
E. Leach Time (min) 30 60 120
F. Limestone/Clay Ratio* 1.5/5 3/5 4.5/5

* Gypsum and Limestone will also point the same factor (gypsum/clay ratio and
limestone/clay ratio, respectively) hereafter.

** At first 90 minutes was thought to be appropriate for the 2™ level. However;
after some experiences, it is believed that 30 minutes is better.

4.1.2. Designing the Experimental Layout
For this experiment an orthogonal array is decided to be used for its
various advantages (Phadke, 1989). In order to decide which orthogonal array is
the most suitable one, we determined the degrees of freedom needed to estimate
all of the main effects and important interaction effects.
Factors df
Gypsum 2
Roasting Temp. 2
Roasting Time 2
Leach S:L Ratio 2
Leach Time 2
Limestone 2
1

Overall Mean

TOTAL 13

Also it is important to estimate the interaction between roasting time and
roasting temperature. Therefore additional 4 degrees of freedom should be
reserved for estimation of this interaction. So we need at least 17 experiments. It
is clear that we need to have an orthogonal array with at least 3 levels, 8

columns (6 for the main effects and 2 for the interaction) and 17 rows (run).
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When the orthogonal arrays available in the literature are examined, it is
observed that Ly7 (3") is the most suitable one. If this array is used there are left
four more columns for estimating any other interaction, and one level for
estimating the error. Therefore, as roasting temperature seems to be the most
important factor, the gypsum and roasting temperature interaction, and leaching
solid to liquid ratio and roasting temperature interaction can be estimated as
well.

As a result, the factors are assigned to the columns of the orthogonal

array as shown in Table 4.2.

Table 4.2. The assignment of factors to the columns of L, (3'%) array

Factors Column numbers df
Gypsum Ratio 1 2
Roasting Temperature 2 2
Roasting Time 5 2
Leaching S:L Ratio 6 2
Leaching Time 7 2
Limestone Ratio 10 2
Gypsum x Roasting Temperature 3,4 4
Roasting Temperature x Roasting Time 8,11 4
Roasting Temperature x 9,12 4

Leach Solid to Liquid Ratio

Error 13 2
Overall Mean 1

TOTAL 27

The L,7(3") O.A. and its interaction tables are given in Appendix 4A.1
and 4A.2. The factors are assigned to columns according to interaction table of

L»7(3 13)-
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The experiments are repeated three times in order to effectively calculate
the noise factors such as the variation of the contents of the raw materials,
temperature variation in the furnace and leaching temperature.

While performing the experiments, the samples for roasting are placed in
the furnace when the temperature reaches the desired value and then are taken
out as soon as the roasting time is completed. Two samples, which have the
same roasting time and temperature, are roasted together. The results of the
experiments are given in Table 4.3.

After the experiments are conducted; average, standard deviation and
signal-to-noise ratio of the results belonging to each run (experimental setting)
are computed.

After estimating the average and standard deviation, Signal-to-Noise
ratio is calculated by using the Larger-the-Better criteria. The formula for this
criterion is:

n=-10LOGV, =iyl [4.1]
nisr Y,
For the 1* experiment, the computation is given as follows:
Results are: 13.76, 24.18 and 26.00

LR S S
31376 2418 26.00°

) — Vr =0.0028237

n=-10LOG(0.0028237) = n =25.49175

The complete results of average, standard deviation and S/N ratio are

given in Table 4.4.

4.2. Analysis of the Results

4.2.1. ANOVA

ANOVA of the S/N ratio values is performed by using the statistical
package program MINITAB. The ANOVA table obtained is given in Table 4.5.
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Table 4.3. The Results of The Experiments

Run A B C D E F EXTRACTION RESULTS (%)
Gypsum/Clay Ro. Te.,°C Ro. Ti.,, min |Leach S/L| Le.Ti.,, min | Limestone/Clay 1 2 3
1 1.5/5 850 60 0.1 30 1.5/5 13.76 24.18 26.00
2 1.5/5 850 30 0.2 60 3/5 5.22 6.51 6.14
3 1.5/5 850 120 0.4 120 4.5/5 8.11 11.03 7.21
4 1.5/5 950 60 0.1 30 3/5 27.66 30.44 30.74
5 1.5/5 950 30 0.2 60 4.5/5 17.65 7.81 8.85
6 1.5/5 950 120 0.4 120 1.5/5 70.35 73.42 65.80
7 1.5/5 1050 60 0.1 30 4.5/5 11.97 6.29 8.72
8 1.5/5 1050 30 0.2 60 1.5/5 44.26 43.69 25.89
9 1.5/5 1050 120 0.4 120 3/5 36.13 50.68 25.73
10 3/5 850 60 0.2 120 4.5/5 8.15 6.56 4.90
11 3/5 850 30 0.4 30 1.5/5 6.93 4.34 4.65
12 3/5 850 120 0.1 60 4.5/5 27.65 6.71 10.99
13 3/5 950 60 0.2 120 1.5/5 55.70 64.63 55.86
14 3/5 950 30 0.4 30 3/5 39.52 18.27 13.42
15 3/5 950 120 0.1 60 4.5/5 22.95 23.36 19.19
16 3/5 1050 60 0.2 120 3/5 52.83 65.64 44.61
17 3/5 1050 30 0.4 30 4.5/5 10.55 28.40 28.65
18 3/5 1050 120 0.1 60 1.5/5 18.70 25.80 24.25
19 4.5/5 850 60 0.4 60 3/5 10.86 4.37 7.18
20 4.5/5 850 30 0.1 120 4.5/5 3.00 2.79 3.10
21 4.5/5 850 120 0.2 30 1.5/5 30.17 28.20 23.78
22 4.5/5 950 60 0.4 60 4.5/5 28.93 27.30 26.16
23 4.5/5 950 30 0.1 120 1.5/5 30.93 30.64 30.53
24 4.5/5 950 120 0.2 30 3/5 64.69 65.81 52.74
25 4.5/5 1050 60 0.4 60 1.5/5 11.45 14.06 15.52
26 4.5/5 1050 30 0.1 120 3/5 4253 | 49.82 | 4524
27 4.5/5 1050 120 0.2 30 4.5/5 46.80 65.75 5491




Table 4.4. The Average, Standard Deviation and S/N Ratio of Experiments

¢¢

Run A B C D E F
Gypsum/Clay | Ro.Te.,°C | Ro.Ti., min | Leach S/L | Le.Ti.,min Limestone/Clay | AVER. | STD.DEV. | S/N RATIO
1 1.5/5 850 60 0.1 30 1.5/5 21.313 6.6044 25.49180
2 1.5/5 850 30 0.2 60 3/5 5.957 0.6643 15.38497
3 1.5/5 850 120 0.4 120 4.5/5 8.783 1.9970 18.47098
4 1.5/5 950 60 0.1 30 3/5 29.613 1.6983 29.39990
5 1.5/5 950 30 0.2 60 4.5/5 11.437 5.4060 19.66948
6 1.5/5 950 120 0.4 120 1.5/5 69.857 3.8339 36.85758
7 1.5/5 1050 60 0.1 30 4.5/5 8.993 2.8498 18.20008
8 1.5/5 1050 30 0.2 60 1.5/5 37.947 10.4453 30.74645
9 1.5/5 1050 120 0.4 120 3/5 37.513 12.5324 30.51278
10 3/5 850 60 0.2 120 4.5/5 6.537 1.6251 15.74346
11 3/5 850 30 0.4 30 1.5/5 5.307 1.4144 13.97356
12 3/5 850 120 0.1 60 4.5/5 15.117 11.0631 19.74724
13 3/5 950 60 0.2 120 1.5/5 58.730 5.1102 35.31552
14 3/5 950 30 0.4 30 3/5 23.737 13.8822 25.13866
15 3/5 950 120 0.1 60 4.5/5 21.833 2.2984 26.67787
16 3/5 1050 60 0.2 120 3/5 54.360 10.5982 34.38546
17 3/5 1050 30 0.4 30 4.5/5 22.533 10.3786 24.18595
18 3/5 1050 120 0.1 60 1.5/5 22.917 3.7331 26.94470
19 4.5/5 850 60 0.4 60 3/5 7.470 3.2547 15.72724
20 4.5/5 850 30 0.1 120 4.5/5 2.963 0.1582 9.41022
21 4.5/5 850 120 0.2 30 1.5/5 27.383 3.2723 28.61751
22 4.5/5 950 60 0.4 60 4.5/5 27.463 1.3922 28.75297
23 4.5/5 950 30 0.1 120 1.5/5 30.700 0.2066 29.74238
24 4.5/5 950 120 0.2 30 3/5 61.080 7.2443 35.58371
25 4.5/5 1050 60 0.4 60 1.5/5 13.677 2.0619 22.50835
26 4.5/5 1050 30 0.1 120 3/5 45.863 3.6848 33.17449
27 4.5/5 1050 120 0.2 30 4.5/5 55.820 9.5077 34.68712




Table 4.5. ANOVA of S/N Ratio Values

Source df Sum of Mean F P
Squares Square
Gypsum 2 16.56 8.28 0.40 0.716
Roasting Temp. 2 728.96 364.48 17.44 0.054
Roasting Time 2 179.77 89.88 4.30 0.189
Leach S/L Ratio 2 79.48 39.74 1.90 0.345
Leaching Time 2 85.93 42.97 2.06 0.327
Limestone 2 183.50 91.75 4.39 0.186
Gypsum x Ro. Te. 4 32.64 8.16 0.39 0.808
Ro. Te. x Ro. Time 4 118.68 29.67 1.42 0.453
Ro. Te. x Leach S/L 4 56.47 14.12 0.68 0.670
Error 2 41.81 20.90
TOTAL 26 1523.81

The results show that the interaction factors do not have any significant
effect on the leaching of lithium. Also the interaction graphs prove this
corollary. The interaction graphs are given in Figures 4.1, 4.2 and 4.3 for
Gypsum x Roasting Temperature, Roasting Temperature x Roasting Time and

Roasting Temperature x Leach S/L Ratio, respectively.

Gypsum

® 1
m 2
¢ 3

31 —

26 —

S/N Ratio

16 —

Ro.Te (°C)

Figure 4.1. The interaction plot for Roasting Temperature x Gypsum
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The plot in Figure 4.1 implies not a strong interaction, however, we can
conclude a slight interaction between roasting temperatures of 850°C and 950°C

and gypsum ratios of 1.5 and 4.5.

Ro.Ti. (min)

34 — £ 1
] 2
¢ 3

24 —

S/N Ratio

Ro.Te (°C)

Figure 4.2. The interaction plot for Roasting Temperature x Roasting Time

As it is seen from the plot, there is no interaction between 850-950°C of
roasting temperatures. However; we can conclude that an interaction may exist

for roasting temperatures more than 950°C and roasting time between 30-60

minutes.
Leach S/L
33 — ® ;
| |
e 3
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S
o
P
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Figure 4.3. The interaction plot for Roasting Temperature x Leach S/L Ratio

37



The interaction plot in Figure 4.3 indicates a possibility of a strong
interaction for the leaching solid-liquid ratios of between 0.1 and 0.4.

As ANOVA shows that the interaction terms are not significant within
the experimental region, a new ANOVA is performed by pooling the interaction

terms to error. New results are given in Table 4.6.

Table 4.6 ANOVA of S/N Ratio without interaction terms

Source df Sum of Mean F P
Squares Square
Gypsum 2 16.56 8.28 0.46 0.638
Roasting Temperature 2 728.96 364.48 20.44 0.000
Roasting Time 2 179.77 89.88 5.04 0.022
Leach S/L Ratio 2 79.48 39.74 2.23 0.144
Leaching Time 2 85.93 42.97 2.41 0.126
Limestone 2 183.50 91.75 5.15 0.021
Error 14 249.60 17.83
TOTAL 26 1523.81

When ANOVA of main factors are examined, it is observed that, gypsum
has a very high p-value that it is not a significant factor. Therefore, it is thought

to perform ANOVA without Gypsum. The results are given in Table 4.7.
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Table 4.7. ANOVA of S/N Ratio without interaction terms and Gypsum

Source df Sum of Mean F P
Squares Square
Roasting Temperature 2 728.96 364.48 21.91 0.000
Roasting Time 2 179.77 89.88 5.40 0.016
Leach S/L Ratio 2 79.48 39.74 2.39 0.124
Leaching Time 2 85.93 42.97 2.58 0.107
Limestone 2 183.50 91.75 5.52 0.015
Error 16 266.16 16.64
TOTAL 26 1523.81

These results show that at the significance level of a=0.15, Roasting

Temperature, Roasting Time, Leach S/L Ratio, Leaching Time and Limestone

are significant.

The residual plots of the model are given in Figure 4.4 and 4.5.

Residual

10 20 30 40
Fitted Value

Figure 4.4. The residuals versus fitted values of the model found by ANOVA for
S/N ratio.
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Normal Score

Figure 4.5. Normal probability plot for the model found by ANOVA for

S/N Ratio

Both figures show no abnormality for validation of the assumptions of

€ITOor1S.

The main effects plot is plotted. By using the main effects plot and level

Residual

averages, the optimum point that increases S/N ratio is found.

Table 4.8. Level averages of the factors

Gypsum Ro.Te. °C
1.5 3 4.5 850 950 1050
24.9705 24.6792 | 26.2471 18.0630 29.6820 | 28.3717
Ro.Ti. min Leach S/L
30 60 120 0.1 0.2 0.4
22.3807 25.0583 | 28.6777 24.3099 27.7926 | 24.0142
Lea.Ti. min Limestone
30 60 120 1.5 3 4.5
26.1420 22.9066 | 27.0681 27.7998 26.5616 | 21.7553
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Gypsum Ro.Te (°C) Ro.Ti. (min) Leac.S/L  Le.Ti.(min) Limestone

StoN

Figure 4.6. Main Effects Plots of Signal-to-Noise Ratio

As it is seen from Figure 4.6, the optimum points are 2™ level for
Roasting Temperature, 3" level for Roasting Time, 2" level for Leach S/L
Ratio, 3" level for Leach Time and 1° level for Limestone.

That is, if we assign letters to factors like; A for Gypsum, B for Roasting
Temperature, C for Roasting Time, D for Leach S/L Ratio, E for Leach Time
and F for Limestone, the notation of optimum points are;

A3B>C3DyEsFy

Although gypsum has not been found significant, it has to be used in the
experiment. Hence the level that seems to yield the highest extraction has been
used for gypsum. We need to predict the results of the extraction percent and
estimate the 95% confidence interval for this fit value. The superscripts imply
the average effect of the factors.

EM=T+ B2~ T)+(Cs—T) +(D2-T)+ (Es —T) + (Fi-T) [4.2]
E(m) = 25.37 + (29.68 - 25.37) + (28.68 - 25.37) + (27.79 - 25.37) + (27.07 -
25.37) +(27.80 — 25.37)

EM)=2537+4.31+331+242+1.70+2.43

E(n) = 39.54

41



The confidence interval for signal to noise ratio should be calculated

before conducting the experiment.

1

+ l) [4.3]

g T

C] = \/Fa,l,n‘,l/e(

where;

Fo,1,n, = Tabulated F-value for 1-a (a=0.95) confidence level with 1 and
degrees of freedom of error
V.= Pooled error variance

Total degrees of freedom

Nerr= Effective sample size =

Degrees of freedom used in calculating S/N

r= sample size for the confirmation experiment,

Fo.05,1,16 =4.49
V. = 16.64
Nerr =26/ 11=2.364

r =1, as only one S/N ratio will be estimated from the experiments

1
2.364

C.I.:\/4.49*16.64( +1) =10.31

Therefore the value for S/N ratio of the confirmation experiment is

expected to be between;

n== 29.23,49.85

with 95% confidence
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In order to have an idea about the mean extraction at the optimal levels
we can predict a value for the mean. In order to predict the mean more
accurately, ANOVA has been performed on the individual results rather than the
average of the replications. ANOVA table of the model for the mean can be seen

in Table 4.9.

Table 4.9. ANOVA table for the mean

Source df Sum of Mean F P
Squares Square
Gypsum 2 376.8 188.4 3.37 0.041
Roasting Temperature 2 10590 5295 94.71 0.000
Roasting Time 2 3127.7 1563.9 27.97 0.000
Leach S/L Ratio 2 2807.2 1403.6 25.11 0.000
Leaching Time 2 3883.3 1941.7 34.73 0.000
Limestone 2 3097.8 1548.9 27.70 0.000
Ro. Te. x Ro. Ti. 4 2198.7 549.7 9.83 0.000
Ro. Te. x Leach S/L 4 2254.2 563.5 10.08 0.000
Error 60 3354.5 55.9
TOTAL 80 31690.2

In order to estimate the effects of factors the experiments have been
treated individually. The residual plots for the mean model can be seen in
Appendix 4A.3. The best level for roasting temperature conflicts with the best
level of interaction between roasting temperature and leach solid to liquid ratio.
The level averages for the mean and the comparison of the best levels can be
found in Appendix 4A.4. Since we are aiming to maximize the mean extraction
with minimal variation, the choice of best levels has been based on the S/N
analysis. This is the combination A3B,Cs;D;E;F;. The predicted value for the
mean has been found as 73.13 for this combination.

To predict the standard deviation at the optimal levels of the factors, the

following formula of S/N can be used.
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n= —IOLOG(l
nio Yy

S
2

1 s°
) = —IOLOG{_—Z(I + 3_—2)}
y y

[4.4]

From Equation [4.4], s can be estimated by putting 39.54 and 73.13 for n

and ¥ respectively. However; solving for s will yield a negative value for s’.

This might be due to the cumulative effect of prediction errors of both S/N Ratio

and the mean. Hence we have decided to model the standard deviation and make

a prediction directly from this model. ANOVA table of the model for standard

deviation can be seen in Table 4.10.

Table 4.10. ANOVA table for the standard deviation

Source df Sum of Mean F P
Squares Square

Gypsum 2 47.787 23.893 9.51 0.014

Roasting Temperature 2 74.433 37.217 14.81 0.005

Roasting Time 2 22.926 11.463 4.56 0.062

Leach S/L Ratio 2 30.213 15.107 6.01 0.037

Leaching Time 2 20.973 10.486 4.17 0.073

Limestone 2 60.124 30.062 11.96 0.008

Ro. Te. x Ro. Ti. 4 53.451 13.363 5.32 0.036

Ro. Te. x Leach S/L 4 118.978 29.744 11.84 0.005

Error 6 15.079 2.513

TOTAL 26 443.963

The residual plots for the standard deviation model can be seen in

Appendix 4A.5. The best levels considering both the mean and the standard
deviation had been found based on S/N analysis as A3;B,CsD,Es;F;. The

predicted value for standard deviation at these levels has been found as 2.514,

and the computation of this value with the level averages can be found in

Appendix 4A.6.
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These fitted values of S/N, mean and standard deviation seem to be
worth to try.

The confirmation experiment has been performed twice. The results of
the confirmation experiment yield the values of 56.87% and 67.79% with a
standard deviation of 5.46. S/N ratio for these experiments has been found as
35.794, which is in the prediction interval. This leads to a conclusion that the
“optimum” settings found by using the Taguchi method are confirmed.

In the following sections, we try to find even better settings for the

design parameters by utilizing regression and response surface methodologies.
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4.2. Regression Analysis

4.2.1 Modelling the Mean Response

In order to model the mean response, MINITAB package program is
used. ANOVA has shown us that only linear terms will not be enough to explain
the extraction of lithium from clays. However; it is worth to try regression
analysis with only linear terms.

p=-87.0+152*A+0.110*B + 0.166* C - 2.8*D + 0.103*E - 4.50*F [4.5]

Table 4.11. ANOVA for Regression Analysis for the mean including only main

factors
Source dF Sum of Squares Mean Squares F
Regression 6 45553 759.2 2.89 0.034
Residual Error 20 5249.3 262.5
TOTAL 26 9804.6
R* = 46.5% R (= 30.4% S=16.20

Durbin Watson = 2.44

The residual versus fitted values plot shows a violation (Figure 4.7) of
constant variance assumption of residuals, and also R*(adj) value is so low that
the model will not be adequate enough to explain the mean extraction of lithium
from boron clays. Besides these, Durbin-Watson statistic is so high. In Figure 8§,
normal probability plot of residuals can be seen. Table 4.12 shows the
significance of 3 terms of the general linear model. This Table indicates that
roasting temperature, roasting time and limestone are significant at the p (0.15)

level of significance.
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Figure 4.7. Residual versus fitted values of the residuals of general linear

model [4.5] with only main factors.
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Figure 4.8. Normal probability plot of the residuals of general linear

model [4.5] with only main factors.
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Table 4.12. Significance of 3 terms of the General Linear Model [4.5]

Predictor Coefficient Standard Error T p
Constant -86.95 39.30 -2.21 0.039
Gyspsum 1.519 2.546 0.60 0.557
Roasting Temp. 0.11044 0.03819 2.89 0.009
Roasting Time 0.16603 0.08333 1.99 0.060
Leach S:L Ratio -2.76 25 -0.11 0.913
Leach Time 0.10307 0.08333 1.24 0.230
Limestone -4.499 2.546 -1.77 0.092

The sequential sum of squares of the main factors are given in Appendix
4A.7.
Under these circumstances, it is decided to perform a new regression

model by employing interaction and square terms.

We have 26 degrees of freedom to introduce to the new model. Main
factors and square factors use 12 degrees of freedom. In order to estimate all
two-way interaction terms, 15 degrees of freedom are needed. However; there
are only 14 degrees of freedom to use so an interaction could not be estimated.
This interaction is chosen as the one between Leach Time and Limestone.

MINITAB package program is used in order to model the quadratic
regression with two-way interactions. However; while performing regression
analysis, MINITAB has found some correlation between some interaction and
quadratic factors. These are automatically disregarded from the regression
analysis. The interaction factors that are correlated with other variables are
A*E, C*E and D*E. The square factors that are correlated are C2, D’ and E*.

The regression model and the ANOVA of the regression obtained can be

seen in Equation [4.6].
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n=-1332+ 17.2*A + 2.89*B — 0.105*C — 98.5*D + 0.631*E — 50.18*F
+0.019*AB + 0.195*AC —1.49*AD + 5.20*AF — 0.001*BC
-0.14*BD — 0.0006*BE + 0.055*BF + 3.75*CD — 0.013*CF
-2.97*DF — 9.80*A% — 0.0015*B* — 3.49*F* [4.6]

Table 4.13. ANOVA for Regression Analysis for the mean including main,

interaction and square factors

Source dF Sum of Squares Mean Squares F p
Regression 20 9736.54 486.83 42.94 | 0.000
Residual Error 6 68.02 11.34
TOTAL 26 9804.56
R*=99.3% R® = 97.0 S =3.367

Durbin Watson = 1.96

This model is much more adequate for explaining the mean extraction of
lithium from boron clays. R* and R%qqj values are adequately high. Standard
deviation of the error is much smaller than the regression model including only
main factors. Also Durbin-Watson statistic shows no correlation of errors. The
residuals versus fitted values and normal probability plots are shown in Figures

4.9 and 4.10, respectively.
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Figure 4.9. Residual vs fitted values of the residuals of quadratic model

[4.6] with interaction factors.
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Figure 4.10. Normal probability plot of the residuals of quadratic model

[4.6] with interaction factors.
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Residuals versus fitted values and normal probability plot indicate that
errors have normal distribution with constant variance. With these and Durbin
Watson test, it is inferred that the assumptions about errors for a adequate model

is achieved. In that point, it is necessary to make a 3 significance test.

Table 4.14. Significance of B terms of quadratic model [4.6]

Predictor Coefficient Standard Error T p

Constant -1332.1 129.5 -10.29 0.000
A 17.17 17.08 1.01 0.354
B 2.8857 0.2644 10.91 0.000
C -0.1051 0.3143 -0.33 0.749
D -98.52 95.90 -1.03 0.344
E 0.6312 0.4228 1.49 0.186
F -50.18 10.84 -4.63 0.004
A*B 0.018944 0.007003 2.71 0.035
A*C 0.19532 0.02154 9.07 0.000
A*D -1.491 6.461 -0.23 0.825
A*F 5.2019 0.4669 11.14 0.000
B*C -0.0012118 0.0002335 -5.19 0.002
B*D -0.14162 0.06711 -2.11 0.079
B*E -0.0006306 0.0003968 -1.59 0.163
B*F 0.05452 0.01212 4.50 0.004
C*D 3.7501 0.8618 4.35 0.005
C*F -0.01341 0.01557 -0.86 0.422
D*F -2.967 4.474 -0.66 0.532
A -9.804 2.563 -3.82 0.009
B’ -0.0014914 0.0001375 -10.85 0.000
F* -3.4884 0.8082 -4.32 0.005

The sequential sum of squares of the model are given in Appendix 4A.8.
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When the p-values of factors are examined, it is seen that some of the
factors have significantly high values, which can lead the model deviate from
being adequate. Therefore, it is thought to improve the p-values of the model by
disregarding the ones that have a high p-value. This must be accomplished
without sacrificing normality, constant variance and error correlation properties
of the previous model.

The model improvement starts with disregarding the factor having the
highest p-value. After disregarding a factor, all assumptions of the model are
checked and looked for the best model.

Eventually, the model with valid normality, constant variance and no
error correlation assumption, and large R* and R® (g, values is the model that do
not have the interaction factor, A*D. The model and ANOVA are given below.

The main factors have been left in the model without considering their p-value.

=-1332+ 18.2%A + 2.89*B - 0.121*C - 108*D + 0.629*E - 50.2*F +
0.0189*AB + 0.195*AC + 5.20*AF - 0.00121*BC - 0.142*BD -
0.000631*BE + 0.0545*BF + 3.82*CD - 0.0134*CF- 2.97*DF -

10.0¥A%-0.00149*B? - 3.49*F* [4.7]

Table 4.15. ANOVA for the improved quadratic regression model [4.7]

Source dF Sum of Squares Mean Squares F
Regression 19 9735.94 512.42 52.27 | 0.000
Residual Error 7 68.62 9.80
TOTAL 26 9804.56
R*=99.3% R (adiy= 97.4% S=3.131

Durbin Watson=1.99

This model is better than the previous one for both Rz(adj) value, S value
and Durbin Watson statistic. The residual plots of the improved quadratic model

can be seen in Figures 4.11 and 4.12.
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Figure 4.11. Residual vs
quadratic model [4.7].
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Figure 4.12. Normal probability plot of the residuals of improved

quadratic model [4.7].
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The normal probability plot and residual versus fitted values plot of the
residuals do not show any deviation from the residual assumptions. When we
investigate the 3 significance value of the factors, there are still some interaction
factors having high p-values such as the interactions between Roasting
Temperature and Leaching Time, Roasting Time and Limestone Ratio, Leaching
S/L Ratio and Limestone Ratio. The 3 significance table and the sequential sum

of squares of the model are given in Table 4.16 and Appendix 4A.9.

Table 4.16. Significance of B terms of the improved quadratic model [4.7]

Predictor Coefficient Standard Error T p

Constant -1331.6 120.4 -11.06 0.000
A 18.19 15.34 1.19 0.354
B 2.8857 0.2459 11.73 0.000
C -0.1209 0.2853 -0.42 0.749
D -108.21 80.18 -1.35 0.344
E 0.6288 0.3930 1.60 0.186
F -50.18 10.08 -4.98 0.004
A*B 0.018944 0.006512 291 0.035
A*C 0.19532 0.02003 9.75 0.000
A*F 5.2019 0.4341 11.98 0.000
B*C -0.0012118 0.0002172 -5.58 0.002
B*D -0.14162 0.06241 -2.27 0.079
B*E -0.0006306 0.0003690 -1.71 0.163
B*F 0.05452 0.01127 4.84 0.004
C*D 3.8247 0.7430 5.15 0.005
C*F -0.01341 0.01448 -0.93 0.422
D*F -2.967 4.160 -0.71 0.532
A’ -10.02 2.220 -4.51 0.009
B’ -0.0014914 0.0001278 -11.67 0.000
F° -3.4884 0.7515 -4.64 0.005
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Then it is tried to drop these factors from the model and achieve all
interaction and square factors with p-value less than 10%. However; when we
have this model, we have seen that Durbin Watson statistic falls to 1.38 and this
is an evidence of a positive correlation between the residuals. Also R* and S
value of this model is slightly worse.

In appendix 4A.10, the quadratic regression model with no p-value
greater than 10% can be found.

As a result, it is decided to keep the improved quadratic model [4.7] as

the most adequate one for the problem of extraction of lithium from boron clays.
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4.2.2 Modelling the Standard Deviation

As we have made 3 repetitions for every run, we can make an analysis of
standard deviation of the extraction values by regression. The standard deviation
of the experimental results can be seen in Table 4.4. As the model for the mean
shows that linear regression is not enough to explain the mean extraction of
lithium, it is decided to perform modelling of the standard deviation by using
quadratic and interaction factors. However; for illustrative purposes, the model
that include only the main factors is tried and as expected very low values of R
and Rz(adj) is obtained (26.7% and 4.7%, respectively). The quadratic model and
the ANOVA of the regression can be seen in equation [4.8] and Table 4.17.

s =45+ 13.6*A - 0.122*B + 0.074*C - 102*D - 0.030*E + 1.8*F -
0.00751*AB + 0.0264*AC - 7.24*AD + 0.624*AF - 0.000232*BC +
0.116*BD + 0.000009*BE + 0.0029*BF + 0.14*CD + 0.0137*CF +

4.05*DF - 1.48*A? + 0.000076*B? - 1.39*F* [4.8]

Table 4.17. ANOVA for quadratic regression analysis of the standard deviation

Source dF Sum of Squares Mean Squares F
Regression 20 350.10 17.51 1.12 0.482
Residual Error 6 93.86 15.64
TOTAL 26 443.96
R* =78.9% R% i) = 8.4% S =3.955

Durbin Watson: 2.64

There is a big difference between R? and Rz(adj) value. This means that
there are some unnecessary terms in the model. However; although there are
unnecessary terms, the model only explains 78.9% of the standard deviation
values. Also Durbin Watson test statistic is not acceptable. The residuals versus
fitted values and normal probability plots are given in Figures 4.13 and 4.14,

respectively.
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Figure 4.13. Residuals versus fitted values plot of the quadratic

regression model [4.8] for the standard deviation
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Figure 4.14. Normal probability plot of the quadratic regression model
[4.8] for the standard deviation
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Although the residuals versus fitted values and normal probability plots
of the residuals do not show significant violation of constant variance and
normal distribution assumptions, the B significance test of the factors show that
none of the factors are significant at 10% confidence interval. The table of 3

significance test is given in Table 4.18.

Table 4.18. Significance of B terms of quadratic model [4.8]

Predictor Coefficient Standard Error T p

Constant 45.1 152.1 0.30 0.777
A 13.56 20.07 0.68 0.524
B -0.1224 0.3106 -0.39 0.707
C 0.0744 0.3692 0.20 0.847
D -102.0 112.7 -0.91 0.400
E -0.0302 0.4966 -0.06 0.953
F 1.79 12.73 0.14 0.893
A*B -0.007507 0.008226 -0.91 0.397
A*C 0.02637 0.02530 1.04 0.337
A*D -7.244 7.589 -0.95 0.377
A*F 0.6242 0.5484 1.14 0.298
B*C -0.0002319 0.0002743 -0.85 0.430
B*D 0.11557 0.07883 1.47 0.193
B*E 0.0000093 0.0004661 0.02 0.985
B*F 0.00292 0.1424 0.20 0.844
C*D 0.141 1.012 0.14 0.893
C*F 0.01369 0.01829 0.75 0.482
D*F 4.052 5.256 0.77 0.470
A’ -1.480 3.011 -0.49 0.641
B’ 0.0000761 0.0001615 0.47 0.654
F° -1.3938 0.9494 -1.47 0.192
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As it is seen from Table 4.18, none of the factors is significant at 10%
significance level. Some trials are performed in order to have the factors
having p-value less than 10%. However; the largest Rz(adj) value is obtained as
50.6 which is still low and Durbin Watson statistic for this model is 2.70
indicating a negative correlation of errors. The best achieved regression model
can be seen in the Appendix 4A.11.

It is inferred that it is not possible to model the standard deviation
without any transformation. It is decided to transform all standard deviation data
by using logs” transformation. The logs® values are given in Appendix 4A.12.

The model and ANOVA of the regression analysis of the transformed

standard deviation values can be seen in Equation [4.9] and Table 4.19.

Logs®=9.1+ 1.81*A - 0.0249*B + 0.0583*C - 8.2*D - 0.058*E + 0.17*F
-0.00003*AB + 0.00824*AC + 0.35*AD + 0.145*AF - 0 .000099*BC
+0.0026*BD + 0.000054*BE + 0.00051*BF + 0.087*CD
- 0.00035*CF + 0.33*DF - 0.499*A* +0.000016*B” - 0.185*F*> [4.9]

Table 4.19. ANOVA for quadratic regression analysis for modelling log s>

Source dF Sum of Squares Mean F
Squares
Regression 20 21.0721 1.0536 1.28 0.408
Residual Error 6 5.9576 0.8263
TOTAL 26 26.0297
R*=81.0% R% i) = 17.5% S =0.9090

Durbin Watson= 2.12

The quadratic regression model for log s> seems better than that of s,
however, still Rz(adj) value is so low that this model is not enough to explain the
standard deviation of extraction of lithium from boron clays. Durbin Watson
statistic measure is close to 2. Hence it can be concluded that there occurs no
correlation between the residuals of quadratic regression model for log s*. The
residual versus fitted values and normal probability plots are given in Figures

4.15 and 4.16.
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Figure 4.15. Residuals versus fitted values plot of the quadratic

regression model [4.9] for log s>
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Although it is seen no problem in the plot of normal probability of
residuals, residuals versus fitted values do not indicate constant variance.
Moreover, 3 significance test of the parameters indicate that some improvements
are needed to be made in order to have the model more explanatory. Table 4.20
shows the B significance of the factors and sequential sum of squares can be
seen in Appendix 4A.13.

Table 4.20. Significance of B terms of quadratic model [4.9] for log s

Predictor Coefficient Standard Error T p

Constant 9.10 34.96 0.26 0.803
A 1.815 4.611 0.39 0.708
B -0.02486 0.07139 -0.35 0.740
C 0.05833 0.08486 0.69 0.518
D -8.19 25.89 -0.32 0.762
E -0.0577 0.1141 -0.51 0.631
F 0.167 2.925 0.06 0.956
A*B -0.000025 0.001891 -0.01 0.990
A*C 0.008236 0.005814 1.42 0.206
A*D 0.348 1.744 0.20 0.848
A*F 0.1453 0.1260 1.15 0.293
B*C -0.00009883 0.00006305 -1.57 0.168
B*D 0.00260 0.01812 0.14 0.891
B*E 0.0000543 0.0001071 0.51 0.630
B*F 0.000507 0.003273 0.15 0.882
C*D 0.0873 0.2327 0.38 0.720
C*F -0.000353 0.004203 -0.08 0.936
D*F 0.325 1.208 0.27 0.797
A’ -0.4990 0.6921 -0.72 0.498
B’ 0.00001626 0.00003711 0.44 0.677
F° -0.1847 0.2182 -0.85 0.430
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As it is seen from the table of [ significance, none of the factor has a p-
value less than 10%. This result together with the low value of Rqgj strongly
suggest that some terms in the quadratic regression model are unnecessary.
Therefore, some trials are performed to increase Rz(adj) and to decrease the
remaining factors significance level. For this purpose, factors are removed from
the model starting from the factor that has the largest p-value. After several trials
of getting an adequate model, the best model having the largest R* g, value with
no factors having a p-value larger than 10% is obtained as in Equation [4.10].

ANOVA of this model is given in Table 4.21.

Log s” = - 4.00 + 0.0905*C + 0.00632*AC + 0.670*AD + 0.158*AF
-0.000106*BC + 0.00117*BF - 0.212*A2+ 0.000005*B>
-0.271*F* [4.10]

Table 4.21. ANOVA for improvedquadratic regression analysis for log s°

Source dF Sum of Squares Mean Squares F
Regression 9 20.2778 2.2531 6.66 0.000
Residual Error 17 5.7519 0.3383
TOTAL 26 26.0297
R*=77.9% R® i) = 66.2% S =0.5817

Durbin Watson=2.43

There are significant improvements in the model in R®qg) value and S
value. However; Durbin Watson statistics measure gets worse than the previous
one. It is now important for checking the normal probability and residual versus
fitted values plot. Figures 4.17 and 4.18 show the residual plots and Table 4.22
shows [} significance test. In Appendix 4A.14, the sequential sum of squares can

be found.
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Figure 4.17. Residuals versus fitted values plot of the improved quadratic

regression model [4.10] for log s°
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Figure 4.18. Normal probability plot of the improved quadratic

regression model [4.10] for log s°
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Table 4.22. Significance of B terms of improved quadratic model [4.10] of log s>

Predictor Coefficient Standard Error T p
Constant -4.005 1.499 -2.67 0.016
C 0.09051 0.03739 2.42 0.027
A*C 0.006320 0.002397 2.64 0.017
A*D 0.67 0.2775 2.41 0.027
A*F 0.15803 0.07296 2.17 0.045
B*C -0.00010596 0.00003840 -2.76 0.013
B*F 0.0011689 0.0006075 1.92 0.071
A’ -0.21231 0.04785 -4.44 0.000
B’ 0.00000468 0.00000191 2.45 0.025
F° -0.27210 0.09254 -2.93 0.009

As it is seen from Table 4.22, all the factors in the improved quadratic
regression model are important with at least p significance level, but
unfortunately Durbin Watson test statistic for this model indicates a negative
correlation between the errors. Tabulated values of Durbin-Watson (Mendenhall
et. al, 1996, p.825-826) indicate that negative correlation is possibly significant
in this case. Moreover, the randomness in the residuals versus fitted values
graph is not achieved yet, therefore it is worth to try some higher order terms
such as A3, B3, C3, D3, E3, F.

When the cubic terms are added to the improved quadratic model, there
is no significant improvement in the model. In contrast, Rz(adj) is decreased to
52.2% while R? value is increased to 79.8. This wide gap between R” and R® (g,
is an indication of unnecessary terms in the model. The residual versus fitted
values plot still needs improvement and Durbin Watson statistic decreases only
little to 2.37 which is still an evidence for negative correlation. So some
corrections are tried to be made on the model in order to decrease the gap
between R®and R’y and decreasing the Durbin-Watson statistics. Also

itis aimed to improve the residuals versus fitted plot. The best model that is
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achieved can be seen in Equation [4.11] and Table 4.23 shows the results of

ANOVA.

Log s® =-2.58 + 0.0592*C + 0.00858*AC - 0.000081*BC + 0.000873*BF
-0.0273*A° +0.0000000015*B> + 10.6*D’ - 0.0298*F° [4.11]

Table 4.23. ANOVA for cubic regression analysis for log s>

Source dF Sum of Squares Mean Squares F p
Regression 8 19.1354 2.3919 6.24 0.001
Residual Error 18 6.8943 0.3830
TOTAL 26 26.0297
R*=73.5% R% i) = 61.7% S=0.6189

Durbin Watson = 2.09

Although this model has a larger S value, smaller R’ value and

smaller R® value than the previous one, the Durbin Watson test statistic

decreases to a level that we can assume there is no correlation between the

residuals. The residuals versus fitted values and normal probability plot seem to

be acceptable for all practical purposes. These plots can be seen in Figures 4.19

and 4.20, respectively.
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Figure 4.20. Normal probability plot of cubic model [4.11] for log s>

66



The [ significance test of the factors and the sequential sum of squares

can be seen in Table 4.24 and Appendix 4A.15, respectively.

Table 4.24. Significance of B terms of cubic regression model for log s>

Predictor Coefficient Standard Error T p
Constant -2.579 1.094 -2.36 0.030
C 0.05921 0.3772 1.57 0.134
A*C 0.008584 0.002529 3.39 0.003
B*C -0.00008092 0.0003786 2.31 0.033
B*F 0.000873 0.00003874 -2.09 0.051
A’ -0.02728 0.0065 -4.20 0.001
B’ 0.0000000015 0.00000000 2.46 0.024
D’ 10.609 4.543 2.34 0.031
F -0.02979 0.01192 -2.50 0.022

When Table 4.24 is examined, it is seen that roasting time has a p-value
larger than 10%. However; removing roasting time from the model makes it
worse in the manner that R*uq) has been decreased to 58.8% and Durbin
Watson statistic has been increased to 2.55 indicating a negative correlation of

residuals.

Eventually, standard deviation of extraction of lithium from boron clays
can be modelled, however, this model is not so adequate to explain the standard

deviation of the extraction results of lithium from boron clays. The best model

fitted is given in Equation [4.11].
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CHAPTER V
OPTIMIZATION

In Chapter 4, functional relationships between the performance
measures, mean and standard deviation, and control the factors (Gypsum,
Roasting Temperature, Roasting Time, Leaching S/L Ratio, Leaching Time, and
Limestone) have been modelled.

In this chapter, optimal factor levels are found by solving a non-linear

programming problem. The problem can simply be stated as follows;

Maximize p
A,B,C,D,E,F

subject to

logs®<d

Here, d is some limit that we can accept for log s* value. Recall that in
this study we would like to achieve maximum mean lithium extraction with as
small variation as possible in the repeat extraction levels at the same factor
settings. As far as the range of factor levels is concerned, we try both within and
beyond the experimental region.

For solving this problem, some optimization algorithms have been used.
These are MINITAB Response Optimizer, GAMS Non-Linear Programming
and Ridge Analysis.

In using MINITAB optimization, the optimum point differs based on the
starting point that is defined to program. Therefore, one optimum point is found
based on the program’s default starting point, and 9 more optimum points are
found by specifying a different starting point each time. Same procedure has
been applied for GAMS Non-Linear Programming. However; only one optimum
is proposed by Ridge Analysis.
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Furthermore, an optimum point is obtained by GAMS Non-linear

programming for the surface outside the experimental region.

5.1 Minitab Response Optimizer

MINITAB Response Optimizer requires a minimum and a target value
for maximization problems. Therefore it is decided to define a minimum value
of 70 and a target value of 82. These values are chosen because 70 is the largest
average extraction that is reached by the designed experiments and 82 is the
largest extraction of lithium from clays due to economic considerations in the
literature. Minimization of log s* could not be computed by MINITAB as it
could not solve the problem of cubic models. MINITAB response optimizer
provides %95 prediction interval for both the mean and the standard deviation
at the optimum. The optimal factor settings that have been found from the model
[4.7] have been put to the model [4.11] and fitted value and 95% prediction
interval has been found for log s*

As the response surface algorithm in MINITAB stops whenever it faces a
point at which the first derivative is zero and as there are a lot of such points in
the response surface area of lithium extraction, the points which are near 70 in
the prediction interval has been treated as local (or global) optimum. In Table
5.1, the values can be seen. The starting points and the optimum points found by

MINITAB can be seen in Appendix 5A.1.
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Table 5.1. The prediction intervals for mean and standard deviation computed by

MINITAB Response Optimizer

Optimum 5 % 95 Pred. Int. % 95 Pred. Int.
Points Mean | Logs ; for Mean for log s*
1 61.439 | 1.142 3.724 | (50.237,72.641) (-0.309, 2.592)
2 99.977 | 2.481 | 17.398 | (71.812, 128.141) (0.982, 3.980)
3 22956 | -1.069 | 0.292 | (11.191, 34.722) (-2.593, 0.454)
4 61.867 | 1.000 3.163 | (47.254,79.479) (-0.537, 2.537)
5 56.206 | 1.475 5.464 | (43.762, 68.650) (-0.092, 2.859)
6 66.075 | 1.893 8.841 | (51.932,80.218) (0.460, 3.327)
7 83.032 | 1.930 9.226 | (68.024, 98.040) (0.283, 3.577)
8 71.928 | 1.217 4.060 | (60.136, 83.720) (-0.180, 2.614)
9 85.779 | 1.850 8.414 | (63.591, 107.967) (0.263, 3.4306)
10 31.390 | 0.033 1.038 | (20.325, 42.455) (-1.384, 1.451)

As it is seen from Table 5.1, the prediction intervals for log s are very
wide. This is due to the fact that it can not be modelled adequately. From these
ten optimum points, three points are chosen and experiments are conducted.
These points are the optimum points of 1,4 and 7. Points 3, 5, 10 have not been
tested as they have yielded low values for the mean. Points 6 and 8 have not
been tested as they have relatively high variances and high roasting temperatures
that in turn will affect the economy of the process. Instead, point 1 (which has a
high roasting temperature) has been tested. Points 9 and 7 have similar measures
for the mean and the standard deviation, however, point 7 has a narrower
prediction interval for the mean. Point 2 has a relatively high prediction for the
standard deviation and also the mean estimated seems to be too high to obtain so
it has not been tested. Point 4 has been chosen to try as it has relatively high
mean value with low standard deviation. In order to estimate standard deviation,

two repetitions have been applied for each experiment.
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Optimum No:1

For this experiment; gypsum ratio, roasting temperature, roasting time,
leach solid/liquid ratio, leaching time and limestone ratio are 1.5, 987°C, 30
min., 0.1, 120 min. and 1.5, respectively. The results of the experiments are
61,39% and 63.32%. Both of the results are in the prediction interval for the
mean.

Standard deviation (log s°) of these experiments is 0.540, which is still in
prediction interval for standard deviation (log s?).

Hence we can easily conclude that this point has been modelled well by
the regression model for the mean and log s*. However; we have had larger
extraction values for lithium which was on the average 69.857 for the
experiment number 6 in the orthogonal array design. It is certain that we could

not have an improvement by conducting the experiments of this point.

Optimum No:4

For this experiment; gypsum ratio, roasting temperature, roasting time,
leach solid/liquid ratio, leaching time and limestone ratio are 1.5, 878°C, 120
min., 0.36, 120 min. and 1.5, respectively. The results of the experiments are
43,13% and 43,08%. These points are just outside the lower limit of prediction
interval for mean.

Standard deviation (log s%) of these two experiments is —2.912 which is
outside the lower limit of prediction interval for log s*.

Therefore, it can be concluded that this point has not been modelled well
by the regression model formulated for the mean and log s>. Moreover, we have

not seen any improvement of maximization of extraction of lithium from clays.

Optimum No:7

For this experiment; gypsum ratio, roasting temperature, roasting time,
leach solid/liquid ratio, leaching time and limestone ratio are 4.5, 850°C, 120
min., 0.4, 120 min. and 1.5, respectively. The results of the experiments are
15,76% and 29,63%. These points are very far from the lower limit of prediction

interval for mean.
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Standard deviation (log s®) of these two experiments is 1.983
which is in the prediction interval for standard deviation (log s).

So, this point can be modelled well by the regression for log s*, however,
it has modelled very badly by the regression for the mean. Moreover, there has
been no improvement for the extraction maximization of lithium from boron

clays.

5.2 GAMS Non-Linear Programming:

In Minitab package program, it is not possible to find the optimum point
for the models having cubic terms. Therefore log s* could not have been
considered by MINITAB Response Optimizer and optimum values and
prediction intervals have not been found. In order to overcome this drawback,
GAMS non-linear programming has been applied. Again 10 optimum points
have been found by GAMS. Nine of these points have been found by defining a
starting point and one without defining any starting point.

In the GAMS program, the model for mean is tried to be maximized. It is
asked to the program that the mean be smaller than 100 and the regression

model for log s* be smaller than 1. The non-linear program is given below:
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Maximize
7Z=-1331.6+18.19*A+2.8857*B-0.1209*C-108.21*D+0.6288*E-50.18*F

+0.018944*A*B+0.19532*A*C+5.2019*A*F-0.0012118*B*C-

0.14162*B*D-0.0006306*B*E+0.05452*B*F+3.8247*C*D-

0.01341*C*F - 2.967*D*F - 10.02*A*A-0.0014914*B*B - 3.4884*F*F
Subject to

-2.579+0.05921*C+0.008584*A*C - 0.00008092*B*C + 0.000873*B*F

-0.02728*A*A*A+0.0000000015*B*B*B+10.609*D*D*D-

0.02979*F*F*F <1

-1331.6+18.19*A+2.8857*B-0.1209*C-108.21*D + 0.6288*E - 50.18*F

+0.018944*A*B+0.19532*A*C+5.2019*A*F-0.0012118*B*C-

0.14162*B*D-0.0006306*B*E+0.05452*B*F+3.8247*C*D-

0.01341*C*F-2.967*D*F-10.02*A*A-0.0014914*B*B- 3.4884*F*F

<100

1.5<ALA45

850 <B <1050

30<C<120

0.1<D<04

30<E<120

1.5<F<4.5

The code for solving this non-linear optimization problem by GAMS
Non-Linear programming package can be seen in Appendix 5A.2. Also in
Appendix 5A.3 the starting points defined to the GAMS program and optimum
points found by the program can be seen. GAMS is using the Abadie-Carpentier
method while optimizing non-linear problems.

As the coefficient for cubic term of roasting temperature (B°) is very low
(8 zeros after decimal) and as MINITAB has not given the values beyond 8
digits after decimal, a coefficient has been assigned for this parameter. Th

coefficient of B’ has been assigned as 0.0000000015. However; due to that
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assignment, the values of log s differ for GAMS and MINITAB program. So,
fitted value and prediction interval of log s> values for GAMS output is found by
MINITAB.

The fitted values of extraction of optimum points found by GAMS and
fitted values of log s* and prediction intervals for both mean and log s* found by

MINITAB for these two performance measures can be seen in Table 5.2.

Table 5.2. Mean values computed from GAMS and standard deviation with
prediction intervals for both mean and log s* computed by MINITAB Response

Optimizer
Optimum 5 % 95 Pred. Int. % 95 Pred. Int.
Points Mean | Logs ; for Mean for log s’

1 74.692 | 1.492 5.572 | (62.449, 86.935) (0.820, 2.902)
2 74.692 | 1.492 5.572 | (62.449, 86.935) (0.820, 2.902)
3 74.692 | 1.492 5.572 | (62.449, 86.935) (0.820, 2.902)
4 74919 | 1.732 7.345 | (51.122,98.715) (0.299, 3.164)
5 99.967 | 2.026 | 10.304 | (84.455, 115.480) (0.473, 3.579)
6 74919 | 1.732 7.345 | (51.122,98.715) (0.299, 3.164)
7 74.692 | 1.492 5.572 | (62.449, 86.935) (0.820, 2.902)
8 27.627 | 1.025 3.255 | (17.073,38.181) (-0.498, 2.549)
9 74.692 | 1.492 5.572 | (62.449, 86.935) (0.820, 2.902)
10 99.969 | 2373 | 15.364 | (83.675,116.263) (0.890, 3.846)

As it is obvious from Table 5.2, five points (1, 2, 3, 7, 9) of the ten
optimum points yield the same result. This point has been found by GAMS also
without defining any starting point. Although, the fitted value for mean seems
low, prediction intervals (compared with those of other points) for the mean and
the standard deviation make it a valuable alternative to try. Point 4 and 6 have
not been tested as they have yielded almost the same mean value with these five
points. Point 8 has predicted a significantly low value for mean. Points 5 and 10
have predicted high mean values. However; they have both high roasting

temperature and time and wide prediction intervals for the mean and standard
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deviation. Therefore they have not been tried. So, the point where gypsum,
roasting temperature, roasting time, leach S/L ratio, leaching time and limestone
take the values of 2.787, 989, 30, 0.1, 120 and 2.512, respectively has been tried.

The results of the experiments yield the extraction values of %55.06 and
%50.00. These results are both less than the lower limit of the prediction interval
for the mean. The log s* for these results is 1.107 which is inside the prediction
intervals for standard deviation.

So, this point has been modelled well with the regression for standard
deviation (but standard deviation has a wide gap) and could not have been
modelled by the regression model for the mean. It should have been said that
GAMS Non-linear programming could not predict the fitted values well for the
mean values. Moreover, it has been seen that modelling of standard deviation
with log s* do not yield satisfactory results for GAMS. Apart from the misfit
problem, there has been no any improvement achieved for extraction of lithium

from boron clays.

5.3 Ridge Analysis

Ridge Analysis is the technique of steepest ascent applied to second
order surfaces.

It is worth to apply this technique to the regression model for the mean,
however, it is not possible to apply it to the model of log s* as this model is a
third-order model. The idea of the model has been explained in Chapter II.

Therefore, the technique tries to solve the following equation;

(B-Ahx=-112b
In our model,
A B C D E F |
A -10.02 0.0095 0.098 0 0 2.6
B 0.0095 -0.0015 -0.0006 -0.071 -0.00032  0.027
B= C 0.098 -0.0006 0 1.912 0 -0.0067

D -0.75 -0.071 1.912 0 0 -1.484
E 0 -0.00032 0 0 0 0
F 2.6 0.027 -0.0067 -1.484 0 -3.49
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18.19
2.886
-0.1209

b=| 0821 I is the identity

0.6288 matrix,
-50.18

A is an arbitrary value and the eigenvalues of B is denoted by 9.

The detailed formulation of the problem is given in the Appendix 5A.4.

The eigenvalues, § , of the matrix B is found using MATLAB.
The eigenvalues are; -10.9511, -3.4231, -1.2753, -0.013, 0.0001, 2.1392.

So a GAMS program for solving the formulation of Ridge Analysis,
which comprises 6 equations, 2 inequalities and 7 unknowns, is proposed and

the code is given in Appendix 5A.5. The equations are;

(-10.02-1)* A+0.0095*B+0.098*C+2.6*F= -9.095 [5.1]
0.0095*A-(0.0015+1)*B-0.0006*C-0.071*D-0.00032*E+0.027*F=-1.443 [5.2]
0.098*A-0.0006*B-A*C+1.912*D-0.0067*F=0.06045 [5.3]
-0.071*B+1.912*C-A*D-1.484*F=54.105 [5.4]
-0.00032*B-A*E=-0.3144 [5.5]
2.6*A+0.027*B-0.0067*C-1.484*D-(3.49+1)*F=25.09 [5.6]
. <2.1392 [5.7]
% >-10.9511 [5.8]

This is the program for finding the value of A inside the region of
eigenvalues of matrix B. The solution of the program yields the values of 3.16,
983, 67, 0.187, 46, 2.6 and 0 for A, B, C, D, E, F and A, respectively. According

to ridge analysis technique this point is a local optimum.
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The formulation for finding the value of A (so that location of the global
optimum) outside the region of eigenvalues of matrix B yield an infeasible
solution. That means ridge analysis could not propose a global optimum for this
model. The model and solution can be seen in Appendix 5A.6.

MINITAB has been used for finding the mean and standard deviation of
local optimum value proposed by Ridge Analysis. The fitted values and
prediction intervals for both performance measures are estimated by using
MINITAB. The fitted value for mean is 59.90 and prediction interval is (45.895,
73.898). The fitted value for standard deviation (log s”) is 1.587 and the
prediction interval is (0.216, 2.958). Although the prediction interval for
standard deviation is wide, prediction interval for mean makes this point a
candidate to be tried.

Therefore two experiments have been performed and the results are;
77.49% and 72,91%. The standard deviation (log s?) for these results is 1.021.
One of the results is just inside the prediction interval and the other is just
outside the prediction interval. Also, standard deviation is inside the prediction
interval. It can be concluded that the regression model fitted for mean and
standard deviation can predict the results of the Ridge Analysis well.

Apart from the adequacy of the regression model for this point, what is
more important is, an improvement in extraction of lithium has been achieved.

77.49% is the best result that has ever been obtained.

5.4 Optimization Outside the Response Surface

By changing the limits of the factors that have been introduced to the
GAMS non-linear program, it is possible to find out optimum points outside the
experimental region. Again the same algorithm of MINITAB Response
Optimizer and GAMS non-linear programming have been applied to outside the
experimental region. 10 optimum points have been computed by GAMS. As we
have been dealing with outside region, by nature the model could not be used to

predict the results of the experiment. However; it is decided to use GAMS and
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the predicted results are found as 100 for the mean and less than 1.4 for log s
that makes s being less than 5. While choosing the experiments to conduct,
another important criterion that has been considered is the economy of the
process. For example; roasting temperatures and leaching time have been chosen
as low as possible. 10 optimum points that have been computed by GAMS

outside the experimental region can be seen in Table 5.3.

Table 5.3. The optimum points found by GAMS outside the experimental region

Opt A B C D E F s Mean

No
1 | 2159 ] 852 145 [ 0341 | 240 | 0.764 | 1464 | 100
2 [ 2068 810 127 10500 | 42 0.500 | 3.548 | 100
3 2734 ] 906 108 | 0.500 | 38 0.910 |3.158 | 100
4 | 2943 | 851 111 | 0500 | 44 0.843 [ 4592 100
5 ] 5000 930 127 0500 | 70 0.910 |2.150 | 100
6 | 2488 | 821 119 [ 0500 | 42 0.500 | 3.981 | 100
7 | 4622 ] 900 166 | 0329 | 70 0.537 |2934] 100
8 | 1498 | 825 139 | 0442 | 240 1.496 [ 2523 100
9 [2643] 921 105 | 0.500 | 50 1.064 [3.162 100
10 | 1.921 | 944 111 | 0.500 | 240 1.709 |3.162 | 100

When we consider the economy of the process, the 2" and 6™ optimum
points seem to be the most economical processes as the roasting temperature is
low; as in the vicinity of 800°C, and leaching time is also low; just about 45
minutes. Therefore, 6 experiment has been conducted twice. However; the
results have been surprisingly low; 24.48% and 29.79%. As such a low values
are obtained for extraction of lithium from clays at very low temperatures, it has
been thought to make one more experiment with higher roasting temperatures.
From Table 5.3, the most suitable and relatively economic one is the 3™

optimum point. Hence this point has been conducted twice.
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The results have not been as low as those of the 6 point but they have
been far from being an global optimum for the extraction of lithium from boron
clays. The results have been 61.61% and 53.63%. These situations can be
observed for outside the experimental region, since the response surface may

change their shapes at another region.

79



CHAPTER VI
AN ATTEMPT TO IMPROVE THE OPTIMUM POINT

6.1. An Improved Experimental Design and Analysis

In Chapter 5, we have tried to model the mean and standard deviation of
extraction of lithium from boron clays. We have benefited from the response
surface modelling for achieving extraction as high as possible. However; except
for Ridge Analysis, no improvement can be made. Ridge Analysis has yielded
the results of 77.49% and 72.91%, which 77.49% is the highest value ever
obtained. However; the roasting temperature has been so high (around 980°C)
that extraction will not be economical. It is aimed in this chapter to get an
optimum with less cost.

Therefore, it has been thought to add the information obtained from the
optimum points tried to our response surfaces so that a new model can be set up.
Following this, a total of 6 points tried before have been appended to the
experimental layout (three of these have been found using MINITAB, and the
rest from ANOVA, GAMS Non-linear programming and Ridge Analysis).
Furthermore, one more point had been tried out of curiosity after investigating
the literature and experiencing the results of the experiments, the chemical
mechanism of roasting temperature and solubility equilibrium of leaching. At
this point, gypsum, roasting temperature, roasting time, leach S/L ratio, leach
time and limestone take the values of 1.5, 918°C, 120 min., 0.17, 120 min. and
1.5 respectively. Although the fitted value (22.58%) and the prediction interval
(-2.30, 47.47) of the regression model for the mean does not show good results,
this point had been tried. The results of the experiment have been 73.76% and
70.46%, which are higher values than many obtained so far except Ridge
Analysis results. Therefore, this point has been added to the response surface
modelling, as well. The seven points that have been treated as a part of the
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experimental design and added to the model can be seen in Table 6.1.

Table 6.1 The points that have been added to the model

No | Found from A B C D E F
1 GAMS 2.772 984 30 0.1 120 2.458
2 | Ridge Analy. | 3.178 986 67 0.187 33 2.6
3 MINITAB 4.5 850 120 0.4 120 1.5
4 MINITAB 1.5 987 30 0.1 120 1.5
5 MINITAB 1.5 878 120 0.36 120 1.5
6 ANOVA 4.5 950 120 0.2 120 1.5
7 Experience 1.5 918 120 0.17 120 1.5

These points have been appended in the experimental design. The model

for the mean extraction has been found after several attempts in order to satisfy

the assumptions for residuals. The best model that has been formulated with the

ANOVA table can be seen in Equation [6.1] and in Table 6.2. The starting

model can be seen in Appendix 6A.1.

= 769 + 78.2*A - 1.85*B - 1.38*C + 343*D - 9.46*E + 266*F
+0.0181*AB - 0.254*AC + 93.2*AD + 5.12*AF - 0.00115*BC
- 0.135*BD + 0.00819*BE - 0.297*BF + 9.09*CD + 0.0116*CE
- 0.0124*CF - 4.09*DE - 0.584*EF - 17.4*A% + 0.00114*B> +
+0.00614*C? — 1864*D? + 0.0162*E> + 8.23*F>

[6.1]

Table 6.2 ANOVA for Regression Analysis for model comprising optimum

points
Source dF Sum of Squares Mean Squares F p
Regression 25 16252.85 650.11 68.46 | 0.000
Residual Error 8 75.97 9.50
TOTAL 33 16328.83
R*=99.5% R% gy = 98.1% S =3.082

Durbin-Watson statistic = 1.96
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The model has expectedly high value of R?,, and the Durbin-Watson
statistic shows no correlation between the residuals. p-value of the model is so
low that it can be concluded that this model is significant. The residuals versus
fitted values plot and the normal probability plot can be seen Figures 6.1 and

6.2, respectively.
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Figure 6.1. The residuals versus fitted values plot for the regression

model [6.1] including optimum points.
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Figure 6.2. The normal probability plot of residuals for the regression

model [6.1] including optimum points.
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Both plots show no violation of the assumptions made for residuals.
Residual versus fitted values plot shows that the variance of the residuals is
constant. Normal probability plot resembles a straight line leading in a
conclusion for normal distribution of residuals.

The [ significance table of the parameters can be seen in Table 6.3.
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Table 6.3. Significance of B terms of the model [6.1] including optimum points

Predictor Coefficient Standard Error T p
Constant 768.8 332.8 2.31 0.050
A 78.16 13.52 5.78 0.000
-1.8507 0.7148 -2.59 0.032
C -1.3787 0.4912 -2.81 0.023
D 342.71 72.37 4.74 0.001
E -9.458 1.507 -6.28 0.000
F 266.01 42.32 6.29 0.000
A*B 0.018113 0.006303 2.87 0.021
A*C -0.25436 0.05986 -4.25 0.003
A*D 93.18 20.50 4.55 0.002
A*F 5.1191 0.4145 12.35 0.000
B*C -0.0011513 0.0002031 -5.67 0.000
B*D -0.13523 0.06076 -2.23 0.057
B*E 0.008193 0.001166 7.03 0.000
B*F -0.29740 0.04633 -6.42 0.000
C*D 9.0914 0.8654 10.51 0.000
C*E 0.011571 0.001322 8.75 0.000
C*F -0.01238 0.01421 -0.87 0.409
D*E -4.0865 0.7233 -5.65 0.000
E*F -0.58447 0.08325 -7.02 0.000
A’ -17.383 2.087 -8.33 0.000
B’ 0.0011381 0.0003914 291 0.020
c’ 0.006138 0.003136 1.96 0.086
D’ -1863.7 225.5 -8.27 0.000
E’ 0.016426 0.002986 5.44 0.001
F’ 8.235 1.666 4.94 0.001
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The B significance table has implied that every term has a p-value of at
most 10% except roasting time and limestone interaction factor. However;
excluding this term from the model makes it worse in the manner that Durbin-
Watson statistic shows a positive correlation. The model with no factor having
p-value higher than 10% and the sum of squares of the best model can be seen in
Appendix 6A.2 and 6A.3. Therefore this model is thought to be the best
regression model that comprises optimum points for mean.

At this point, it will be beneficial to look for log s* model. The
formulation and the ANOVA of the log s* model can be seen below.

Log s>= 386 - 2.40%A - 0.979*B + 0.441*C + 309*D - 1.48*E + 63.8*F
-0.0762*AC + 28.9*AD + 0.240*AE -0.000081*BC + 0.00180*BE
-0.0697*BF + 3.12*CD - 0.00450*CE - 3.66*DE - 0.117*EF
- 4.17*A*+0.000546*B* — 536*D* + 0.00134*E*+ 2.16*F* [6.2]

Table 6.4. ANOVA for Regression Analysis for model of log s* comprising

optimum points

Source dF Sum of Squares Mean Squares F
Regression 21 36.8068 1.7527 3.26 0.019
Residual Error 12 6.4433 0.5369
TOTAL 33 43.2501
R*=85.1% R* (i) = 59.0% S =10.7328

Durbin-Watson statistic = 2.07

The Durbin-Watson statistic of the model shows no correlation between
the residuals. R? value is 85.1% and Rz(adj) value is 59% which is low value.
Moreover, the gap between the values of R? and Rz(adj) is wide. This means that
we have some unnecessary terms in our model. However; trying to decrease the
number of factors in the model do not improve the adequacy of the model so that
this model has been chosen as the best model for log s> with the optimum points
included. The residuals versus fitted values and normal probability plot have

implied that the assumptions made about the residuals are satisfied. The plots
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and the [3 significance test of the factors can be seen in the following pages.
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Figure 6.3. The residual versus fitted values plot for the regression model of log

s? [6.2] including optimum points
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Figure 6.4. The normal probability plot of residuals for the regression

model of log s*[6.2] including optimum points
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Table 6.5. Significance of B terms of the regression model [6.2] including

optimum points for log s>

Predictor Coefficient Standard Error T p

Constant 386.3 100.0 3.86 0.002
A -2.397 2.581 -0.93 0.371
B -0.9791 0.2496 -3.92 0.002
C 0.4412 0.1380 3.20 0.008
D 308.64 86.16 3.58 0.004
E -1.4801 0.3342 -4.43 0.001
F 63.80 15.63 4.08 0.002
A*C -0.07619 0.2346 -3.25 0.007
A*D 28.917 7.496 3.86 0.002
A*E 0.23968 0.06506 3.68 0.003
B*C -0.00008124 0.00004605 -1.76 0.103
B*E 0.0018038 0.0004253 4.24 0.001
B*F -0.06965 0.01727 -4.03 0.002
C*D 3.1239 0.8306 3.76 0.003
C*E -0.004496 0.001396 -3.22 0.007
D*E -3.6604 0.9857 -3.71 0.003
E*F -0.11725 0.03032 -3.87 0.002
A’ -4.168 1.043 -4.00 0.002
B’ 0.0005459 0.0001381 3.95 0.002
D’ -536.4 144.3 -3.72 0.003
E’ 0.0013444 0.0003905 3.44 0.005
F’ 2.1556 0.5963 3.61 0.004

Modelling of log s* with optimum points included could not have been

modelled adequately. However; this model is simpler than the previous one.
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MINITAB Response Optimizer is used to obtain new optimal points.
and see if both models could predict the results of the experiment. Fortunately,
as log s* have been modelled with addition of quadratic terms, it is now possible
to make a dual approach to the optimization using MINITAB. In other words, In
MINITAB Response Optimizer we can define limits for both the mean and log
s* and require an optimum point that will maximize extraction with minimum
variation. Therefore, for mean a minimum value of 70 and a target value of 100
whereas for log s>, a maximum value of 1.6 (s will be 6.31 then) and a target
value of 1 (s will be 3.162 then) have been defined as limits for MINITAB
Response Optimizer. Same algorithm with the one that has been applied in the
previous chapters has been applied. The Optimizer has found 10 points. The
starting and optimum points can be seen in Appendix 6A.4 and the mean and the
log s* values with the prediction interval for both measures can be seen in Table

6.6.

Table 6.6. The prediction intervals for the mean and the standard deviation

computed by MINITAB Response Optimizer that use models [6.1] and [6.2]

Optimum 5 % 95 Pred. Int. % 95 Pred. Int.
Points Mean hogs ; for Mean for log s?

1 71.930 0.669 2.160 (61.908, 81.953) | (-1.572,2.910)
2 80.423 1.640 6.607 (69.620,91.226) | (-0.703, 3.982)
3 74.437 0.999 3.159 (64.067, 84.807) | (-1.234,3.233)
4 84.229 5.427 517.01 (73.729, 94.730) (1.510, 9.343)
5 63.522 2.059 10.703 (53.701, 73.343) | (-0.561, 4.678)
6 94.599 6.367 | 1525.81 | (82.016, 107.182) | (2.209, 10.526)
7 123.874 | -10.646 | 4.8x10° | (75.216, 172.532) | (-23.273, 1.982)
8 95.439 1.387 4.937 | (80.563,110.314) | (-1.393,4.167)
9 125.099 | 15.432 | 5.2x10" | (99.660, 150.538) | (7.622,23.201)
10 86.509 0.892 2.793 (75.316,97.702) | (-1.557,3.341)
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From Table 6.6, it can be seen that standard deviation has a wide gap for
most of the points. The smallest standard deviation are obtained at points 1 and
10 which we have already tested (point 10 is approximately the same as the
point found by Ridge Analysis and point 1 has earlier been found by intuition).
Log s” for points 10 and 1 are 1.021 and 0.736, respectively. They are both in
the prediction interval for log s>. However; recall that the mean extraction results
obtained from these two experiments have not been satisfactorily and
economically high (highest value for point 10 is 77.49%, and for point 1 is
73.76%). Hence, it is decided to look for a point to get higher mean extraction
values more economically at the expense of standard deviation. Undesirability of
low roasting temperatures has eliminated points 3, 8, 9, 2 and 6. Point 7 has been
found without defining any starting point and it is shown here for illustrative
purposes. Also experiences about the extraction mechanism has shown that
roasting temperatures about 850°C result in low yields. Hence we are left with
only two alternatives; points 4 and 5. Although point 5 has a narrower prediction
interval for log s, point 4 has predicted mean extraction values much higher
with a narrower prediction interval. Therefore it is decided to conduct
experiments for point 4. Gypsum, roasting temperatures, roasting time, leach
solid to liquid ratio, leaching time and limestone take the values of 1.5, 915, 120,
0.26, 120 and 1.5, respectively.

At first, two experiments have been conducted for this point and the
results have been: 74.87 and 83.01%. The standard deviation of these two
experiments is 5.756 (log s” is 1.520) which is an acceptable value. More
importantly both of the results have been between the prediction interval limits
for the mean. Also 83.01% is the largest extraction value of lithium from boron
clays obtained experimentally. Hence we have conducted 4 more repetitions at
this point to assure the persistence of these results and the results are; 83.84%,
85.54%, 86.39% and 89.22%. All of them are in the prediction interval (73.729,
94.730) for the mean and they are the highest that have been achieved so far.

The mean of all these six experiments is 83.81% and the standard deviation is
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4.888. (log s* is 1.378) which is still an acceptable value although it is outside
the prediction interval (1.510, 9.343) for log s* .From these 6 experiments, the
lowest 3 mean values (74.87%, 83.01%, 83.84%) and the highest 3 mean values
(85.54%, 86.39%, 89.22%) have been grouped with each other and Signal-to-
Noise ratios have been calculated. For the lower group, S/N ratio is 38.097 and
for the higher group, 38.794. They are much better than the ANOVA results. As
a result, it can be concluded that the model for the means including the optimum
points has successfully found the optimum (or a highly desirable point) and can
predict the results well. The model is adequate at that point.

Gaining knowledge from these experiments and examining the literature
has led us to think of an experiment at increased time of roasting and leaching
and beyond the experimental region. For this purpose, point 7 of Table 6.1 has
been used. Only roasting leaching time has been altered. Firstly the experiments
have been performed at 120 minutes of roasting time and 180 minutes of
leaching time. The results that have been obtained were 82,89% and 82.22%,
(log s* is —0.649) which are not significantly different from the optimum point,
that have been found from model including the optimum points.

Furthermore as a last experiment, increasing of roasting and leaching
time by 60 minutes have been thought. The results of the experiment show
values of 86.70% and 93.53% (log s® is 1.368). These results have been the
highest of all experiments that have been conducted and log s° is an acceptable
value. However; as the roasting and leaching time prolonged by a significant
value, the comparison of economic value of these results and the optimum point,
found by the model including the local optima, should be considered.

As a result, this study can claim that in the experimental region at least
74.87% and at most 89.22% (both are in the prediction interval) mean extraction
has been achieved with an acceptable standard deviation. The points that would
yield this result with an economical process should be 1.5, 915°C, 120, 0.26, 120
and 1.5 for gypsum, roasting temperature, roasting time, leach solid to liquid
ratio, leaching time and limestone, respectively. Higher extraction values can be
achieved but increasing roasting and leaching time will affect the economy of

the process significantly.
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For illustrative purposes, contour plots of roasting temperature versus

leaching solid to liquid ratio drawn for both the mean and log s> can be seen

from Figures 6.5 and 6.6.
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Figure 6.5. Contour plot of roasting temperature versus leaching solid to
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6.2. Comparison of Results to Relevant Literature Work

There are some studies that have tried to extract lithium from clays.
These studies have been pointed out in Chapter II. From these, the most
important and the relevant ones are Mordogan et. al. (1995), Beskardes et. al.
(1992) and Lien (1985). Mordogan et. al. (1995) and Beskardes et. al (1992)
have studied the boron clays whereas Lien (1985) has studied montmorillonite
type clay which does not contain boron. The optimum points that have been
found by these studies and the economic analysis of them can be seen in Table
6.7. Crocker et. al. (1988) is a modification of the study of Lien (1985) in order

to decrease the cost of the process by decreasing the raw materials.

Table 6.7. Comparison of Results to Other Studies

This Mordogan Beskardes Crocker
Study 1995 1992 1988
Field Bigadi¢ Kirka Bigadig Nevada
Lithium Content (ppm) | 2000 2800 2007 6000
Optimum Points
Clay 5 5 5 5
Gypsum 1.5 0.834 1.5 2
Roasting Temp. (°C) 915 900 850 900
Roasting Time (min.) 120 120 120 120
Leaching S/L Ratio 0.26 0.1 0.5 0.665
Leaching Time (min.) 120 60 - 5
Limestone 1.5 0 1.5 2
Performance
Measures
Average Extraction (%) | 83.81 77.00 72.78 84.00
Cost ($/kg Li,COs) 6.91 -—-- 10.65 4.45
Standard Deviation 4.89 -—-- -—-- -—--

As it is seen from Table 6.7, the optimum point found in this study is somewhat
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similar to those of the other studies, although in this study natural and waste raw
materials are used, which reduces cost and saves the environment.

The extraction values achieved in this study are the highest for boron
clays and nearly the same with those of Crocker et. al. (1988). Mordogan et. al.
(1995) have studied Kirka clays which has a different composition than Bigadic
clays so they do not need to use limestone. The main difference of this study
from other studies is high leaching time, however, it is seen from Figure 4.6 that
30 minutes of leaching time can be enough for high extraction. A confirmation
experiment has been done for decreasing leaching time (other points remaining
the same) and has resulted in about 80% extraction. Further experiments are still
being conducted. Another important factor is leaching solid to liquid ratio which
is high for this study compared to Beskardes et. al. (1992) and Crocker et. al.
(1988). This factor is important in the sense that high liquid amount needs more
water to evaporate and this in turn increases the cost significantly. Experiments
are still being conducted in order to increase the solid to liquid ratio. The
author’s opinion is that there will not be high differences in the extraction values
for that factor.

The cost of producing lithium carbonate from clays is lowest for
Crocker et. al’s (1988) study but this is mainly due to the higher lithium content
of the clay used in that study. The detailed cost analysis made for this study by
a similar approach with Crocker et. al (1988) is given in Chapter VII.

Only this study has focused on variation of the extraction results. This
performance measure has not been considered in the other studies. An

acceptable standard deviation (4.89) has been achieved in this study.
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CHAPTER VII

ECONOMIC IMPACT AND ANALYSIS OF THE STUDY

This study aims to design the extraction process so that high extraction
results are achieved without costly control on noise factors. Here, major savings
come from the use of limestone directly from the nature and gypsum as a waste
product of boric acid production. In traditional practice, to achieve high lithium
extraction results reagent grade raw materials are used which add further cost to
process. Hence, we have made a cost analysis in order to see overall savings
resulted from this study. In this analysis we have used the study of Crocker et.
al. (1988) for comparison. The results of the annual operating cost analysis are
summarized in Table 7.1.

It has been intended to develop a rough cost estimate assuming the worst
case and the cost analysis is done based on processing 1000 tons/day. According
to Crocker et. al. (1988) clay:gypsum:limestone ratio is 5:2:2, however we have
found the optimum ratio as 5:1.5:5:1.5. Therefore, in Crocker et. al. (1988)
about 1900 tons/day of raw materials can be processed, while we can process
about 1600 tons/day of raw materials. Furthermore, some cost figures such as
those for depreciation, taxes, insurance, balls, chemicals, and process water for
our case have been found simply by adjusting the corresponding Crocker et. al.
(1988) figures by the capacity (i.e. by multiplying them by 1600/1900).

Evaporation and leaching costs have been taken as the same.
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Table 7.1. Comparison of operating cost of the proposed lithium extraction

process to that of Crocker et. al. (1988)

Crocker et. al. (1988), $ This study, $
Annual | kg Li;CO; Annual ‘ kg Li;CO;
Lithium content (ppm) 6000 2000
I. Direct Costs
A. Raw Materials
Clay 0 0.000 0 0.000
Limestone 3.395.700 0.437 0 0.000
Gypsum 3.326.400 0.428 1.414.000 0.514
Soda Ash 2.313.000 0.297 936.000 0.342
Balls 122.300 0.015 103.000 0.037
Chemicals 3.600 0.002 3.000 0.001
Total 9.161.000 1.179 2.456.000 0.894
B. Utilities
Electric Power 1.190.600 0.152 1.920.000 0.698
Process Water 63.000 0.009 53.000 0.019
Fuel 8.240.100 1.057 6.294.000 2.289
Total 9.493.700 1.218 8.267.000 3.006
C. Direct Labor
Labor 1.437.100 0.186 189.000 0.069
Supervision 215.600 0.029 28.000 0.010
Total 1.652.700 0.215 217.000 0.079
D. Maintenance
Labor 1.437.100 0.218 224.000 0.081
Supervision 340.000 0.045 45.000 0.016
Materials 1.700.100 0.218 1.432.000 0.521
Total 3.740.100 0.471 1.701.000 0.619
E. Payroll Overhead 1.292.400 0.166 170.000 0.062
F. Operating Supplies 748.000 0.098 340.000 0.124
TOTAL DIRECT COST | 26.087.900 3.347 13.151.000 4,782
I1. Indirect Costs 2.157.100 0.278 767.000 0.279
I11. Fixed Costs
Taxes 811.400 0.105 684.000 0.249
Insurance 811.400 0.105 684.000 0.249
Depreciation, 20 yr 4.755.500 0.612 4.005.000 1.456
TOTAL
RODUGHON cosT | 34.623.300 | 4.45 | 19.291.000 | 7.014
Annual Production 7785 2750
(ton)
Waste Reducing Gain | ---—- | - -1.200.000 -0.436
TOTAL 34.623.300 | 4.45 | 18.091.000 | 6.578
PRODUCTION COST ) : ) ) ) )
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In Crocker et. al. (1988), unit cost of electricity is taken as 0.047 $/kW.h,
however, for Turkey unit cost of electricity is assumed as 0.09 $/kW.h. Crocker
et. al. (1988) have used heavy oil for fuel (0.85 $/gal and 1 gallon gives 153.000
Btu of heat) and we have used natural gas as the fuel (0.02 $/1000 kcal). Labor
cost is 11.75 $/hr in Crocker et. al. (1988) and we have taken the labor cost as
13.500 $/annual per person on the average.

Some cost figures seem to be higher with respect to unit cost of Li,COs.
This is due to the fact that in our study annual production of Li,CO; is about
three times less than Crocker et. al. (1988) study as the lithium content of
Bigadi¢ clays is much lower (2000 ppm) than that of Crocker et. Al. (1988)
study (6000 ppm).

Although it is intended to develop an estimate for the worst case,
evaporation cost (that will be added to fuel part) has been taken as the same as
that of Crocker et. al (1988) study, although we have higher water amount to
evaporate, hence higher cost.

Some cost figures such as those for gypsum and waste reducing gain can
not be displayed here as they are confidential for Eti Holding. Waste reducing
gain has been estimated assuming that the leaching residue will find an
application area. This point is discussed in detail later both in this section and in
Chapter 8.

The operating cost of Li,CO;3; from boron clays that contain 2000 ppm
lithium has been estimated as 6.578 $/kg whereas, the same figure for Crocker
et. al. (1988) study is 4.45 $/kg. On the other hand, if the study done by Crocker
et. al (1988) had lithium content of 2000 ppm in their clays, then the operating
cost would roughly be around 13.35$/kg. In this study, the ratio of raw materials
to clay has been decreased and also the raw materials that will not bring any
additional cost to Eti Holding, Inc have been used. This has brought about 50%
savings in the operating cost. However; when we consider the import price of
Li,COj in Turkey in year 2002 (3.983%/kg) this process is not be preferable as of
the current time. If the selling price of Li,CO; in the world market is about
3.5%/kg, then, in order for this process to be preferable Bigadi¢ clays should

contain around 3500 ppm lithium, or Li,COs selling price should increase to
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about 6 $/kg.

Another important point to consider is the application of the residue of
the leaching process. This residue is a waste in this study, however, by changing
the amounts of raw materials (hence probably decreasing extraction yield) this
residue can be used in other industries. This adjustment will bring additional
cost reduction to process. An economic off-set should be made with the possible
usage of the residue and extraction percentage. Moreover, possible application
of the leaching residue will result in a significant benefit to society such as
decreasing further the solid wastes to environment. In case that this residue is
not used, about 30% waste reduction can been achieved at the optimal settings.

While making the cost analysis, natural gas has been used as the fuel
source and it is seen that it has added about 35% cost to the process. Decreasing
the cost of fuel as well as the cost of electricity (about 10% cost to the process)
will bring significant cost improvements. Also pelletizing has been added in the
cost analysis. However; a pilot scale study should be conducted to decide
whether pelletizing is necessary or not.

The price of Li;COs has increased about 5-10% in year 2001 and it is
predicted that the price will increase in the following years. So the price trend of
Li,COj; should be followed to determine when the proposed extraction process
need to be put in action.

In addition to all these, the amount and grade of lithium reserves of
boron clays (especially Bigadi¢ clays) should be determined and if a field
containing about 3000 ppm lithium is found, it should be stored in a separate
place. An estimation of process cost in that case might indicate that extracting
lithium locally using the proposed approach is more economical than importing

it.
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CHAPTER VIII
CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

In mining industry, it has not been straightforward to make a
standardization as the industry strongly depends on natural factors. In this study,
a methodology has been demonstrated for achieving the desired result (lithium
extraction) independent of the grade of the raw materials that has been input. All
the raw materials have been chosen as they are solid wastes from production
facilities or gangue minerals. In other words, the need for standardization is
sought to be reduced. This study specifically has been concentrated on the
extraction of lithium from boron clays by using a solid waste of boric acid
production, gypsum and a calcium carbonate rich field in boron mines that could
not been utilized, otherwise.

In this study, evaluation of optimum extraction of lithium from boron
clays has been examined. The procedure has been based on two main
performance measures; mean of extraction and the standard deviation of the
extraction values. Statistical experimental design principles more specifically
orthogonal arrays have been used in such a study for the first time to the best of
our knowledge.

The objective of robust extraction of lithium is to find optimal settings of
parameters which produce the maximum extraction with minimum variation
around this maximum.

In this study, guidelines for the conduct of experiments have been
developed and data collection and transformation methods have been presented.

Data analysis has been performed for modelling both the mean and the
standard deviation. A methodology called S/N transformation comprising both

of these performance measures has been utilized.
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While seeking to reach the optimum settings of parameters, 4 different
optimization algorithms have been used. These are ANOVA, Regression
modelling, Non-linear programming, and response surface methods applied to
second-order surfaces, Ridge Analysis. A widely used method of robust design,
ANOVA, has been performed by making Signal-to-Noise ratio transformation of
data. The results obtained from ANOVA do not yield satisfactory extraction
values. The reason for this lack of achieving may be two fold; ANOVA has
taken only the linear terms into consideration, and we are confined to only the
experimental levels of the factors for the optimum.

Modelling through regression has been separated into two parts. The
mean and the standard deviation has been modelled. MINITAB 13.3 package
program has been used for modelling. Mean has been modelled with high values
of adjusted multiple coefficient of determination R*ugj. Also the assumptions
about the residuals for mean has been met satisfactorily. No correlation has been
observed for errors. Prediction intervals for mean mostly have been narrow
enough. The standard deviation could not be modelled as adequately as the
mean. Although residuals confirm all assumptions and no correlations have been
observed between them, there has been a wide gap between multiple coefficient
of determination (R”) and adjusted multiple coefficient of determination (Rz(adj)).
Prediction intervals for the standard deviation have been too wide. The
confirmation experiments for regression modelling have shown variability
among different points for both the mean and the standard deviation. However;
an improvement from the experimental results obtained could not be achieved
by the tested optimal points. For this case, a further modelling have been tried
and this modelling is based on the addition of optimal points to the first model.
This model has shown an adequate fit to the mean whereas standard deviation
still could not be modelled as adequately as the mean. There are several reasons
for this lack of fit. One and the most important reason is that the raw materials
used for this study have been chosen from nature as they are and have not been

processed for standardization before beginning of the tests.
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Especially, limestone CaCOj3 content has shown a significant variability.
The model that has treated the optimal points as a part of experimental design
has concluded in an extraction of lithium that has been the highest of all tests.
Also the standard deviation at these optimal settings is found experimentally to
be acceptable although it could not be predicted by the model of the standard
deviation.

Another optimization tool that has been tried in this study is Non-linear
programming. Dual responses have been tried to be solved for this purpose;
maximization of the mean of extraction of lithium and minimization of the
standard deviation around the mean. Non-linear programming has been made by
using GAMS software. The results obtained from this study has yielded sub-
optimal points which have not shown a significant improvement of the
experimentally obtained results. Also by incorporating the non-linear
optimization technique, some points outside the experimental region that can
lead to the desired results have been found. While computing these points,
economic considerations have been considered and the points that might bring
cost reduction have been tried. However; satisfactory extraction values could not
be achieved, either.

The last optimization algorithm that has been used in this study is the
method that has been applied to second-order surfaces of response surface
methodology, Ridge Analysis. This method has comprised some matrix algebra
and MATLAB package program has been used for solving the equations. Ridge
Analysis have predicted the results of the experiment for both performance
measures satisfactorily. Moreover, it has yielded an optimum value that has
been higher than the previous results of the experimental region. However; this
optimum point could not be treated as the global optimum as the algorithm
suggests that it is a local optimum. Furthermore, this optimum point has a
drawback that the roasting temperature is very high at this point.

An economic off-set should be calculated for other factors. As the
roasting process is a reversible process, less time is needed for completion of

converting process for higher temperatures than for lower temperatures. So for
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deciding on optimal settings, this study has presented two solutions. If lower
roasting temperature will be more suitable, then the result obtained from
modelling of the mean by adding optimum points to the experimental region
should be used. The settings for this optimum are 1.5, 915°C, 120 minutes, 0.26,
120 minutes and 1.5 for gypsum, roasting temperature, roasting time, leaching
solid to liquid ratio, leaching time and limestone, respectively. If less time of
roasting time will be seen more adequate for extraction, the results obtained
from Ridge Analysis, should be used. The settings for the parameters are 3.178,
986°C, 67 minutes, 0.187, 33 minutes, 2.6 for the same order of factors.

Extraction of lithium from boron clays has had a solid waste at the end of
the leaching process. The raw materials other than the lithium containing clay
must be chosen for evaluation of this solid waste. This study is unique in the
sense that natural limestone has been used as CaCOs source and waste product
of boric acid is used as gypsum source. These two raw materials will not bring
any additional cost to the extraction process as they are owned by Eti Holding,
Inc. Moreover, using these wastes will decrease the need hence cost for storing
them. Therefore, an important parameter to consider here is the amount of
limestone and gypsum used in lithium extraction. As another solid waste has
obtained during the extraction process, the optimal settings for raw materials can
be modified in a way to utilise that solid waste. For this purpose, pelletizing can
be introduced to the process. The author’s opinion is that it will be crucial to
make a study for utilising the solid waste of lithium extraction in order to
decrease the economy of the process significantly.

In this study, experiments have been made based on clay amount. 40
grams of clay have been used and gypsum and limestone ratio have been chosen
with respect to that value. For example, at the optimal settings, gypsum/clay
ratio and limestone/clay ratio are both 1.5/5 meaning that 12 grams of gypsum
and limestone have been used. This will add to totally 64 grams. After the
leaching process, about 45 grams of solid waste are left. This means that at the
optimal settings about 30% reduction can be achieved for the wastes. Moreover,

by just using natural raw materials, about 78% cost reduction for extraction have
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been gained compared with the study made by Crocket et. al. (1988). To add up,
this study not only extracts lithium in an economic way but also attempts to
decrease the solid wastes of Eti Holding, Inc.

The results of the cost analysis show that if import price of lithium
increases more than 50%, if we find enough clays that contain about 3500 ppm
lithium and if fuel and electricity prices decrease, then it is economically
feasible and more advantageous for Turkey to produce its own lithium (and
export the excess) by using the proposed extraction process. Apart from the cost
considerations, this proposed process has a social benefit to the society in the
manner that the solid wastes to the nature are decreased by significantly.

Another important research that should follow this study is the
precipitation of lithium. Lithium carbonate is the most widely used compound of
lithium and the studies in literature (Lien, 1985, Beskardes, 1992) have been
concentrated on it. The optimal settings for the precipitation of lithium can be
found by following a similar approach.

It has been well known to the researchers of robust design that tolerance
design should have been performed after robust design. This study needs to be
followed by a tolerance design study as the raw materials used in extracting
lithium are all solid wastes and they show great variability (especially limestone)
in their beneficial portion for extraction of lithium. In such a study, the
allowable variation for lithium content of clay, limestone’s CaCO; content and
gypsum’s CaS04.2H,0 content or lower limits of lithium content of the clays,
calcium carbonate (CaCOj) content of limestone and calcium sulphate dihydrate
content (CaS04.2H,0) of gypsum can be defined for optimum extraction of
lithium from boron clays with much smaller variation than the variation obtained
in this study. This will further reduce variation of the results. As a part of the
tolerance design, a detailed cost analysis should be conducted for producing
lithium carbonate or any other lithium compound. In order to make the cost
analysis more accurately, the grade and reserves of lithium content of boron

clays should have been determined.
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Appendix 4A.1. L27 (313) Orthogonal Array

Run Columns

1 2 3 4 5 6 7 8 10 11 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3 3 3
4 1 2 2 2 1 1 1 2 2 3 3 3
5 1 2 2 2 2 2 2 3 3 1 1 1
6 1 2 2 2 3 3 3 1 1 2 2 2
7 1 3 3 3 1 1 1 3 3 2 2 2
8 1 3 3 3 2 2 2 1 1 3 3 3
9 1 3 3 3 3 3 3 2 2 1 1 1
10 2 1 2 3 1 2 3 1 3 1 2 3
11 2 1 2 3 2 3 1 2 1 2 3 1
12 2 1 2 3 3 1 2 3 2 3 1 2
13 2 2 3 1 1 2 3 2 1 3 1 2
14 2 2 3 1 2 3 1 3 2 1 2 3
15 2 2 3 1 3 1 2 1 3 2 3 1
16 2 3 1 2 1 2 3 3 2 2 3 1
17 2 3 1 2 2 3 1 1 3 3 1 2
18 2 3 1 2 3 1 2 2 1 1 2 3
19 3 1 3 2 1 3 2 1 2 1 3 2
20 3 1 3 2 2 1 3 2 3 2 1 3
21 3 1 3 2 3 2 1 3 1 3 2 1
22 3 2 1 3 1 3 2 2 3 3 2 1
23 3 2 1 3 2 1 3 3 1 1 3 2
24 3 2 1 3 3 2 1 1 2 2 1 3
25 3 3 2 1 1 3 2 3 1 2 1 3
26 3 3 2 1 2 1 3 1 2 3 2 1
27 3 3 2 1 3 2 1 2 3 1 3 2
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Appendix 4A.2. Interaction Table for L27 (313)

Column Column
1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 3 2 2 6 5 5 9 8 8 12 11 11
4 4 3 7 7 6 10 10 9 13 13 12
2 21 1 8 9 10 5 6 7 5 6 7
4 3 11 12 13 11 12 13 8 9 10
3 B3 1 9 10 8 7 5 6 6 7 5
2 13 11 12 12 13 11 10 8 9
4 4 10 8 9 6 7 b5 7 5 6
12 13 11 13 11 12 9 10 8
5 ®) 1 1 2 3 4 2 4 3
7 6 11 13 12 8 10 9
6 e 1 4 2 3 3 2 4
5 13 12 11 10 9 8
7 7 3 4 2 4 3 2
12 11 13 9 8 10
8 8 1 1 2 3 4
10 9 5 7 6
9 9 1 4 2 3
8 7 6 5
10 (10) 3 4 2
6 5 7
11 (12) 1 1
13 12
12 (12) 1
11
13 (13)
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Appendix 4A.3. Residual Plots for the model of mean
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Appendix 4A.4. Level Averages For Mean

Gypsum Ro.Te. °C
1.5 3 4.5 850 950 1050
25.71 25.67 30.27 11.20 37.16 33.29
Ro.Ti. min Leach S/L
30 60 120 0.1 0.2 0.4
20.72 25.35 35.59 22.15 35.47 24.04
Le.Ti. min Limestone
30 60 120 1.5 3 4.5
28.42 18.20 35.03 31.98 31.19 18.48
Ro. Te. x Ro. Ti. Ro. Te. x Leach S/L
850 x 30 4.74 850x 0.1 13.13
850 x 60 11.77 850x 0.2 13.29
850x 120 17.09 850x 0.4 7.19
950 x 30 21.96 950x 0.1 27.38
950 x 60 38.60 950x 0.2 43.75
950 x 120 50.92 950 x 0.4 40.35
1050 x 30 35.45 1050 x 0.1 25.92
1050 x 60 25.68 1050x 0.2 49.38
1050 x 120 38.75 1050 x 0.4 24.57

There are two combinations for determining the optimum levels since
interaction of roasting temperature and leach solid to liquid ratio has the highest
level of B;D, combination. So the first combination includes the optimum levels
of A3;B,C3;D;E3F; and the second combination includes the optimum levels A3;B3

Cs;D;EsF;. The estimation of the expected value of the mean is as follows:
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COMBINATION 1:

EQ)=T+(4-T)+B,-T)+(C,-T)+(D,~T)+(E,~T)+(F, —T)+(BxC,—T)
+(B,xD, - T) 1]

From the level averages table;

E(y) = 27.22 + (30.27-27.22) + (37.16-27.22) + (35.59-27.22) + (35.47-27.22) +
(35.03-27.22) + (31.98-27.22) + (32.61-27.22) + (25.56-27.22)

E(y) =27.22 +3.05 + 9.94 + 8.37 + 8.25 + 7.81 + 4.76 + 5.39 — 1.66
=73.13

COMBINATION 2:

Ep)=T+(4-T)+B,-T)+(C,-T)+(D, -T)+(E,~T)+(F, - T)+(BxC, -T)
+(B,xD, —T) [2]

From the level averages table;

E(y) = 27.22 + (30.27-27.22) + (33.29-27.22) + (35.59-27.22) + (35.47-27.22) +
(35.03-27.22) + (31.98-27.22) + (24.31-27.22) + (35.06-27.22)

E(y)=27.22 +3.05 + 6.07 + 8.37 + 8.25 + 7.81 + 4.76 — 2.91 + 7.84
=70.46

As the first combination predicts higher extraction value, it is better to
use this. Moreover, as roasting temperature is lower in the first combination, it

will be economical to treat this combination as the optimum for mean.
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Appendix 4A.5. Residual plots for the model of standard deviation
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Appendix 4A.6.

Level Averages for Standard Deviation

Gypsum Ro.Te. °C
1.5 3 4.5 850 950 1050
5.115 6.678 3.420 3.339 4.564 7.310
Ro.Ti. min Leach S/L
30 60 120 0.1 0.2 0.4
5.138 3911 6.165 3.589 5.986 5.639
Le.Ti. min Limestone
30 60 120 1.5 3 4.5
6.317 4.480 4416 4.076 7.180 3.957
Ro. Te. x Ro. Ti. Ro. Te. x Leach S/L
850 x 30 0.746 850x 0.1 5.942
850 x 60 3.828 850x 0.2 1.854
850x 120 5.444 850x 0.4 2.222
950 x 30 6.498 950x 0.1 1.401
950 x 60 2.734 950x 0.2 5.920
950 x 120 4.459 950 x 0.4 6.369
1050 x 30 8.170 1050 x 0.1 3.423
1050 x 60 5.170 1050x 0.2 10.184
1050 x 120 8.591 1050 x 0.4 8.324
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Computation of the predicted standard deviation based on the optimum points of
S/N Analysis:

E©)=T +(4-T)+(B,-T)+(C,;—T)+(D,~T)+(E,~T)+(F, -T)+(BxC,—T)
+(ByxD, ~T)

From the level averages table;

E(c) = 5.071 + (3.420-5.071) + (4.564-5.071) + (6.165-5.071) + (5.986-5.071)
+(4.416-5.071) + (4.076-5.071) + (3.872-5.071) + (5.512-5.071)

E(c)=5.071-1.651-0.507 +1.094 + 0.915—0.655-0.995 -1.199 + 0.441
=2.514
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Appendix 4A.7. The regression model with only main factors

The regression equation is
Mean = - 87.0 + 1.52*A + 0.110*B + 0.166*C - 2.8*D + 0.103*E - 4.50*F

Predictor Coef SE Coef T P
Constant -86.95 39.30 -2.21 0.039
A 1.519 2.546 0.60 0.557
B 0.11044  0.03819 2.89 0.009
C 0.16603  0.08333 1.99 0.060
D -2.76 25.00 -0.11 0.913
E 0.10307  0.08333 1.24 0.230
F -4.499 2.546 -1.77 0.092
S=16.20 R-Sq=46.5% R-Sq(adj) =30.4%

Analysis of Variance

Source DF SS MS F P

Regression 6 4555.3 759.2 2.89 0.034

Residual Error 20 5249.3 262.5

Total 26 9804.6

Source DF Seq SS

A 1 93.4

B 1 2195.5

C 1 1042.0

D 1 3.2

E 1 401.5

F 1 819.7

Unusual Observations

Obs A Mean Fit SE Fit  Residual St Resid
18 3.00 22.92 52.65 8.25 -29.73 -2.13R
25 450 13.68 44.14 8.50 -30.46 -2.21R

R denotes an observation with a large standardized residual

Durbin-Watson statistic = 2.44
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Appendix 4A.8. The regression of the quadratic model

A*E is highly correlated with other X variables
A*E has been removed from the equation

C*E is highly correlated with other X variables
C*E has been removed from the equation

D*E is highly correlated with other X variables
D*E has been removed from the equation

C*C is highly correlated with other X variables
C*C has been removed from the equation

D*D is highly correlated with other X variables
D*D has been removed from the equation

E*E is highly correlated with other X variables
E*E has been removed from the equation

The regression equation is
Mean =- 1332 + 17.2*A + 2.89*B - 0.105*C - 98.5*D + 0.631*E - 50.2*F +
0.0189*AB + 0.195*AC - 1.49*AD + 5.20*AF - 0.00121*BC -
0.142*BD -0.000631*BE + 0.0545*BF + 3.75*CD - 0.0134*CF -
2.97*DF - 9.80*A” -0.00149*B” - 3.49*F”

Predictor Coef SE Coef T P
Contant -1332.1 129.5 -10.29 0.000
A 17.17 17.08 1.01 0.354
B 2.8857 0.2644 10.91 0.000
C -0.1051 0.3143 -0.33 0.749
D -08.52 95.90 -1.03 0.344
E 0.6312 0.4228 1.49 0.186
F -50.18 10.84 -4.63 0.004
A*B 0.018944 0.007003 2.71 0.035
A*C 0.19532 0.02154 9.07 0.000
A*D -1.491 6.461 -0.23 0.825
A*F 5.2019 0.4669 11.14 0.000
B*C -0.0012118  0.0002335 -5.19 0.002
B*D -0.14162 0.06711 -2.11 0.079
B*E -0.0006306  0.0003968 -1.59 0.163
B*F 0.05452 0.01212 4.50 0.004
C*D 3.7501 0.8618 4.35 0.005
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C*F -0.01341 0.01557 -0.86 0.422
D*F -2.967 4.474 -0.66 0.532
A’ -9.804 2.563 -3.82 0.009
B’ -0.0014914 0.0001375 -10.85 0.000
F? -3.4884 0.8082 -4.32 0.005
S =3.367 R-Sq=99.3% R-Sq(adj) =97.0%

Analysis of Variance

Source DF SS MS F P
Regression 20  9736.54 486.83 42.94 0.000
Residual Error 6 68.02 11.34

Total 26 9804.56

Source  DF Seq SS

A 1 93.42

B 1 2195.49

C 1 1041.97

D 1 3.20

E 1 401.55

F 1 819.68

A*B 1 70.78

A*C 1 657.35

A*D 1 280.31

A*F 1 1090.42

B*C 1 293.39

B*D 1 42.70

B*E 1 170.07

B*F 1 622.66

C*D 1 103.84

C*F 1 7.60

D*F 1 4.99

A’ 1 291.40

B’ 1 1334.51

F? 1 211.22

Unusual Observations

Obs Gypsum Mean Fit SE Fit  Residual

8 1.50 37.947 38.320 3.356 -0.374

18 3.00 22917 22.842 3.367 0.075

25 4.50 13.677 13.378 3.360 0.299

X denotes an observation whose X value gives it large influence.
Durbin-Watson statistic = 1.96
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Appendix 4A.9. Regression Analysis for Improved Quadratic Model:

The regression equation is
Mean =-1332 +18.2*A +2.89*B -0.121*C -108*D +0.629*E -50.2*F
+0.0189*AB+0.195*AC +5.20*AF - 0.00121*BC-0.142*BD-

0.000631*BE + 0.0545*BF+ 3.82*CD-0.0134*CF-2.97*DF-10.0*A>-
0.00149*B%- 3.49*F>

Predictor Coef SE Coef T P
Constant -1331.6 120.4 -11.06 0.000
A 18.19 15.34 1.19 0.275
B 2.8857 0.2459 11.73 0.000
C -0.1209 0.2853 -0.42 0.684
D -108.21 80.18 -1.35 0.219
E 0.6288 0.3930 1.60 0.154
F -50.18 10.08 -4.98 0.002
A*B 0.018944 0.006512 2.91 0.023
A*C 0.19532 0.02003 9.75 0.000
A*F 5.2019 0.4341 11.98 0.000
B*C -0.0012118  0.0002172 -5.58 0.001
B*D -0.14162 0.06241 2.27 0.058
B*E -0.0006306  0.0003690 -1.71 0.131
B*F 0.05452 0.01127 4.84 0.002
C*D 3.8247 0.7430 5.15 0.001
C*F -0.01341 0.01448 -0.93 0.385
D*F -2.967 4.160 -0.71 0.499
A’ -10.020 2.220 4.51 0.003
B’ -0.0014914 0.0001278 -11.67 0.000
F? -3.4884 0.7515 -4.64 0.002

S=3.131 R-Sq=99.3% R-Sq(adj)=97.4%

Analysis of Variance

Source DF SS MS F P
Regression 19 9735.94 512.42 52.27  0.000
Residual Error 7 68.62 9.80

Total 26 9804.56
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Source DF Seq SS

A 1 93.42
B 1 2195.49
C 1 1041.97
D 1 3.20
E 1 401.55
F 1 819.68
A*B 1 70.78
A*C 1 657.35
A*F 1 1090.42
B*C 1 293.39
B*D 1 42.70
B*E 1 170.07
B*F 1 824.40
C*D 1 122.09
C*F 1 7.60
D*F 1 4.99
A’ 1 351.11
B2 1 1334.51
F? 1 211.22
Unusual Observations

Obs Jips Ort. Fit SE Fit Residual St Resid
18 3.00 22917 22.773  3.118 0.144 0.51 X

X denotes an observation whose X value gives it large influence.

Durbin-Watson statistic = 1.99
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Appendix 4A.10. Regression Analysis for Mean with no factor having p-
value greater than 10%o.

The regression equation is

Mean = -1319+30.9*A+2.88*B-0.330*C-170*D-0.0334*E- 43.9*F+0.0162*AB
+0.195*AC+5.15*AF-0.00117*BC-0.125*BD+0.0419*BF+4.37*CD-
11.6*A” -0.00149*B>- 2.65*F*

Predictor Coef SE Coef T P
Constant -1318.7 127.3 -10.36 0.000
A 30.86 14.81 2.08 0.064
B 2.8807 0.2603 11.07 0.000
C -0.3298 0.2807 -1.17 0.267
D -170.38 78.33 -2.18 0.055
E -0.03342 0.06971 -0.48 0.642
F -43.885 9.413 -4.66 0.001
A*B 0.016191 0.006378 2.54 0.029
A*C 0.19532 0.02120 9.21 0.000
A*F 5.1540 0.4569 11.28 0.000
B*C -0.0011670 0.0002213 -5.27 0.000
B*D -0.12538 0.06360 -1.97 0.077
B*F 0.041905 0.009020 4.65 0.001
C*D 4.3652 0.7116 6.13 0.000
A’ -11.581 2.142 -5.41 0.000
B2 -0.0014914 0.0001353 -11.02 0.000
F? -2.6476 0.6014 -4.40 0.001

S=3314 R-Sq=98.9% R-Sq(adj)=97.1%

Analysis of Variance

Source DF SS MS F P
Regression 16 9694.71  605.92 55.16 0.000
Residual Error 10 109.85 10.98

Total 26 9804.56
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Source DF Seq SS

A 1 93.42

B 1 2195.49
C 1 1041.97
D 1 3.20
E 1 401.55
F 1 819.68
A*B 1 70.78
A*C 1 657.35
A*F 1 1090.42
B*C 1 293.39
B*D 1 42.70
B*F 1 991.83
C*D 1 124.40
A’ 1 321.12
B’ 1 1334.51
F? 1 212.92

Durbin-Watson statistic = 1.38
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Appendix 4A.11. The Best Regression Model for s.

The regression equation is

s=-1.53-79.6*D + 6.42*F + 0.0380*AC - 6.64*AD + 0.659*AF-

0.000113*BC +  0.115*BD - 0.619*A” - 1.41*F* C6C6

Predictor Coef SE Coef T

Constant -1.525 5.034 -0.30
D -79.61 27.37 -2.91
F 6.420 3.366 1.91
A*C 0.03805 0.01361 2.80
A*D -6.639 4.249 -1.56
A*F 0.6591 0.3541 1.86
B*C -0.00011261  0.00004762 -2.36
B*D 0.11453 0.02821 4.06
A’ -0.6188 0.2371 -2.61
F? -1.4062 0.5268 -2.67

S=2904 R-Sq=67.7%

Analysis of Variance

Source DF SS MS
Regression 9 300.633 33.404 3.96
Residual Error 17 143.330 8.431
Total 26 443.963

Source DF Seq SS

D 1 13.215

F 1 0.063

A*C 1 2.783

A*D 1 32.281

A*F 1 4.337

B*C 1 0.497

B*D 1 129.973

A’ 1 57.423

F? 1 60.060

Unusual Observations
Obs D S

2 0.200 0.664

R-Sq(adj) = 50.6%

Fit SE Fit
7.051 1.518

Durbin-Watson statistic = 2.70
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P
0.766
0.010
0.074
0.012
0.137
0.080
0.030
0.001
0.018
0.016

P

0.007

Residual

-6.386
R denotes an observation with a large standardized residual

St Resid
-2.58R



Appendix 4A.12. The Values of Log s*:

Run No S log s*
1 6.6044 1.6397
2 0.6643 -0.3553
3 1.9970 0.6008
4 1.6983 0.4600
5 5.4060 1.4658
6 3.8339 1.1673
7 2.8498 0.9096
8 10.4453 2.0378
9 12.5324 2.1961
10 1.6251 0.4218
11 1.4144 0.3011
12 11.0631 2.0878
13 5.1102 1.4169
14 13.8822 2.2849
15 2.2984 0.7228
16 10.5982 2.0505
17 10.3786 2.0323
18 3.7331 1.1441
19 3.2547 1.0250
20 0.1582 -1.60148
21 3.2723 1.0297
22 1.3922 0.2874
23 0.2066 -1.3696
24 7.2443 1.7200
25 2.0619 0.6285
26 3.6848 1.1328
27 9.5077 1.9562
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Appendix 4A.13. The regression model for log s

* A*E is highly correlated with other X variables
* A*E has been removed from the equation

* C*E 1s highly correlated with other X variables
* C*E has been removed from the equation

* D*E is highly correlated with other X variables
* D*E has been removed from the equation

* C? is highly correlated with other X variables
* C? has been removed from the equation

* D? is highly correlated with other X variables
* D? has been removed from the equation

* E? is highly correlated with other X variables
* E? has been removed from the equation

The regression equation is

Logs®=9.1+ 1.81*A -0.0249*B + 0.0583*C - 8.2*D - 0.058*E + 0.17*F -
0.00003*AB + 0.00824*AC + 0.35*AD + 0.145*AF -0.000099*BC
+0.0026*BD +0.000054*BE + 0.00051*BF + 0.087*CD - 0.00035*CF

+0.33*DF - 0.499 A% +0.000016*B>- 0.185*F>

Predictor

Coef SE Coef T P

Constant 9.10 34.96 0.26 0.803
A 1.815 4611 0.39 0.708
B -0.02486 0.07139 -0.35 0.740
C 0.05833 0.08486 0.69 0.518
D -8.19 25.89 -0.32 0.762
E -0.0577 0.1141 -0.51 0.631
F 0.167 2.925 0.06 0.956
A*B -0.000025 0.001891 -0.01 0.990
A*C 0.008236 0.005814 1.42 0.206
A*D 0.348 1.744 0.20 0.848
A*F 0.1453 0.1260 1.15 0.293
B*C -0.00009883 0.00006305 -1.57 0.168
B*D 0.00260 0.01812 0.14 0.891
B*E 0.0000543 0.0001071 0.51 0.630
B*F 0.000507 0.003273 0.15 0.882
C*D 0.0873 0.2327 0.38 0.720
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C*F -0.000353 0.004203 -0.08 0.936

D*F 0.325 1.208 0.27 0.797
A’ -0.4990 0.6921 -0.72 0.498
B’ 0.00001626 0.00003711 0.44 0.677
F’ -0.1847 0.2182 -0.85 0.430

S=09090 R-Sq=81.0% R-Sq(adj)=17.5%

Analysis of Variance

Source DF SS MS F P
Regression 20 21.0721 1.0536 1.28 0.408
Residual Error 6 49576 0.8263
Total 26 26.0297

Source =~ DF  Seq SS

A 1 1.5683

B 1 44391

C 1 24724

D 1 1.0978

E 1 2.1192

F 1 0.0801

A*B 1 0.0000

A*C 1 1.4998

A*D 1 0.0062

A*F 1 04114

B*C 1 24293

B*D 1 0.0234

B*E 1 1.9276

B*F 1 0.0165

C*D 1 1.3937

C*F 1 0.0086

D*F 1 0.0599

A’ 1 0.7683

B’ 1 0.1585

F? 1 0.5919

Unusual Observations

Obs Gypsum Log s2 Fit SE Fit Residual St Resid
8 1.50 2.038  2.027  0.906 0.011 0.15X
18 3.00 1.144 1.146  0.909 -0.002 -0.15 X
25 4.50 0.629  0.637  0.907 -0.009 -0.15 X

X denotes an observation whose X value gives it large influence.
Durbin-Watson statistic = 2.12
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Az\ppendix 4A.14. Regression Analysis for improved quadratic model of log
S

The regression equation is
Log s2 =-4.00 + 0.0905*C + 0.00632*AC + 0.670*AD + 0.158*AF -
0.000106¥*BC + 0.00117*BF - 0.212 A* +0.000005*B* -0.271*F*

Predictor Coef SE Coef T P
Constant -4.005 1.499 -2.67 0.016
C 0.09051 0.03739 2.42 0.027
A*C 0.006320 0.002397 2.64 0.017
A*D 0.6700 0.2775 2.41 0.027
A*F 0.15803 0.07296 2.17 0.045
B*C -0.00010596 0.00003840 -2.76 0.013
B*F 0.0011689 0.0006075 1.92 0.071
A’ -0.21231 0.04785 -4.44 0.000
B? 0.00000468 0.00000191 2.45 0.025
F? -0.27120 0.09254 -2.93 0.009

S=0.5817 R-Sq=77.9% R-Sq(adj) = 66.2%

Analysis of Variance

Source DF SS MS F P
Regression 9 20.2778 2.2531 6.66  0.000
Residual Error 17 5.7519 0.3383

Total 26 26.0297

Source  DF Seq SS

C 1 2.4724

A*C 1 0.1371

A*D 1 0.3631

A*F 1 0.8135

B*C 1 1.7253

B*F 1 2.3838

A’ 1 3.7372

B’ 1 5.7395

F? 1 2.9059

Unusual Observations

Obs Ro.Ti.  Logs2 Fit SEFit Residual St Resid
2 30 -0.355  0.650  0.336 -1.006  -2.12R
5 30 1.466  0.496  0.357 0.970 2.11R
R denotes an observation with a large standardized residual
Durbin-Watson statistic = 2.43
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Appendix 4A.15. Regression Analysis for log s> with cubic terms

The regression equation is
Log s2 =-2.58 + 0.0592*C + 0.00858*AC -0.000081*BC +0.000873*BF -
0.0273*A>  4+0.000000*B> + 10.6*D" - 0.0298*F>

Predictor Coef SE Coef T P
Constant -2.579 1.094 -2.36 0.030
C 0.05921 0.03772 1.57 0.134
A*C 0.008584 0.002529 3.39 0.003
B*C -0.00008092 0.00003874 -2.09 0.051
B*F 0.0008730 0.0003786 2.31 0.033
A’ -0.027280 0.006500 -4.20 0.001
B? 0.00000000 0.00000000 2.46 0.024
D’ 10.609 4.543 2.34 0.031
F’ -0.02979 0.01192 -2.50 0.022

S=0.6189 R-Sq=73.5% R-Sq(adj)=61.7%

Analysis of Variance

Source DF SS MS F P
Regression 8 19.1354 2.3919 6.24 0.001
Residual Error 18 6.8943  0.3830

Total 26 26.0297

Source DF Seq SS

C 1 2.4724

A*C 1 0.1371

B*C 1 1.5948

B*F 1 0.0021

A’ 1 5.6569

B’ 1 4.6278

D’ 1 2.2535

F’ 1 2.3907

Unusual Observations

Obs Ro.Ti. Log s2 Fit SE Fit Residual St Resid
1 60 1.640 0367  0.283 1.273 231R
2 30 -0.355 0.751  0.342 -1.107 -2.15R

R denotes an observation with a large standardized residual
Durbin-Watson statistic = 2.09
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Appendix 5A.1. The Starting and Optimum Points for Minitab Response Optimizer

STARTING POINTS OPTIMUM POINTS
Roast. | Roasting | Leach | Leach Roast. | Roasting Leach Leach
Gypsum Limestone | Gypsum Limestone
POINTS Temp. Time S/L Time ) Temp. Time S/L Time
Ratio Ratio Ratio Ratio
(°C) (min) Ratio (min) (°C) (min) Ratio (min)
1 1.5 987 30 0.1 120 1.5 1.5 987 30 0.1 120 1.5
2 3.23 900 120 0.4 40 2.32 3.23 900 120 0.4 40 2.32
3 4.5 900 30 0.1 120 1.5 4.5 900 30 0.1 120 1.5
4 1.5 878 120 0.36 120 1.5 1.5 878 120 0.36 120 1.5
5 3 950 60 0.2 60 3 3 950 60 0.2 60 3
6 2 1000 100 0.4 60 2 2 1000 100 0.4 60 2
7 NO STARTING POINT 4.5 850 120 0.4 120 1.5
8 3 970 30 0.2 120 3 3 970 30 0.112 120 2.41
9 4.5 900 120 0.4 30 1.5 4.5 900 120 0.4 30 1.5
10 4.5 950 60 0.3 30 4.5 4.5 950 60 0.3 30 4.5




Appendix 5A.2. GAMS Input Program

variable S, Z;

positive variable A, B, C, D, E, F;

EQUATIONS OB, EQ, EQ100, EQS, Al, A2,B1, B2,
C1,C2,D1,D2,E1,E2,F1,F2;

OB.. Z=e=-1331.6 + 18.19*A+ 2.8857*B - 0.1209*C - 108.21*D + 0.6288*E -
50.18*F + 0.018944*A*B + 0.19532*A*C + 5.2019*A*F - 0.0012118*B*C -
0.14162*B*D -0.0006306*B*E + 0.05452*B*F + 3.8247*C*D - 0.01341*C*F -
2.967*D*F - 10.02*A*A-0.0014914*B*B - 3.4884*F*F;

EQ.. -2.579 + 0.05921*C + 0.008584*A*C - 0.00008092*B*C + 0.000873*B*F
-0.02728*A*A*A+0.0000000015*B*B*B+10.609*D*D*D-
0.02979*F*F*F =I=1,

EQ100.. -1331.6 + 18.19*A+ 2.8857*B - 0.1209*C - 108.21*D + 0.6288*E -
50.18*F +0.018944*A*B + 0.19532*A*C + 5.2019*A*F - 0.0012118*B*C -
0.14162*B*D -0.0006306*B*E + 0.05452*B*F + 3.8247*C*D - 0.01341*C*F
- 2.967*D*F - 10.02*A*A-0.0014914*B*B - 3.4884*F*F=1=100 ;

EQS..-2.579 + 0.05921*C + 0.008584*A*C - 0.00008092*B*C +
0.000873*B*F -0.02728*A*A*A  +  0.0000000015*B*B*B +
10.609*D*D*D -  0.02979*F*F*F =e=S;

Al.. A=l=4.5;
A2.. A=g=1.5;
Bl.. B=I=1050;
B2.. B=g=850;
Cl.. C=I=120;
C2.. C=g=30;
D1.. D=I=0.4;
D2.. D=g=0.1;
El.. E=I=120;
E2.. E=g=30;
Fl.. F=I=4.5;
F2.. F=g=1.5;

MODEL ATIL1 /ALL/;
SOLVE ATIL1 USING NLP MAXIMIZING z;
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Appendix 5A.3. The Starting and Optimum Points for GAMS Non-Linear Programming

STARTING POINTS

OPTIMUM POINTS

Roast. Roasting | Leach Leach Roast. Roasting Leach Leach
Gypsum Limestone | Gypsum Limestone
POINTS Temp. Time S/L Time ) Temp. Time S/L Time
Ratio Ratio Ratio Ratio
(°C) (min) Ratio (min) (°C) (min) Ratio (min)
1 3 950 60 0.2 60 3 2.787 989 30 0.1 120 2.512
2 2 900 75 0.1 120 2 2.787 989 30 0.1 120 2.512
3 2.9 990 31 0.11 120 2.52 2.787 989 30 0.1 120 2.512
4 3 850 30 0.3 45 2 2.876 1013 30 0.1 30 2.768
5 4.5 1000 120 0.4 120 1.5 4.02 959 120 0.4 120 1.5
6 4.5 1000 30 0.1 30 4.5 2.876 1013 30 0.1 30 2.768
7 NO STARTING POINT 2.787 989 30 0.1 120 2.512
8 1.5 875 60 0.4 120 4.5 1.5 966 120 0.4 120 4.5
9 4 900 30 0.1 90 1.5 2.787 989 30 0.1 120 2.512
10 3.75 925 100 0.25 100 2.25 3.209 980 115 0.4 120 2.12




vel

B-LI=

c1 | C2 | C3 | c4 | ¢c5 | cs6
Ci| -10.02 0.0095 0.098 0 0 2.6
B= c2| 0.0095 -0.0015 -0.0006 -0.071  -0.00032  0.027
c3| 0.098 -0.0006 0 1.912 0 -0.0067
c4| -0.75 -0.071 1.912 0 0 -1.484
C5 0 -0.00032 0 0 0 0
C6 2.6 0.027 -0.0067 -1.484 0 -3.49
C1 | c2 | C3 | C4 | ¢c5 | c6 o
C1| -10.02-L 0.0095 0.098 -0.75 0 2.6 X1
Cc2| 0.0095 -0.0015-L -0.0006 -0.071 -0.00032  0.027 X2
c3| 0.098 -0.0006 L 1.912 0 -0.0067 X3
c4 -0.75 -0.071 1.912 -L 0 -1.484 X4
C5 0 -0.00032 0 0 L 0 X5
C6 2.6 0.027 -0.0067 -1.484 0 -3.49-L | X6 |

EIGENVALUES

-10.9511

-3.4231

-1.2753

-0.0013

0.0001

2.1392

-0.5

18.19
2.886
-0.1209
-108.21
0.6288
-50.18



Appendix 5A.5. Solving of Ridge Analysis for A Inside the Region of the
Experiments

Variable G,Z;
positive variable A, B, C, D, E, F, L;
EQUATIONS OB,P,Q,R,S, T, U, V. Y, X;

OB.. Z=e=1;

P.. (-10.02-L)*A+0.0095*B+0.098*C+2.6*F=e=-9.095;

Q.. 0.0095*A-(0.0015+L)*B-0.0006*C-0.071*D-0.00032*E+0.027*F=e=-
1.443;

R.. 0.098*A-0.0006*B-L*C+1.912*D-0.0067*F=¢=0.06045;
S..-0.071*B+1.912*C-L*D-1.484*F=e=54.105;
T.. -0.00032*B-L*E=¢=-0.3144;
U.. 2.6%*A+0.027*B-0.0067*C-1.484*D-(3.49+L)*F=e=25.09;
V..L=1=2.1392;
Y.. L=g=-10.9511;
X.. G=¢e=L;
MODEL ATIL2 /ALL/;
SOLVE ATIL2 USING NLP MAXIMIZING Z ;
SOLUTION PROPOSED BY GAMS
LOWER LEVEL UPPER MARGINAL
VAR G -INF ) +INF
VAR Z -INF 1.000 +INF
VAR A . 3.155 +INF
VAR B . 982.500 +INF
VAR C . 66.764 +INF
VAR D . 0.187 +INF
VAR E . 46.404 +INF
VAR F . 2.555 +INF .
VAR L . . +INF EPS

**%% 2 =0 1s the solution for the case that —10.391<A<2.1392
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Appendix 5A.6. Solving of Ridge Analysis for A Outside the Region of the
Experiments

Variable G,Z;
positive variable A, B, C, D, E, F, L;
EQUATIONS OB,P,Q,R,S, T, U, V. Y, X;

OB.. Z=e=1;

P.. (-10.02-L)*A+0.0095*B+0.098*C+2.6*F=e=-9.095;

Q.. 0.0095*A-(0.0015+L)*B-0.0006*C-0.071*D-0.00032*E+0.027*F=e=-
1.443;

. 0.098*A-0.0006*B-L*C+1.912*D-0.0067*F=e=0.06045;

.-0.071*B+1.912*C-L*D-1.484*F=e¢=54.105;

.-0.00032*B-L*E=e=-0.3144;

.. 2.6%A+0.027*B-0.0067*C-1.484*D-(3.49+L)*F=e=25.09;

.. L=g=2.1392;

.. L=1=-10.9511;

. G=e=L;

M <oH®n R

MODEL ATIL2 /ALL/;
SOLVE ATIL2 USING NLP MAXIMIZING Z ;

SOLUTION PROPOSED BY GAMS

SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 5 LOCALLY INFEASIBLE
***%* OBJECTIVE VALUE 1.0000

** Infeasible solution. There are no superbasic variables.

LOWER LEVEL UPPER MARGINAL

VAR G -INF . +INF

VAR Z -INF 1.000 +INF

VAR A . 3.155 +INF

VAR B . 982.500 +INF

VAR C . 66.764 +INF

VAR D . 0.187 +INF

VARE . 46.404 +INF

VAR F . 2.555 +INF .
VARL . . +INF EPS
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Appendix 6A.1. The Starting Model for Mean Including Optimum Points

The regression equation is

Ort. = 1013+67.4%¥A-2.55%*B-0.61*C+708*D-10.0*E+312*F
+0.0189*AB-0.313*AC+112*AD+0.261*AE+5.20*AF
-0.00121*BC-0.142*BD+0.00944*B-0.348*BF+12.3*CD+0.0061 1 *CE-
0.0134*CF-8.39*DE-2.97*DF-0.671*EF-
20.7*A%+0.00153*B*+0.00418*C?2322*D*+0.0158*E*+9.94*F>

Predictor Coef SE Coef T P
Constant 1013.0 5079 1.99 0.093
A 67.39 24.49 2.75 0.033
B -2.552 1.309 -1.95 0.099
C -0.608 1.431 -0.42 0.686
D 707.8 619.2 1.14 0.297
E -10.047 1.806 -5.56 0.001
F 312.31 82.40 3.79 0.009
A*B 0.018944 0.007003 2.71 0.035
A*C -0.3132 0.1153 -2.72 0.035
A*D 111.57 36.70 3.04 0.023
A*E 0.2606 0.4480 0.58 0.582
A*F 5.2019 0.4669 11.14 0.000
B*C -0.0012118 0.0002335 -5.19 0.002
B*D -0.14162 0.06711 -2.11 0.079
B*E 0.009438 0.002241 421 0.006
B*F -0.34824 0.09107 -3.82 0.009
C*D 12.322 5.422 2.27 0.063
C*E 0.006107 0.009801 0.62 0.556
C*F -0.01341 0.01557 -0.86 0.422
D*E -8.391 7.310 -1.15 0.295
D*F -2.967 4474  -0.66 0.532
E*F -0.6713 0.1587 -4.23 0.006
A’ -20.699 5.789  -3.58 0.012
B’ 0.0015293 0.0007258 2.11 0.080
C? 0.004180 0.004917 0.85 0.428
D’ -2322.4 7979 -2.91 0.027
E’ 0.015767 0.003582 4.40 0.005
F? 9.937 3.123 3.18 0.019

S=3367 R-Sq=99.6% R-Sq(adj)=97.7%
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Analysis of Variance

Source DF SS MS F
Regression 27  16260.81 602.25 53.12
Residual Error 6 68.02 11.34
Total 33 16328.83
Source DF  SeqSS

A 1 1165

B 1 2464.23

C 1 1646.34

D 1 33488

E 1 1238.54

F 1 1849.67

A*B 1 161.83

A*C 1 171.29

A*D 1 15445

A*E 1 1295.18

A*F 1 976.63

B*C 1 263.47

B*D 1 17.57

B*E 1 2598

B*F 1 463.35

C*D 1 21.84

C*E 1 2083.92

C*F 1 4.96

D*E 1 698.48

D*F 1 6.09

E*F 1 52025

A’ 1 785.81

B? 1 44322

C? 1 208.88

D? 1 114.72

E’ 1 182.79

F? 1 114.77

Unusual Observations

Obs Gyp Ort. Fit SE Fit Residual St Resid

8 1.50 37.947 38.320 3.356 -0.374 -1.39X
18 3.00 22917 22.842 3.367 0.075 139X
25 4.50 13.677 13.378 3.360 0299 139X
28 1.50 62.355 62.355 3.367 -0.000 * X

29 1.50 72.110 72.110 3.367 -0.000 * X
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30
31
32
33
34

1.50 43.105 43.105
3.18 75.200 75.200
277 52.530 52.530
4.50 62.330 62.330
4.50 22.695 22.695

3367 -0.000 * X
3367 -0.000 * X
3367 -0.000 * X
3.367 -0.000 * X
3.367 -0.000 * X

X denotes an observation whose X value gives it large influence.
Durbin-Watson statistic = 1.98
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Appendix 6A.2. The Regression Model Comprising Optimum Points With
No Factor Having P-Value Greater Than 10%

Regression Analysis: Mean versus Gypsum; Ro.Te.; ...

The regression equation is

Mean =703 + 77.4*A - 1.70*B - 1.36*C + 337*D- 9.14*E + 255*F +
0.0163*AB-0.248*AC + 90.6*AD+ 5.10*AF - 0.00115*BC - 0.121*BD +
0.00792*BE -0.287*BF + 8.95*CD + 0.0116*CE - 4.09*DE - 0.567*EF -
17.0%A% + 0.00106*B> + 0.00582*C” — 1842*D” + 0.0157*E* + 7.87*F”

Predictor Coef SE Coef T P
Constant 702.9 319.7 2.20 0.055
A 77.44 13.32 5.82  0.000
B -1.7035 0.6852  -2.49 0.035
C -1.3554 0.4839 -2.80 0.021
D 337.09 71.11 4.74 0.001
E -9.141 1.443  -6.34 0.000
F 255.44 40.00 6.39 0.000
A*B 0.016252 0.005850 2.78 0.021
A*C -0.24790 0.05860 -4.23 0.002
A*D 90.57 20.01 4.53 0.001
A*F 5.1048 0.4086 12.49 0.000
B*C -0.0011496 0.0002003  -5.74 0.000
B*D -0.12117 0.05779  -2.10 0.065
B*E 0.007921 0.001108 7.15 0.000
B*F -0.28658 0.04403 -6.51 0.000
C*D 8.9461 0.8377 10.68 0.000
C*E 0.011551 0.001304 8.86  0.000
D*E -4.0862 0.7136  -5.73 0.000
E*F -0.56656 0.07959  -7.12 0.000
A’ -16.963 2.004 -8.47 0.000
B? 0.0010576 0.0003752 2.82  0.020
C? 0.005822 0.003073 1.89 0.091
D’ -1842.2 221.1  -8.33 0.000
E° 0.015701 0.002881 5.45 0.000
F? 7.874 1.592  4.94 0.001
S =3.040 R-Sq=99.5% R-Sq(adj) =98.1%
Analysis of Variance
Source DF SS MS F P
Regression 24 16245.64 676.90 73.23  0.000
Residual Error 9 83.19 9.24
Total 33 16328.83

Durbin-Watson statistic = 1.64
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Appendix 6A.3. The Best Regression Model Comprising Optimum Points

Regression Analysis: Mean versus Gypsum; Ro.Te; ..

The regression equation is
Mean = 769 + 78.2*A - 1.85*B - 1.38*C + 343*D - 9.46*E + 266*F
+0.0181*AB - 0.254*AC + 93.2*AD + 5.12*AF - 0.00115*BC
-0.135*BD + 0.00819*BE - 0.297*BF + 9.09*CD + 0.0116*CE
- 0.0124*CF - 4.09*DE - 0.584*EF - 17.4*A% + 0.00114*B> +
+0.00614*C? — 1864*D? + 0.0162*E> + 8.23*F>

Predictor Coef SE Coef T P
Constant 768.8 332.8 2.31 0.050
A 78.16 13.52 5.78 0.000
B -1.8507 0.7148 -2.59 0.032
C -1.3787 0.4912 -2.81 0.023
D 342.71 72.37 4.74 0.001
E -9.458 1.507 -6.28 0.000
F 266.01 42.32 6.29 0.000
A*B 0.018113 0.006303 2.87 0.021
A*C -0.25436 0.05986 -4.25 0.003
A*D 93.18 20.50 4.55 0.002
A*F 5.1191 0.4145 12.35 0.000
B*C -0.0011513 0.0002031 -5.67 0.000
B*D -0.13523 0.06076  -2.23  0.057
B*E 0.008193 0.001166 7.03  0.000
B*F -0.29740 0.04633 -6.42 0.000
C*D 9.0914 0.8654 10.51 0.000
C*E 0.011571 0.001322 8.75 0.000
C*F -0.01238 0.01421 -0.87 0.409
D*E -4.0865 0.7233  -5.65 0.000
E*F -0.58447 0.08325  -7.02 0.000
A’ -17.383 2.087 -8.33 0.000
B’ 0.0011381 0.0003914 291 0.020
C? 0.006138 0.003136 1.96 0.086
D’ -1863.7 2255 -8.27 0.000
E’ 0.016246  0.002986 544 0.001
F? 8.235 1.666 494 0.001

S=3.082 R-Sq=99.5% R-Sq(adj)=98.1%
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Analysis of Variance

Source DF SS MS F P
Regression 25 16252.85  650.11 68.46 0.000
Residual Error 8 75.97 9.50
Total 33 16328.83

Source = DF  Seq SS

A 1 11.65

B 1 246423

C 1 1646.34

D 1 334.88

E 1 1238.54

F 1 1849.67

A*B 1 161.83

A*C 1 171.29

A*D 1 154.45

A*F 1 1815.20

B*C 1 314.76

B*D 1 15.69

B*E 1 8025

B*F 1 271.47

C*D 1 7.86

C*E 1 5033

C*F 1 0.22

D*E 1 580.79

E*F 1 600.13

A’ 1 1077.26

B? 1 1052.49

C? 1 1580.49

D? 1 482.01

E’ 1 59.07

F? 1 231.95

Unusual Observations
Obs  Gypsum Mean Fit SEFit Residual StResid
33 4.50 62.330 62.171 3.069 0.159 056X

X denotes an observation whose X value gives it large influence.

Durbin-Watson statistic = 1.96
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Appendix 6A.4. The Starting and Optimum Points for Minitab Response Optimizer for maximizing extraction
while minimizing variation

144!

STARTING POINTS OPTIMUM POINTS
Roast. Roasting Leach | Leach Roast. Roasting | Leach | Leach
Gypsum Limestone | Gypsum Limestone
POINTS Temp. Time S/L Time ) Temp. Time S/L Time
Ratio Ratio Ratio Ratio
(°C) (min) Ratio (min) (°C) (min) Ratio | (min)
1 1.5 918 120 0.17 120 1.5 1.5 918 120 0.17 120 1.5
2 1.5 940 120 0.15 120 1.5 1.53 940 120 0.15 120 1.5
3 1.5 950 120 0.17 120 2 1.57 950 120 0.15 120 1.77
4 1.5 915 120 0.26 120 1.5 1.5 915 120 0.26 120 1.5
5 1.5 915 120 0.25 120 2 1.5 915 120 0.25 120 2
6 1.5 940 120 0.2 120 1.5 1.5 940 120 0.2 120 1.5
7 NO STARTING POINT 4.5 850 120 0.1 30 4.5
8 1.5 1000 60 0.4 45 1.5 4.39 1000 59 0.31 41 4.5
9 1.5 1050 30 0.1 120 1.5 1.5 1050 30 0.1 120 1.5
10 3.178 986 67 0.187 33 2.6 3.178 986 67 0.18 30 3.03







