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ABSTRACT 

 

 
 

ANALYSIS OF FIBER REINFORCED COMPOSITE VESSEL UNDER 

HYGROTHERMAL LOADING 

 

Sayman, Sümeyra 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Levend Parnas 

 

December 2003, 74 Pages 

 

The aim of this study is to develop an explicit analytical formulation based on the 

anisotropic elasticity theory that determines the behavior of fiber reinforced 

composite vessel under hygrothermal loading. The loading is studied for three cases 

separately, which are plane strain case, free ends and pressure vessel cases. For free-

end and pressure vessel cases, the vessel is free to expand, on the other hand for 

plane strain case, the vessel is prevented to expand. Throughout the study, constant, 

linear and parabolic temperature distributions are investigated and for each 

distribution, separate equations are developed. Then, a suitable failure theory is 

applied to investigate the behavior of fiber reinforced composite vessels under the 

thermal and moisture effects.  

Throughout the study, two computer programs are developed which makes possible 

to investigate the behavior of both symmetrically and antisymmetrically oriented 

layers. The first program is developed for plane strain case, where the second one is 

for pressure vessel and free-end cases. 

Finally, several thermal loading conditions have been carried out by changing the 

moisture concentration and temperature distributions and the results are tabulated for 

comparison purposes. 
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ÖZ 
 

 

 
HİGROTERMAL YÜKLEME ALTINDAKİ ELYAF TAKVİYELİ 

KOMPOZİT KAPLARIN ANALİZİ 

 

Sayman, Sümeyra 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Levend Parnas 

 

Aralık 2003, 74 Sayfa 

 

Bu çalışmanın amacı, anizotropik elastisite teorisine dayalı olarak higrotermal 

yükleme altındaki elyaf takviyeli kompozit kapların açık analitik formülasyonunu 

geliştirmektir. Yükleme üç durum için ayrı çalışılmıştır, bunlar düzlem şekil 

değiştirme durumu, uçların açık olduğu ve basınçlı kap durumlarıdır. İki ucun açık 

olduğu ve basınçlı kap durumlarında, kap genişlemeye serbesttir, öbür taraftan 

düzlem şekil değiştirme durumu için, kabın genişlemesi engellenmiştir. Çalışma 

boyunca sabit, lineer ve parabolik sıcaklık değişimleri incelenmiş ve her bir değişim 

için, farklı denklemler geliştirilmiştir. Ardından, termal ve nem etkileri altındaki 

elyaf takviyeli kompozit kabın davranışını incelemek  için  uygun bir kırılma teorisi 

uygulanmıştır. 

Bu çalışma boyunca,  hem simetrik hem de antisimetrik yönlendirilmiş katların 

davranışını incelemeyi mümkün kılan iki bilgisayar programı geliştirilmiştir. İlk 

program düzlem şekil değiştirme durumu için çalışırken, ikinci program iki ucun 

açık olduğu ve basınçlı kap durumları için çalışmaktadır. 

Son olarak,  nem katsayısını ve sıcaklık dağılımını değiştirmek suretiyle çeşitli 

termal yükleme durumları çalışılmış  ve sonuçlar mukayese amacıyla tablo  olarak 

sunulmuştur. 
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CHAPTER 1 
 

 

INTRODUCTION 

 

 

 

A composite material is defined as a combination of two or more materials on a 

macroscopic scale to form a useful third material. The advantage of composite 

materials is that they usually exhibit the best qualities of their components and often 

some qualities that neither their components possesses. The main objective with 

composite material is to create a material that has only the designed characteristic 

required to perform the design task. A composite material contains reinforcements 

supported by a matrix material. Reinforcement can be implemented by fibers or 

particles. The fibers usually have high strength than the matrix. The matrix has the 

functionality to keep the fibers in desired position and orientation. Some of the 

properties that can be improved with a composite material are strength, stiffness, 

corrosion resistance, strength-to-weight ratio, stiffness-to-weight ratio, low specific 

gravities, fatigue damage tolerance, noncorrosive behavior, chemical resistance and 

temperature dependent behavior, impact resistance. In recent years because of these 

features and with the development of manufacturing technologies, of composites 

became widespread in many parts of the industry such as aerospace industry, 

marine, sport applications and automotive industry. 

 

1.1. Fiber Reinforced Composite Materials 

 

Composite materials can be classified according to the physical properties as: 

• Fibrous composite materials that consist of fibers in a matrix  

• Laminated composite materials that consist of layers of various materials  

• Particulate composite materials that are composed of particles in a matrix  
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• Combinations of some or all of the first three types 

 

1.1.1. Fibrous Composite Materials 

 

Fibrous composites consist of fibers in a matrix. They are common since long fibers 

in various forms are much stiffer and stronger than the material in the bulk form. 

The fibers have different properties from the bulk form because of the perfect 

structure of fibers, since the crystals are aligned along the fiber axis and there are 

fewer internal defects in fibers than in bulk material. 

 

1.1.2. Mechanical Behavior of Composite Materials 

 

Composite materials have mechanical behavior characteristics that are different 

from those of more conventional engineering materials. Some characteristics are 

merely modifications of conventional behavior; others are totally new and require 

new analytical experimental procedures [3]. 

Most common engineering materials are both homogeneous and isotropic: 

A homogeneous body has uniform properties throughout, i.e., the properties are 

independent of position in the body. 

An isotropic body has material properties that are the same in every direction at a 

point in the body, i.e., the properties are independent of orientation at a point in the 

body.  

Bodies with temperature-dependent isotropic material properties are not 

homogeneous when subjected to a temperature gradient, but still are isotropic. 

In contrast, composite materials are often both inhomogeneous and nonisotropic 

(orthotropic or, more generally anisotropic): 

An inhomogeneous body has nonuniform properties over the body, i.e., the 

properties depend on position in the body. 

An orthotropic body has material properties that are different in three mutually 

perpendicular directions at a point in the body and, further, has three mutually 

perpendicular planes of material property symmetry. Thus, the properties depend on 

orientation at a point in the body. 
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An anisotropic body has material properties that are different in all directions at a 

point in the body. No planes material property symmetry exists. Again, the 

properties depend on the orientation at a point in the body.  

Because of the inherently heterogeneous nature of composite materials, they are 

conveniently studied from two points of the view: micromechanics and 

macromechanics. 

Use of the two concepts of macromechanics and micromechanics allows the 

tailoring of a composite material to meet a particular structural requirement with 

little waste of material capability. The ability to tailor a composite material to its job 

is one of the most significant advantages of a composite material over an ordinary 

material. Perfect tailoring of a composite material yields one of the stiffness and 

strength required in each direction, no more. In contrast, an isotropic material is, by 

definition, constrained to have excess strength and stiffness in any direction other 

than that of the largest required strength and stiffness. 

The inherent anisotropy (most often only orthotropy) of composite materials leads 

to mechanical behavior characteristics that are quite different from those 

conventional isotropic materials. 

For isotropic materials, application of normal stress causes extension in the 

direction of the stress and contraction in the perpendicular directions, but no 

shearing deformation. Also, application of shear stress causes only shearing 

deformation, but no extension or contraction in any direction. Only two material 

properties, Young’s modulus and Poisson’s ratio, are needed to quantify the 

deformations. The shear modulus could be used as an alternative to either Young’s 

modulus or Poisson’s ratio. 

For orhotropic materials, like isotropic materials, application of normal stress in a 

principal material direction results in extension in the direction of the stress and 

contraction perpendicular to the stress. The magnitude of the extension in one 

principal material direction under normal stress in that direction is different from 

the extension in another principal material direction under the same normal stress in 

that direction. Thus, different Young’s moduli exist in the various principal material 

directions. In addition, because of different properties in the two principal material 

directions, the contraction can be either more or less than the contraction of a 

similarly loaded isotropic material with the same elastic modulus in the direction of 



                                                                      4       

the load. Thus different Poisson’s ratios are associated with different pairs of 

principal material directions (and with the order of the coordinate direction numbers 

designating the pairs). Application of shear stress causes shearing deformations, but 

the magnitude of the shearing deformation is totally independent of the various 

Young’s moduli and Poisson’s ratio. That is, the shear modulus of an orthotropic 

material is, unlike isotropic materials, not dependent on other material properties. 

Thus, at least five material properties are necessary to describe the mechanical 

behavior of orthotropic materials. 

For anisotropic materials, application of a normal stress leads not only to extension 

in the direction of the stress and contraction perpendicular to it, but to shearing 

deformation. Conversely, application of shearing stress causes extension and 

contraction in addition to the distortion of shearing deformation. This coupling 

between both loading modes and both deformation modes, i.e., shear-extension 

coupling, is also characteristic of orthotropic materials subjected to normal stress in 

a non-principal material direction. Even more material properties than for 

orthotropic materials are necessary to describe the mechanical behavior of 

anisotropic materials because of the additional response characteristics.     

 

1.2. Manufacturing of Fiber-Reinforced Composite Materials 

 

Unlike most conventional materials, there is a very close relation between the 

manufacturing of a composite material and its mechanical properties. Hand lay-up 

technique was the first manufacturing technique. The open mold process with 

spray-up of chopped fibers was also used for development of work, prototype 

fabrication and production of large components and relatively small quantities. 

A major breakthrough in composite manufacturing technology occurred with the 

development of “prepreg tape”, which is a tape consisting of fibers precoated with 

the polymer resin. Most prepreg tape is made by the hot-melt process. Autoclave 

molding is the standard process for fabrication with prepreg tapes. 

Sheet-molding compound (SMC) is an important innovation in composite 

manufacturing. 

 Nowadays, in addition to these techniques, new production techniques are 

developed. These are pultrusion, reinforced reaction injection molding, 
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thermoplastic molding, resin transfer molding, structural reaction injection molding 

and filament winding.  

 

1.3. Filament Winding 

 

Filament winding is widely used to produce such structures as rocket motor cases, 

pressure vessels, shafts, piping and tubing. 

Filament winding, which involves winding of resin-coated fibers onto a rotating 

mandrel, may be used to produce any composite structure, which has the form of a 

body of revolution. 

Another advantage of this process is that by controlling the winding tension on 

fibers, they can be packed together very tightly to produce high fiber volume 

fractions. 

 

1.4. Analysis of Hygrothermal Behavior of Composite Materials 

 

Many researches have been performed for the prediction of mechanical behavior of 

composite structures. The determination of mechanical properties of the composite 

materials, the stress and strain analysis of composite structures, the failure analysis, 

the structural optimization of the composite structures are the basic aims of the 

studies. In addition to these, some experiments were also made to verify analytical 

models developed. 

Lekhnitskii [2] made a deep investigation on Composite cylinders under internal 

pressure, twisting moment, axial load or bending moment.  

L. Parnas and E. Ahçı [4] investigated fiber reinforced composite rocket motor case 

and presented a method to analyze and improve the composite structure, which is 

subjected to various load. The analysis method can also be applied to composite 

pressure vessels, storage tanks, and cylinders. The aim of this study is to develop an 

analytical method that determines the mechanical behavior of the composite 

structure under combined mechanical (internal and moisture changes) loads. The 

optimum winding angle that provides the maximum strength to the composite 

structure and the burst pressure for a certain loading condition and given geometry 

were also be calculated by this method. The improvement of the composite 
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structure on the basis of winding angle was made by utilizing the 3-D Quadratic 

failure in the strain space. A user-friendly computer program running under 

Microsoft Windows and using the results of this study was developed in Microsoft 

Visual Basic 4.0 Language for analysis and design purposes. The results obtained 

were also compared with the experimental findings. 

L. Parnas and S. Aleçakır [5] obtained explicit analytical solutions for the stresses 

and displacements in each orhotropic layer of a multi-layered filament-wound tube 

subjected to axi-symmetric loads and bending separately that is based on 

anisotropic elasticity theory. An experimental study has also been carried out for 

investigating the bending behavior of composite tubes. A special bending test setup 

has been designed, produced and bending tests have been performed on 120 sample 

composite tubes manufactured with a combination of two different fiber types: 

carbon and glass; two different type of resin systems: two epoxies with different 

glass transition temperatures; two different diameters and four different winding 

angles. Using the results of the experiments, a database has been formed for design 

purposes. The experiments have also been simulated by utilizing the analysis and 

comparison have been made between the experimental and the theoretical results. 

The stress-analysis performed has been combined with a suitable, interactive, stress-

based macroscopic failure criterion and a good-fitting correlation based on the 

laminated plate theory for estimating the through thickness elastic constants, to 

enable the safe design of filament-wound composite tubes under combined loading. 

L. Parnas and N. Katırcı [6] developed an analytical procedure to design and 

predict the behavior of the reinforced composite pressure vessels. The classical 

lamination theory and generalized plane strain model is used in the formulation of 

the elasticity problem. Internal pressure, axial force and body force due to rotation 

in addition to temperature and moisture variation throughout the body are 

considered. Some 3D failure theories are applied to obtain the optimum values for 

the winding angle, brust pressure, maximum axial force and the maximum angular 

speed of the pressure vessel. These parameters are also investigated considering 

hygrothermal effects.  

M. Xia, H. Takayanagi and K. Kemmochi [7] investigated multi-layered filament-

wound (FW) structures. Each layer of the pipes is assumed to be anisotropy. Based 

on the three-dimensional (3-D) anisotropic elasticity, an exact elastic solution for 
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stresses and deformations of the pipes under internal pressure is presented. 

Moreover, detailed stress and strain distributions for three given angle-ply pipe 

designs are investigated by using the present theory. The shear extension coupling 

is also considered because the lay-up angles with +Ф and –Ф layers cannot exist in 

the same radius. For cylindrical-pressure vessels with different angle-ply pipe, the 

ratio of applied hoop-to-axial stress in each layer is different. Even if quite a thin-

walled pipes, the ratio of hoop–to-axial stress is no longer a constant of 2:1. 

P. M. Wild and G. W. Vickers [8] developed an analytical procedure to assess to 

stresses and deformations of filament-wound structures under loading conditions 

particular to centrifuge rotors and to assess the effects of winding angle variation 

through the centrifuge wall. This procedure is based on classical laminated plate 

theory and models both plane stress and plane strain states of cylindrical shell 

comprising a number of cylindrical sublayers, each of which is cylindrically 

orthotropic. Available loading conditions are: radial body force due to rotation 

about the cylinder axis, internal and external pressures and axial force. The analysis 

is applied to three examples: a pressure vessel, a centrifuge rotor and a flywheel. It 

is shown that the benefit of winding angle variation is more significant for 

applications in which there is no axial loading to cylindrical shell. It is also shown 

that, where axial loading is present, the benefits of wind angle variation are more 

significant under the last ply failure criterion than under the first ply failure 

criterion. 

Based on the curved composite-beam and multilayer-buildup theories, M. Xia, H. 

Takayanagi, K. Kemmochi [9] presented two methods to analyze the stresses and 

deflections of multi-ply cylindrical pipes under transverse loading conditions. 

According to the presented solutions, numerical results are given for a common 

sandwich type. Stress distributions within a pipe and deflections are also discussed. 

Simple analytical methods can be used to evaluate the stresses and deflections of 

multiple-layer cylindrical structures under transverse loading conditions. The results 

of the experimental investigations of a sandwich pipe are compared to the results of 

the theoretical calculations. The values obtained from the experimental results fall 

between the values obtained when each theory is applied separately. 

Another work by M. Xia, K. Kemmochi, H. Takayanagi [10] is a presentation based 

on the classical laminated-plate theory of an elastic solution for the thermal stress 
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and strain in a filament-wound fiber-reinforced sandwich pipe subjected to internal 

pressure and temperature change. The sandwich pipe is created using resin material 

for the core layer and reinforced materials with an alternate-ply for the skin layers. 

Considering the complicated material properties of the skin layers reinforced by 

alternate-ply composites, the thermal stress analysis is based on treating typical 

sandwich pipes that are three-dimensional, cylindrical, and orthotropic. A computer 

program was developed to conduct stress and deformations analysis of sandwich 

pipe with different winding angles. Moreover, an optimum winding angle of the 

filament-wound fiber-reinforced materials was designed by using a netting 

approach analysis. 

Jiann-Quo Tarn, Yung-Ming Wang [11] presented a state approach to extension, 

torsion, bending, shearing and pressuring of laminated composite tubes. One of the 

novel features is that they have formulated the basic equations of an anisotropic 

elasticity in the cylindrical coordinate system into a state equation by a judicious 

arrangement of the displacement and stress variables so that the system matrix is 

independent of r. The formulation suggests a systematic way using matrix algebra 

and the transverse matrix is determine the stress and deformation in a multilayered 

cylindrically anisotropic tube under applied loads that do not vary in the axial 

direction. An exact analysis of the tube subjected to uniform surface tractions, an 

axial force, a torque and bending moments is presented. The solution consists of an 

axisymmetric state due to extension, torsion, uniform pressuring and shearing, and 

an asymmetric state due to bending. The formalism indicates that extension, torsion 

and pressuring interact; uniform shearing causes pure shears in the laminated tube, 

regardless of the number of layers. These deformations are uncoupled with bending 

of the tube. 

Cho-Chung Liang, Hung-Wen Chen, Cheng-Huan Wang [12] investigated the 

optimum design of dome contours for filament-wound composite pressure vessels, 

subjected to geometrical limitations, winding condition, and the Tsai-Wu criterion 

and maximizing shape factor, the feasible direction method being employed. An 

actual design example, presented by Fukunaga is adapted to the study the optimum 

dome contour using the present method. Results reveal that the dome contours using 

the present method, Fukunaga’s method and the netting method can be 

approximated using elliptic curves, and that the depth is the major parameter for 
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optimizing the design of dome contour, and the dome, designed using the present 

methods has stronger structure and greater internal volume than those designed 

using other approaches. Results reveal that the present method is usable for the 

optimum design of dome contours for filament-wound composite pressure vessels. 

In this study, a method for analyzing fiber reinforced composite vessels under 

hygrothermal loading has been developed. For this, an explicit analytical 

formulation is developed based on the anisotropic elasticity theory that determines 

the behavior of the vessel under thermal and moisture effects. 

In the present study, stress analysis and as a result of this stress analysis, failure 

analysis were investigated in multiple layered composite cylinders under internal 

pressure and hygrothermal loads. The solution was carried out analytically. The 

elastic formulation was obtained for a layer. Then, it was evaluated for n layers. In 

the solution, the integral constants are determined by using the boundary conditions 

in a matrix form. This method can be applied to all long composite cylinders, 

pressure vessels and tanks. After finding analytical solution, two different computer 

programs are developed to find the behavior of the tube under hygrothermal loading 

conditions. 
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CHAPTER2 

 

 

THEORETICAL ANALYSIS 
 

 

 

2.1. Introduction 

 

In general, composite materials are used in the form of laminates. In order to 

understand the physical behavior of composite cylinders, pressure vessels and 

rocket motor cases, it is necessary to review the theory of anisotropic elasticity. In 

this chapter, the developed analytical procedure is explained in detail starting from 

the equations of anisotropic elasticity. 

 

2.2. Constitutive Relationships for an Orthotropic Lamina 

 

The stress-strain relations in the principal material directions 1,2 and 3 for a single 

unidirectional fiber-reinforced lamina, in a linear orthotropic material, are given in 

the matrix (2.1), where direction 1 is the fiber directions and 2, 3 are perpendicular 

to the fibers. Direction 1 and 2 are in plane and direction 3 is in the trough-thickness 

direction as presented in the figure 2.1. 
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Figure 2.1. Representation of cartesian, cylindrical and material coordinates 

 

All the elastic constants including the through-thickness constants have been 

determined by hypothetical tests. In these tests, each layer of filament-wound tube 

is modeled as a balanced angle-ply. 

Equations representing the Generalized Hook’s Law in the principal (material 

directions) 1,2 and 3 for a single orthotropic unidirectional fiber-reinforced lamina 

(using row-normalized elastic constants) are as follows 
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When the compliance matrix above is inverted, the stress–strain equations become 
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The coefficients )6,...,2,1,( =jiCij are the stiffness of the composite material and 

defined as follows, in terms of the engineering constants 

 

1322311 )1( VEvvC −=  

13123212112 )( VEvvvCC +==  

12132313113 )( VEvvvCC +==  

2311322 )1( VEvvC −=                                                                                              (2.3) 

21231323223 )( VEvvvCC +==  

3211233 )1( VEvvC −=  

2344 GC =  

1355 GC =  

1266 GC =  

where   

321321322331132112 21
1

vvvvvvvvv
V

−−−−
=  

When the stresses are transformed from the material directions 1, 2, 3 to loading 

directions x, y, z (Fig 2.1) by rotating through an angle θ  about the z-axis, then the 

matrix in equation (2.4) is obtained 
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                                               (2.4)          

 

where the elements of the transformed stiffness matrix having fibers at an angle 

α+  to the loading direction, are obtained as follows 

 

22
4

6612
22

11
4

11 )2(2 CnCCnmCmC +++=  

12
44

662211
22

12 )()4( CnmCCCnmC ++−+=  

23
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13 CnCmC +=  

)2)(( 6612
22
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22
3

16 CCnmmnnCmCmnC +−−+−=  

22
4

6612
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11
4

22 )2(2 CmCCnmCnC +++=                                                            (2.5) 

23
2

13
2

23 CmCnC +=  

)2)(( 6612
22

11
3

22
3

26 CCnmmnCmnnCmC +−++−=  

3333 CC =  

)( 231336 CCmnC −=  

55
2

44
2

44 CnCmC +=  

)( 445545 CCmnC −=  

44
2

55
2

55 CnCmC +=  

66
22

122211
22

66 )()2( CnmCCCnmC −+−+=  

where )cos(α=m  and )sin(α=n . 

The effective through thickness elastic constants for the laminate, which actually 

correspond to the transformed elastic coefficients for any layer of a filament-wound 

tube, can be found from the hypothetical tests by evaluating the stress resultants in 

terms of the above coefficients. The elastic constants for a laminate are 
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At this point, noting that the angle ply is part of any layer of a filament wound tube 

where x axis of the x-y-z loading axis coincides with the z-axis of the tube, in order 

to switch to the tube coordinates, a change of subscripts shown below, which is 

actually equivalent to a positive rotation of 90° about the r-axis of a θ-z-r coordinate 

system is enough: 

x→z 

y→ θ 

z→r 
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The winding angle and the stresses are dependent of the sign of α , but the elastic 

constants are not. Since each layer of the filament-wound tube is composed of two 

sub layers of + α and – α, before failure prediction, the stresses for these sub-layers 

should be separately transformed to the principle material directions. 

 

2.3. General Relations 

 

In this section, the governing equations are developed which will be used for three 

cases investigated in this study. These are plane strain case, free ends and pressure 

vessel cases. For the most general case, the strain-stress relations can be written in a 

symmetric matrix formula as 

 

                                               (2.7)                  

 

 

 

 

 

If F, Ψ  are the stress functions and U  is the potential function respectively, the 

stress components are derived from reference  [2] as 

UrF
rr

rF
rrr +

∂
∂

+
∂

∂
= 2

2

2

),(1),(1
θ

θθσ  

U
r
rF

+
∂

∂
= 2

2 ),( θσ θθ  

)),((
2

r
rF

rr
θ

σθ
τ θ ∂

∂
−=                                                                                          (2.8)            

rrrz ∂
Ψ∂

=
1τ  

rz ∂
Ψ∂

−=θτ  

No body force ⇒ U  =0 

Axially symmetric, therefore 0),(
2

2

=
∂

∂
θ

θrF  and 0=θτ r , 0=rzτ  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

θ

θ

θθ

θ

θ

θθ

τ
τ
τ
σ
σ
σ

γ
γ
γ
ε
ε
ε

r

rz

z

zz

rr

r

rz

z

zz

rr

aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211



                                                                      16       

rrσ  and θθσ  can be simplified as 

r
F

rrr ∂
∂

=
1σ                                                                                                             (2.9) 

2

2

r
F

∂
∂

=θθσ                                                                                                           (2.10)  

For this problem, M=0, M: Torsional moment      

 
Figure 2.2 Representation of cylindrical coordinates 
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This problem is axially symmetric.  Moreover from reference [2];  
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Hence, the matrix reduces to 
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Figure 2.3 Matrix and fiber directions 
 

Strain- displacement equations are defined as  

z
w

zz ∂
∂

=ε  

r
u

rr ∂
∂

=ε                                                                                                               (2.12) 

r
u

r
+

∂
∂

=
θ
νεθθ

1  

 

Thermal expansion coefficients and hygrothermal expansion coefficients in z  and 

θ  directions can be written as 

θαθαα 2
2

2
1 sincos +=z       

 θαθαα θ
2

2
2

1 cossin +=                                                                                    (2.13) 

θβθββ 2
2

2
1 sincos +=z  

θβθββ θ
2

2
2

1 cossin +=  

where 1α , 2α  are the thermal expansion coefficients in the principal material 

direction and 1β , 2β  are the moisture expansion coefficients in the principal 

material directions. 

It is assumed that the material properties in the direction of r are equal to the 

material properties in the transverse directions. 

After adding hygrothermal effects to mechanical stresses; then the following stress-

strain relations are obtained 

cTaaa rrzzrrrr βασσσε θθ ++++= 131211                                                          (2.14) 

cTaaa zzrr θθθθθθ βασσσε ++++= 232212                                                        (2.15)                         
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cTaaa zzzzrrzz βασσσε θθ ++++= 333213                                                          (2.16) 

 where T is the temperature and c is the moisture concentration, which is defined as 

the ratio of mass of moisture to mass of dry material in a unit. 

 

 

2.3. Plane Strain Case 

 

Plane strain is the case that the cylinders are closed by two fixed and plane surfaces. 

Long cylinders, which have very small L
t ratio, are assumed also as the plane 

strain problem. Since the tube is prevented to expand by fixed surfaces, the strain in 

z- direction is equal to zero; therefore the equation (2.16) can written as 

0333213 =++++= cTaaa zzzzrrzz βασσσε θθ                                                   (2.17)                             

From the equation (2.17) zzσ  can be found as 
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Figure 2.4 the tube modeled as plane strain case subjected to internal pressure 
 

After replacing zzσ  in the equations (2.14) and (2.15), then the equations (2.18) and 

(2.19) are obtained 

c
a

a
T

a
a

a
a
a

aa
a
a

a z
r

z
rrrrr )()()()(

33

13

33

13
13

33

32
1213

33

13
11

β
β

α
ασσε θθ −+−+−+−=    (2.18)          



                                                                      19       

c
a

a
T

a
a

a
a
a

aa
a
a

a zz
rr )

.
()()()(

33

23

33

23
23

33

23
2223

33

13
12

β
β

α
ασσε θθθθθθ −+−+−+−=   

                                                                                                                             (2.19) 

or the equations (2.18) and (2.19) can be written shortly as 

cT rrrrrrrr βασβσβε θθ +++= 1211                                                                     (2.20) 

cTrr θθθθθθθθ βασβσβε +++= 2212                                                                 

where 11β , 12β , 22β , rrα , θθα , rrβ  and θθβ   are defined as 
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aa
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a
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αα −=                                             

33

13

a
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ββ −= , 
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23

a
azα

αα θθθ −= , 
33

23

a
azβ

ββ θθθ −=                                   (2.21)  

If the equation (2.12) is put into the equation (2.20), then the following equation 

will be obtained 

cT
dr
du

r
u

rrrrrrrr βασβσβε θθ +++==
∂
∂

= 1211                                                   (2.22) 

Similarly, θθε  can be written as 

 cT
r
uv

r rr θθθθθθθθ βασβσβ
θ

ε +++=+
∂
∂

= 2212
1                                                  (2.23)    

Since the problem is axially symmetric, 0=
∂
∂
θ
v   

If the relations presented in the equation (2.10) are put into the equations (2.22) and 

(2.23), then these equations can be written as 

rrrrrr cTF
r

F
dr
du βαββε +++== ''

12

'

11                                                             (2.24)                      

θθθθθθ βαββε cTF
r

F
r
u

+++== ''
22

'

12                                                             (2.25)  

The derivative of u in the equation (2.25) should be equal to rrε , given in the 

equation (2.24), since 
dr
du

rr =ε  

θθθθθθ βααββββαββ crTTrFFFcTF
r
F

rrrr +++++=+++ ''''
22

''
22

''
12

''
12

'

11   or  

crTrrTFrFFr rrrr )()( '2'
11

''
22

'''2
22 θθθθθθ ββαααβββ −+−−=−+                    (2.26) 
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Multiplying the equation  (2.26) with
22β
r , then the equation (2.27) is obtained: 

2

22

'3

22

2

22

'2''2'''3 )()( crTrTrrFkFrFr rrrr

β
ββ

β
α

β
αα θθθθθθ −

+−
−

=−+                  (2.27) 

where k is defined as 
22

11

β
β

=k  

If 11α , 22α  and 33α  are defined as  

22
11 β

ααα θθ−
= rr , 

22
22 β

αα θθ−= , 
22

33 β
ββα θθ−

= rr                                                                                      

Then the equation (2.27) becomes 
2

33
3

22
'2

11
'2''2'''3 rcrTrTrFkFrFr ααα ++=−+                                             (2.28) 

The equation (2.28) is the fundamental equation to be solved in the following 

sections, which includes non-homogenous roots. To solve the homogenous 

equation, r should be defined as 
ter =  

'Fe
dr
dt

dt
dF

dr
dF t−==  

Putting the derivatives of the stress function into the equation (2.28), then the 

homogenous equation can be written as 

0)()()()33()( '2''2'22'''3'''33 =−+−++− −−−−− FerkFeFeeFeFeFee tttttttt                                         

0)(32 '2'''''''''' =−+−++− FkFFFFF  

0)1(2 '2''''' =−+− FkFF                                                                                   (2.29) 

The roots of the homogeneous equation (2.29) are 01 =R , kR += 12 and kR −= 13  

Then, the homogenous solution is presented as 
tktk

h eCeCCF ).1(
3

).1(
21

−+ ++=  or 

)1(
3

)1(
21

kk
h rCrCCF −+ ++=   

                                                                               

2.3.1 Non-Homogenous Solution 

 

Putting the roots of the homogenous solution into the equation itself, the equation 

(2.28) becomes: 
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2
33

2
11

3'
22

'2''''' )1(2 rcrTrTFkFF ααα ++=−+−                                               (2.30) 

In this study, the solution is carried out under the uniform, linear and parabolic 

temperature distribution. The uniform temperature distribution is usually seen in 

composite cylinder applications. When the temperature distribution is different in 

the inner and outer surfaces of the composite cylinder in the steady state case, the 

temperature function takes a logarithmic form. The parabolic temperature 

distribution may be seen at any time interval for transient thermal stress cases. For 

this reason, the solution is also performed under the parabolic temperature 

distribution.  

 

2.3.2. Constant Temperature Distribution ( 0TT = )   

 

Since T is constant, the derivative of T is equal to 0. Then the equation (2.30) 

becomes 
2

33110
'2''''' )()1(2 rcTFkFF αα +=−+−                                                              (2.31) 

If A1 is defined as 331101 αα cTA += , then the equation (2.31) becomes 

teAFkFF 2
1

'2''''' )1(2 =−+−                                                                               (2.32) 

To solve the equation, it is required to define the non-homogenous solution by a 

coefficient D as 
t

NH DeF 2=                                                                                                            

Putting NHF  into the equation  (2.32), this equation can be written as 

tttt eADekDeDe 2
1

2222 )1(288 =−+−                                                                  (2.33) 

Then from the equation (2.33), D is found as 

)1(2 2
1

k
AD
−

=  

Combining the homogeneous and non-homogenous solution, then the stress 

function becomes 

2
2

11
3

1
21 )1(2

r
k

ArCrCCF kk

−
+++= −+                                                                 (2.34) 

 Since 
r

F
rr

'

=σ , as it is presented in the equation (2.9), then rrσ becomes 
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and  since ''F=θθσ  as it is presented in the equation (2.10), then θθσ  becomes  

2
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2 1
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ArkkCrkkC kk
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+−−+= −−−
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From equation (2.25), u can be found as 

kkkk rkkCrkkCr
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)1()1( 3222222
1

12312212 βββββ

crTrr
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                                                                              (2.36)                       

The equations (2.35) and (2.36) will be used as boundary condition to solve the 

problem. As it can be seen, there are two unknown constants for each layer given by 

2C  and 3C .  

 

2.3.3.Linear Temperature Distribution ( )( rbT −= λ ) 

 
Figure 2.5 Linear temperature distributions on the cross-section of the tube 

 

T is equal to 0T  at the inner surface where λ  is defined as 
ab

T
−

= 0λ . Thus 

λ−='T  

If T is put into the equation (2.30), then this equation becomes  
2
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3
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If 1A  and 2A  are defined as 
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Then, the equation (2.37) becomes 
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To solve the non-homogenous equation (2.38), it is required to define two unknown 

coefficients 1D and 2D as 
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If  NHF  is substituted in the equation (2.38), then this equation becomes 
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1D  and 2D can be found from the equation (2.39) as 
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Therefore the stress components are found as 
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Finally, u can be found from the equation (2.25) as: 
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Same as the constant temperature distribution case, there are two unknown 

coefficients given by 2C  and 3C for each layer. The equations (2.41) and (2.42) will 

be used as the boundary conditions to solve the problem.  
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2.3.4. Parabolic Temperature Distribution ( )( 22 rbT −= λ ) 

 

 
Figure 2.6 Parabolic temperature distributions on the cross-section of the tube 

 

Temperature is equal to 0T  at the inner surface where λ  is defined as 
ab

T
−

= 0λ  .If 

T and 'T  are substituted in the equation (2.30), then the equation (2.43) will be 

obtained 
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If 1A  and 2A  are defined as 
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Then the equation (2.43) becomes 
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Non-homogenous solution can be written in terms of the two coefficients 1D  

and 2D  as 
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If NHF  and its derivatives are substituted in the equation (2.44), then this equation 

becomes  
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1D  and 2D can be found from the equation (2.45) as 
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Then the stress function F becomes 
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The stress components for parabolic temperature distribution are found as 
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Again, for each layer, there are two unknown constants given by 2C and 3C . 

 

 
2.4. Example: T is constant in a plane strain problem 

 
At this part of this study, a tube with the plane strain condition, having 4 layers will 

be investigated as an example. As it indicated in the previous sections, there are 2 

unknown constants for each layer; therefore there are totally 8 unknown constants 

for a 4-layered tube. 
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8 boundary conditions are required to solve this matrix. These are indicated in the 

Figure 2.7. 

 
Figure 2.7 Boundary conditions of a 4-layered tube subjected to internal pressure 

 

The equations  (2.35) and (2.36) will be used to establish an 8*8 matrix, since the 

boundary conditions are the equivalence of the radial stresses and radial 

displacements. 12β , 22β , θθα , θθβ , k  and 1A  are  shown as  i12β , i22β , iθθα , iθθβ , 

ik  and iA1  for ith  layer . Since temperature is constant for this example, it is not 

required to use a subscript for it.  

1. Boundary Condition, irr P=σ  (internal pressure) where ar =1 , a is inner diameter  
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2. Boundary Condition, 21 rrrr σσ =  where tar +=2 , t is the thickness of one layer  
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3. Boundary Condition,  21 uu =  where tar +=2 , t is the thickness of one layer 
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4. Boundary Condition, 32 rrrr σσ =  where tar 23 += , t is the thickness of one layer 
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5. Boundary Condition, 32 uu =  where tar 23 += , t is the thickness of one layer 
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6. Boundary Condition, 43 rrrr σσ =  where tar 34 += , t is the thickness of one layer 
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7. Boundary Condition, 43 uu =  where tar 34 += , t is the thickness of one layer 
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8. Boundary Condition, 0=rrσ  (internal pressure) where br =5 , a is outer diameter  
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2.5. Free-End and Pressure Vessel 

 
 
Free-end case is the one where the ends of the tube are free to expand. Since there 

are no caps on the ends and no force acting on the tube in z-direction, the resultant 

force is equal to zero, which is given by 

∫
=

==
b

ar
zz rdrR 02πσ  
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Figure 2.8 Tube with free ends to expand 

 

On the other hand, the resultant force is not equal to zero for pressure vessel. Since 

two caps at the ends close the tube, the resultant force in z-direction is equal to the 

force created by internal pressure on the caps, which is given by 

∫
=

==
b

ar
izz PardrR 22 ππσ  

 

 
 

Figure 2.9 Pressure vessel subjected to internal pressure 
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Figure 2.10 Cross section of a pressure vessel 

 

For both cases, a parameter D can be defined as 

DcTaaa zzzzrrzz =++++= βασσσε ϑθ 333213                                                     (2.49) 

Then, from the equation (2.49), zzσ  can be found as 
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If zzσ  is substituted in the equations (2.15) and (2.16), then the following two 

equations will be obtained  
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or these two equations (2.51) and (2.52) can be written simply as  
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where 11β , 12β , 22β , rrα , θθα , rrβ  and  θθβ  are defined in the equations (2.21) 

and 13β  and 23β  are defined as 
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If the derivative of u is taken with respect to r in the equation (2.54), then this will 

be equal to rrε  in the equation (2.53). Substituting 
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                                                                                                                             (2.55)                         

where k is defined as 
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If aα , aβ , bα  and dβ  are defined as  
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Then, the equation (2.55) becomes 
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To find the homogenous solution, it is required to define r and F as 
ter =   
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Putting F and its derivatives into the equation (2.56), then the homogenous solution 

can be found as 
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2.5.1. Non-homogenous Solution 

 

If the roots of the homogenous solution are put into the equation (2.56), then this 

equation becomes 
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2.5.2. Constant Temperature Distribution ( 0TT = ) 

 
If Temperature and its derivative are substituted in the equation (2.57), it becomes 
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To solve the equation (2.58), it is required to define the a non-homogenous function 

by a coefficient as 
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Putting the function NHF  into the equation (2.58), then this equation becomes 
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Then from the equation (2.59), the coefficient A can be found as 
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Thus 
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Then rrσ  and θθσ  are found as 

 ArCkrCk
r
F kk

rr 2)1()1( 1
2

1
1

'

+−++== −−−σ                                                     (2.60)  

ArCkkrkCkF kk 2)1()1( 1
2

1
1

'' +−−+== −−−
θθσ  

and the radial displacement can be written as 
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There are two unknown constants for each layer as 1C  and 2C . In addition to these 

constants, there is one more unknown, D for the whole structure, which will be used 

to make iteration in the numerical program. 

 

2.5.3. Linear Temperature Distribution ( ))( rbT −= λ  

 

Temperature is equal to 0T  at the inner surface where λ  is defined as 
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To find the non-homogenous solution, it is required to define the function F in 

terms of two coefficients as 1B  and 2B .  
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If NHF  is substituted in the equation (2.63), then this equation becomes 
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1B  and  2B  can be found from the equation (2.64) as 
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Then the stress components rrσ  and θθσ  are found as  
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Finally, the radial displacement can be written as 
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Again there are two unknown constants given by 2C and 3C  for each layer with 

linear temperature distribution, in addition to D. 

 

2.5.4. Parabolic Temperature Distribution ( )( 22 rbT −= λ ) 

 

Temperature is equal to 0T  at the inner surface where λ  is defined as 
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Putting T and 'T  into the equation (2.57), then the equation becomes 
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If A1 and A2 are defined as 

daa DcbA ββαλ ++= 2
1  

baA λαλα 22 +−=  

Then the equation (2.67) becomes 
tt eAeAFkFF 4

2
2

1
'2''''' )1(2 +=−+−                                                                   (2.68) 

Non-homogenous solution can be defined as in terms of two coefficients as 
tt

NH eBeBF 4
2

2
1 +=  

Putting NHF  and its derivatives into the equation (2.68), then this equation becomes 

tttttttt eAeAeBeBkeBeBeBeB 4
2

2
1

4
2

2
1

24
2

2
1

4
2

2
1 )42)(1(328648 +=+−+−−+     (2.69)                         

1B and 2B  can be found from the equation (2.69) as 

1
2

1 )2288( AkB =−+−    
)1(2 2

1
1 k

AB
−

=⇒  

2
2

2 )443264( AkB =−+−  
)9(4 2

2
2 k

AB
−

=⇒  

Then the stress function can be written as 

4
2
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2

1)1(
3

)1(
21 )9(4)1(2

r
k

Ar
k

ArCrCCF kk

−
+
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+++= −+  

rrσ  and θθσ  for parabolic temperature distribution can be found as 

2
2

2
2
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and   2
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k
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+
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θθσ  

And radial displacement is found as 
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                                                                                                                             (2.71) 

Again there are two unknown constants for each layer, in addition to D. The 

equations (2.70) and (2.71) will be used as boundary conditions to solve the 

problem. 
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2.6. Hoffman Failure Criteria 

 
Failure prediction for a laminate requires knowledge of the stresses or strains or 

sometimes both in each lamina. In the previous sections of this study, the stresses 

under hygrothermal loading acting in the principal directions for each lamina have 

been found. To select a proper failure criteria, it is required to know the advantages 

and disadvantages of each failure criteria and the material properties as well.  In 

case that compressive and tensile strength of a structure are different which is the 

case of the selected structure, Hoffmann criteria and Tsai-Wu give better and 

consistent solution than Tsai-Hill, since Tsai-Hill, which is an extension of von 

Mises' yield criterion, is useful for anisotropic materials those have the same yield 

points in tension and compression. For this problem, Hoffman failure criteria is 

selected for failure check, since it is more practical to use than Tsai-Wu. The 

advantages of Hoffman critera are as listed below: 

1. In design , the Hoffman criteria is the simplest criterion of all  the criteria  

2. Interaction between failure modes is treated instead of separate criteria for failure 

like the maximum stress or maximum strain failure criteria. 

3. A single failure criterion is used in all quadrants  because of different strengths in 

tension and compression. 

Tsai-Wu criteria has the following advantages: 

1.Increased curve fitting capability over the Tsai-Hill and Hoffman criteria because 

of an additional term in the equation. 

2.The  additional term can be determined only with an expensive and difficult 

biaxial test.   

Therefore the use of Hoffman criterion is easier than Tsai -Wu criterion. 

To account for different strengths in tension and compression, Hoffman added 

linear terms to Hill’s equation. (The basis for the Tsai-Hill criteria) [3]. The 

summation of the stresses with linear terms is equal to an index, which is defined as 

Hoffman index and shown as H, which is given by 
2

318
2

237362514
2

213
2

132
2

321 .....).().().( ττσσσσσσσσσ KKKKKKKK +++++−+−+−

HK =+ 2
129.τ                                                                                                       (2.72) 

If the Hoffman index exceeds 1, the structure will fail. 
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The material, which was used in the computer-program, is Epoxy-Carbon [6] 

laminate (T300/N5208). The mechanical properties of the material are presented as 

TX : Ultimate tensile strength in fiber direction (MPA): 1500 

CX : Ultimate compressive strength in fiber direction (MPA): 1500 

TY : Ultimate tensile strength in matrix direction (MPA): 40 

CY : Ultimate compressive strength in matrix direction (MPA): 146 

TT YZ =  and  CC YZ =  Ultimate compressive and tensile strengths in z-direction are 

assumed to be equal in y-direction 

S: Ultimate in-plane shears strength (MPA): 68 (assumed to be equal for all 

directions) 

1α : Thermal expansion coefficient in fiber direction ( οC
610−

): 0.02 

2α : Thermal expansion coefficient in matrix direction ( οC
610−

): 22.5  

 Since matrix is made of epoxy and fiber is carbon, thermal expansion in matrix 

direction is much more greater than in fiber direction.  

:1β Moisture expansion coefficient in fiber direction: 0 

:2β Moisture expansion coefficient in matrix direction: 0.6 

where the coefficients iK  are determined from the 9 strengths in principal 

coordinates: tX , cX , tY , cY , tZ , cZ , 23S , 31S  and 12S .  

For this problem, there are no shear stresses, hence 0987 === KKK  

Therefore the equation (2.72) reduces to 

1...).().().( 362514
2

213
2

132
2

321 =+++−+−+− σσσσσσσσσ KKKKKK         (2.73)     

The coefficients are determined by applying normal stress in several directions. 

 

1) Apply only tensile stress in fiber direction 

      tX=1σ        

032 == σσ  

Put into the equation (2.73) 

1)( 14
2

13
2

12 =++− σσσ KKK  
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14
2

3
2

2 =++ ttt XKXKXK                                                                         (2.74) 

 

2) Apply only compressive stress in fiber direction 

cX−=1σ  (For compressive stresses, use )( cX− , since cX  is an inherently                   

negative number for Hoffman criteria [3]. 

032 == σσ  

Put into the equation (2.73) 

1)( 14
2

13
2

12 =++− σσσ KKK  

14
2

3
2

2 =−+ ccc XKXKXK                                                                        (2.75) 

Since ct XX =  from the equations (2.74) and (2.75), 4K  can be easily found as 

04 =K  

And 232
1

tX
KK =+                                                                                       (2.76) 

 

3) Apply only tensile stress in (2) matrix direction 

tY=2σ  

031 == σσ  

Putting these into the equation (2.73), then the equation (2.77) will be obtained 

as 

      15
2

3
2

1 =++ ttt YKYKYK                                                                                 (2.77) 

 

4) Apply only compressive stress in (2) matrix direction 

cY−=2σ  

031 == σσ  

If these equations are put into equation (2.73), then the following equation is 

obtained 

1)()()( 5
2

3
2

1 =−+−+− ccc YKYKYK  

15
2

3
2

1 =−+ ccc YKYKYK                                                                                (2.78) 
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5) Apply only tensile stress in (3) matrix direction  

Since the structure behaves similarly in (2) and (3) directions, it can be written 

that   

tY=3σ  

021 == σσ  

If these equations are put into equation (2.73), then we obtain 

16
2

2
2

1 =++ ttt YKYKYK                                                                                (2.79) 

 

6) Apply only compressive stress in (3) matrix direction 

cY−=3σ  

021 == σσ  

Putting these equations into the equation (2.73), then the following equation is 

obtained as 

1)()()( 6
2

2
2

1 =−+−+− ccc YKYKYK  

16
2

2
2

1 =−+ ccc YKYKYK                                                                                (2.80) 

 

From the equations (2.68) to (2.71), the coefficients are determined as 

2
7

56
110*181576

MPA
KK −==  

2
7

23
110*2

MPA
KK −==  

2
7

1
110*1710

MPA
K −=  

Then the Hoffman equation becomes  

++−+−+− −−−−
2

72
21

72
13

72
32

7 10.181576)(10.2)(10.2)(10.1710 σσσσσσσ  

110.181576 3
7 =+ − σ  

This relation is used for the failure check of the cylinders. 
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CHAPTER 3 
 

 

NUMERICAL RESULTS AND DISCUSSIONS 

 
 
 
 

In this chapter, the numerical results of the computer program are tabulated and 

some outputs of these results are discussed. In these solutions, the computer 

program has been run for four layers oriented as [30/-30/-30/30], [45/-45/-45/45] 

and [60/-60/-60/60] under different hygrothermal and mechanical conditions. The 

selected material is Epoxy-Carbon laminate (T300/N5208). The material properties 

are presented in the chapter 2, section 2.6. It is assumed that the material starts to 

degrade at 150° C, so the program is stopped to run at this temperature rate. The 

stresses calculated for the interface surfaces and boundary surfaces are presented in 

the tables for 5 surfaces for each loading case. The Hoffman index are calculated 

for each of 5 surfaces, but the indexes given in this chapter are the highest index 

between them, since it is the worst situation which may cause failure of the 

structure. Sometimes, it is preferred also to make a deeper analysis by calculating 

the stresses on the matrix plane, which is the weakest plane and may cause failure 

of the structure since it has lower strength values. The projection of the calculated 

stresses on the matrix plane can be found as 

)(cos.)(sin. 22 ασασσ θθ −+−= zzm                                                                         (3.1) 

since α+  is the fiber plane, mσ  is calculated for α− .  

 

3.1 Plane Strain 

 

The results for plane strain case are summarized in the following graphs:  
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Figure 3.1. Fail pressure of a vessel with [45°/-45°] for parabolic temperature 

distribution 
 
For parabolic temperature distribution, with increasing pressure rate, failure 

temperature decreases, since the stresses inside and outside of the tube have 

different sign for parabolic temperature distribution, the value of stresses increases. 

zzσ  is tensile at low temperatures, but then with increasing temperature it will be 

compressive around the inner surface, and tensile around the outer surface due to 

temperature distribution, since the temperature value is the highest at the inner 

surface and it is equal to 0T . At the outer surface, the effects of both temperature 

and pressure can be noticed. zzσ  is going to be compressive with increasing 

temperature since the effect of temperature is greater than the effect of internal 

pressure which is in opposite sign of the temperature effect where high temperature 

results compressive stress due to plane strain conditions in which the tube is 

prevented to expand..   

rrσ  is always compressive due to plane strain conditions where θθσ  is always 

tensile due to internal pressure. . The magnitude of rrσ  is the highest at the inner 

surface and 0 at the outer surface due to boundary conditions. Failure occurs mostly 

at the outer surface where both θθσ  and zzσ  are tensile. The Hoffman index is 

calculated smaller than 1 as 4.313*10-3 for a 45° layered tube for parabolic 

temperature distribution and c=3*10-3 with the temperature value of 0°C and 
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internal pressure of 5MPA, therefore for this condition failure does not occur where 

θθσ  and zzσ  are tensile, whereas rrσ  is compressive. mσ is calculated as 19.99MPA.  

The stresses are tabulated in Table 3.1. 

Table 3.1. The stress distribution at P=5MPA, T=0°C 
 

Surface D σrr σθθ σzz 

1 30 -5,00 39,91 6,85 

2 31 -3,58 38,46 5,89 

3 32 -2,28 37,32 5,15 

4 33 -1,09 36,45 4,59 

5 34 0 35,8 4,19 

 

Plane Strain, θ=45, Parabolic
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Figure 3.2. The stress distribution at P=5MPA, T=0°C 
 
If T reaches to 42° C for P=5MPA, failure occurs since the Hoffman index is 

calculated as 1.0207. The stresses are tabulated in Table 3.2. 
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Table 3.2. The stress distribution at P=5MPA, T=42°C 
 

Surface D σrr σθθ σzz 

1 30 -5,00 16,07 -22,89 

2 31 -4,15 26,65 -12,08 

3 32 -3,02 37,37 -1,04 

4 33 -1,63 48,29 10,26 

5 34 0 59,45 21,86 
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Figure 3.3. The stress distribution at P=5MPA, T=42°C 
 

The tube with 45° layered fibers and parabolic temperature distribution, where 

internal pressure is 8MPA, fails at the temperature value of 0°C due to the internal 

pressure at the inner surface. 

MPAm 75.44)45(sin*99.24)45(cos*51.64 22 =−+−=σ  

The stress components in matrix direction is greater than the strength, hence at 

internal pressure rate of 8 MPA, the tube fails at 0° C. The stress distributions are 

tabulated in Table 3.3. 
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Table 3.3. The stress distribution at P=8MPA, T=0°C for moisture concentration of 
3*10-3 

 
Surface D σrr σθθ σzz 

1 30 -8,00 64,51 24,99 

2 31 -5,71 61,85 23,19 

3 32 -3,63 59,71 21,75 

4 33 -1,74 58,00 20,63 

5 34 0 56,67 19,78 

 
The Hoffman index is calculated as 1.1434. 
   

 

 

 

 

 

 

 

 

 

 

Figure 3.4. The stress distribution at P=8MPA, T=0°C for moisture concentration of  

3*10-3 

 Before this study, it was expected that with increasing moisture concentration, the 

tube would fail at the lower internal pressure values. But as it can be seen from the 

results, with the increasing moisture concentration, the fail pressure is also 

increasing, since in this study, there are several factors that affect failure of the 

tubes. Sometimes, these effects may act reverse. The stress components of zzσ  is 

superposition of the hygrothermal and internal pressure effects where 

).( θθσσνσ += rrzz . The parts of zzσ created by internal pressure is tensile, the other 

part of zzσ  created by hygrothermal loading is compressive due to plane strain 

conditions.  
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At the temperature value of 0°C and internal pressure of 8MPA, the stress 

distribution of a tube with 45° layered fibers with parabolic temperature distribution 

for 3 different moisture concentrations are tabulated in Tables 3.3-5.  

 

Table 3.4. The stress distribution for moisture concentration of 5*10-3 

 
Surface D σrr σθθ σzz 

1 30 -8 63,78 9,4 

2 31 -5,72 61,5 7,89 

3 32 -3,65 59,72 6,73 

4 33 -1,75 58,36 5,87 

5 34 0 57,35 5,26 

 
The Hoffman index is calculated as 7.3585*10-1. 

 

Table 3.5. The stress distribution for moisture concentration of 10*10-3 

 
Surface D σrr σθθ σzz 

1 30 -8 61,93 -29,55 

2 31 -5,77 60,63 -30,34 

4 32 -3,71 59,76 -30,82 

7 33 -1,79 59,25 -31,05 

8 34 0 59,04 -31,05 

 
The Hoffman index is calculated as 2.875*10-1. 
 

As it can be seen from Tables 3.3-5, zzσ  values are going to be negative for 

c=10*10-3, since hygrothermal loading results in an increase of zzσ  value as 

negative. So, superposition of zzσ  gives smaller tensile stress or compressive stress 

for c=10*10-3. Therefore, the tube fails later for c=10*10-3 than c=3*10-3 where the 

tube for moisture concentration of 3*10-3 fails at 0° C for the internal pressure value 

of 8MPA, since stress component in matrix direction is found greater than the 

strength in this direction. 

c=3*10-3   MPAm 75.44)45(sin*51.64)45(cos*99.24 22 =−+−=⇒ σ  
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c=5*10-3  MPAm 59.36)45(sin*78.63)45(cos*4.9 22 =−+−=⇒ σ  

c=10*10-3  MPAm 19.16)45(sin*93.61)45(cos*55.29 22 =−+−−=⇒ σ  

In order to see the moisture effect, fail temperatures of a tube with 45° layered 

fibers for parabolic temperature distribution and for different moisture 

concentration values are investigated and tabulated in Table 3.6 for the absence of 

internal pressure. 

Table 3.6.Fail temperatures for various moisture concentrations 
 

c 3*10-3 5*10-3 10*10-3 15*10-3 20*10-3 30*10-3 35*10-3 40*10-3

Tfail 104 118 152 134 102 38 6 0 

 

As it can be followed from Table 3.6, the effect of moisture can be easily realized 

for high moisture concentration. But as it is explained previously, for small 

moisture concentration values, moisture effect may act reverse and the tube may fail 

at higher temperature values.  
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Figure 3.5. Fail pressure of a vessel with [45°/-45°] for linear temperature 
distribution 

 
As it can be followed from Figure 3.1 and 3.5, the results for parabolic and linear 

temperature distribution are almost similar. 
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Figure 3.6. Fail pressure of a vessel with [45°/-45°] for constant temperature 
distribution 

 
It is seen from Figure 3.6 that, the failure pressure for all the moisture concentration 

increases when temperature is increased. The tube is subjected to compressive axial 

stresses , since its axial  hgyrothermal  expansion is prevented by rigid planes at the 

ends. As a result of this ,the tube has a  large  axial compressive stress at the high 

temperatures. This compressive stress component increases the failure pressure.This 

negative effect of temperature can be seen for constant temperature distribution, 

since both inside and outside of the tube are heated, hence ∆T results greater 

compressive axial stress compared with parabolic temperature distribution, since 

temperate difference for parabolic temperature distribution is  highest at the inside 

of the tube which is equal to T0, where it  is T0 for the whole structure with constant 

temperature distribution. 
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Figure 3.7. Fail pressure of a vessel with [60°/-60°] for parabolic temperature 
distribution 
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Figure 3.8. Fail pressure of a vessel with [60°/-60°] for linear temperature 
distribution 
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Figure 3.9. Fail pressure of a vessel with [60°/-60°] for constant temperature 
distribution 
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Figure 3.10. Fail pressure of a vessel with [30°/-30°] for parabolic temperature 
distribution 

 
As it can be seen from the results, the tube, which is layered with the fibers 

30=θ °, fails mostly at the lower internal pressure comparing with the angle 45° 

and 60°, since the stress components on the matrix plane, which is weak, can be 

written as: 
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)60(sin.)60(cos. 22 −+−= θθσσσ zzm  where cos (-60)=0.5 and sin (-60)=0.866 

θθσ  has usually greater value than zzσ . On this plane, the projection of θθσ , which 

is calculated as  (0.866)2* θθσ , causes failure. 

For the tube with the fibers layered 60°, the stress distribution on the weak matrix 

plane can be calculated as below 

)30(sin.)30(cos. 22 −+−= θθσσσ zzm  where cos (-30)=0866 and sin (-30)=0.5 

For same internal pressure, the material with the fiber 60° resists on the higher 

pressure where the tube with the fibers layered 30° fails. 

For 45=α , mσ is calculated as 

)45(sin.)45(cos. 22 −+−= θθσσσ zzm  where cos (-45)=0.7077 and sin (-45)=0.707 

The results of the tube with the fibers layered 45° are between 30° and 60°, since 

the projection constants are between them.  

As a result, it can be concluded that under the same hygrothermal effect, the 

material with the fibers layered 30° fails mostly at the lower internal pressure than 

60° and 45° or it can be also said that at the same internal pressure, a tube with the 

fibers layered 30° fails at lower temperature than 60° and 45°. 
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Figure 3.11. Fail pressure of a vessel with [30°/-30°] for linear temperature 
distribution 
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Figure 3.12. Fail pressure of a vessel with for [30°/-30°] for constant temperature 
distribution 

 

3.2 Pressure Vessel 

 

The results of the pressure vessel case are summarized in the following: 
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Figure 3.13. Fail pressure of a pressure vessel with [45°/-45°] for parabolic 
temperature distribution 

 

The resultant stress of the axial stresses in a pressure vessel gives Pa2π , hence for 

the absence of internal pressure, the resultant stress gives 0. This can be followed in 
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Table 3.7-9, where the stress distributions of the pressure vessel with 45° layered 

fibers and parabolic temperature distribution for different moisture concentrations 

c=3*10-3, 10*10-3, 20*10-3 with the internal pressure value of 0MPA and 

temperature of 0° C are tabulated. 

With increasing moisture concentration, the Hoffman index is also increasing. 

c=3*10-3 MPAm 645.2)45(sin*04.3)45(cos*25.2 22 =−+−=⇒ σ  

c=10*10-3 MPAm 285.4)45(sin*13.10)45(cos*44.7 22 =−+−=⇒ σ  

c=20*10-3 MPAm 11.17)45(sin*26.20)45(cos*85.14 22 =−+−=⇒ σ  

Table 3.7. The stress distribution for c=3*10-3 

 
Surface D σrr σθθ σzz 

1 30 0,00 -3,30 -2,49 

2 31 -0,08 -1,56 -1,20 

3 32 -0,10 0,07 0,02 

4 33 -0,07 1,59 1,16 

5 34 0 3,04 2,25 

 

The Hoffman index is calculated as 4.9160*10-2 for the moisture concentration of 

3*10-1. 
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Figure 3.14. The stress distribution for c=3*10-3 
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Table 3.8. The stress distribution c=10*10-3 

 
Surface D σrr σθθ σzz 

1 30 0,00 -11,01 -8,35 

2 31 -0,26 -5,20 -4,03 

3 32 -0,33 0,22 0,01 

4 33 -0,23 5,31 3,82 

5 34 0,00 10,13 7,44 

 

The Hoffman index is calculated as 1.7265*10-1 for the moisture concentration of 

10*10-1 
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Figure 3.15. The stress distribution for c=10*10-3 
 

Table 3.9. The stress distribution for c=20*10-3 

 
Surface D σrr σθθ σzz 

1 30 0,00 -22,01 -16,72 

2 31 -0,52 -10,40 -8,09 

3 32 -0,66 0,44 0,00 

4 33 -0,47 10,62 7,62 

5 34 0,00 20,26 14,85 
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The Hoffman index is calculated as 3.7138*10-1 for the moisture concentration  

of 20*10-1. 
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Figure 3.16. The stress distribution for c=20*10-3 

 

As moisture concentration increases, the absolute value of the stresses increases 

also. Axial stress is tensile at the outer surface and compressive at the inner surface 

of the tube. Because of the tensile stress at the outer surface, the vessel fails at the 

lower temperature rate with the increasing moisture concentration. In Table 3.10, 

for different moisture concentrations, the fail temperatures are given where internal 

pressure is absent.  

Table 3.10. Fail temperatures for various moisture concentrations 
 

c 3*10-3 5*10-3 10*10-3 20*10-3 30*10-3 40*10-3 50*10-3

Tfail 66 64 56 40 26 10 0 

 

Table 3.11. The stress distribution at P=1MPA, T=0°C 
 

Surface D σrr σθθ σzz 

1 30 -1,00 5,11 1,53 

2 31 0,78 6,34 2,46 

3 32 0,54 7,52 3,37 

4 33 -0,28 8,67 4,25 

5 34 0,00 9,80 5,12 
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The Hoffman index is calculated as H=1.4488*10-1. 
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Figure 3.17. The stress distribution at P=1MPA,T=0°C 
 

Table 3.12. The stress distribution at P=7MPA T=0°C 
 

Surface D σrr σθθ σzz 

1 30 -7,00 55,52 26,47 

2 31 -5,01 53,68 25,26 

3 32 -3,20 52,26 24,34 

4 33 -1,54 51,20 23,69 

5 34 0,00 50,44 23,24 

 

-10

0

10

20

30

40

50

60

30 31 32 33 34

Diameter (mm)

St
re

ss
es

 (M
pa

)

σrr
σθθ
σzz

 
 

Figure 3.18. The stress distribution at P=7MPA, T=0°C 
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If the stresses tabulated in Table 3.12 are compared with the stress values given in 

Table 3.11 where internal pressure is 1MPA and other conditions are same, it can be 

easily concluded that the stress values are bigger at the internal pressure value of 

7MPA. The Hoffman index is calculated as 1.0113, hence the tube fails at 0°C. 
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Figure 3.19. Fail pressure of a pressure vessel with [45°/-45°] for linear temperature 

distribution 
 
As it can bee seen from Figure 3.19, the results are similar compared with parabolic 

temperature distribution. 

 

Table 3.13. Fail pressure of a pressure vessel with [45°/-45°] for constant 
temperature distribution 

 
c=3*10-3 c=5*10-3 c=10*10-3 

T P T P T P 
10 7.00 10 7.00 10 7.40 
50 7.00 50 7.20 50 7.40 
80 7.00 80 7.20 80 7.20 
100 7.20 100 7.20 100 7.20 
150 7.20 150 7.40 150 7.20 

 

It is seen from Table 3.13, the failure pressure does not change much at the high 

temperatures for pressure vessels.The ends of the vessels are free for the 

hgyrothermal  expansions.As a result of this, the axial stress component is affected 
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very small at the high temperatures. If the vessel is manufactured by 0 and 90 

oriented plies ,the axial stress has high stress values, since  different oriented plies 

apply internal forces each other. 
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Figure 3.20. Fail pressure of pressure vessel with [60°/-60°] for parabolic 
temperature distribution 
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Figure 3.21. Fail pressure of a pressure vessel with [60°/-60°] for linear temperature 

distribution 
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Table 3.14. Fail pressure of a pressure vessel with [60°/-60°] for constant 
temperature distribution 

 
c=3*10-3 c=5*10-3 c=10*10-3 

T P T P T P 
10 8.40 10 7.80 10 6.40 
50 8.00 50 7.40 50 6.00 
80 7.80 80 7.20 80 5.60 
100 7.60 100 7.00 100 5.40 
150 7.00 150 6.40 150 5.00 
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Figure 3.22. Fail pressure of a pressure vessel with [30°/-30°] for parabolic 
temperature distribution 
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Figure 3.23. Fail pressure of a pressure vessel with [30°/-30°] for linear temperature 

distribution 
 

Table 3.15. Fail pressure of a pressure vessel with [30°/-30°] for constant 
temperature distribution 

 
c=3*10-3 c=5*10-3 c=10*10-3 

T P T P T P 
10 4.80 10 5.60 10 5.60 
50 5.60 50 5.60 50 5.60 
80 5.60 80 5.60 80 5.60 
100 5.60 100 5.60 100 5.60 
150 5.60 150 5.60 150 5.60 

 

3.3. Free-End Case 

 

The results of the vessel with free-end case are summarized in the following graphs: 
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Figure 3.24. Fail pressure of a vessel with [45°/-45°] for parabolic temperature 
distribution 

 

In order to investigate the effect of the moisture concentration on the tube with free 

ends, the stress distributions for three different moisture concentrations of 3*10-3, 

5*10-3 and 10*10-3 are tabulated in Table 3.16-18.  

 

Table 3.16. The stress distribution for c=3*10-3 

 
Surface D σrr σθθ σzz 

1 30 0,00 -3,30 -2,49 

2 31 -0,08 -1,56 -1,20 

3 32 0,10 0,07 0,02 

4 33 -0,07 1,59 1,16 

5 34 0,00 3,04 2,25 

 
The Hoffman index is calculated as 4.9160*10-2. 
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Figure 3.25. The stress distribution for the moisture concentration of 3*10-3 

 
Table 3.17. The stress distribution for c=10*10-3 

 

Surface D σrr σθθ σzz 

1 30 0,00 -11,01 -8,35 

2 31 -0,26 -5,20 -4,03 

3 32 -0,33 0,22 0,01 

4 33 -0,23 5,31 3,82 

5 34 0,00 10,13 7,44 

 
where the Hoffman index is calculated as 1.7265*10-1 
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Figure 3.26. The stress distribution for the moisture concentration of 10*10-3 
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Table 3.18. The stress distribution for c=20*10-3 

 
Surface D σrr σθθ σzz 

1 30 0,00 -22,01 -16,72 

2 31 -0,52 -10,40 -8,09 

3 32 -0,66 0,44 0,00 

4 33 -0,47 10,62 7,62 

5 34 0,00 20,26 14,85 

 
where the Hoffman index is calculated as 3.7138*10-1 
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Figure 3.27. The stress distribution for the moisture concentration of 20*10-3 
 

As it can be seen from Tables 3.16-18, with increasing moisture concentration the 

absolute value of axial, tangential and radial stresses and as result of this, the 

Hoffman index increase also. In Table 3.19, the fail temperatures for different 

moisture concentration values are presented. 

 
Table 3.19. Fail temperatures of a tube for various moisture concentrations 

 
c 3*10-3 5*10-3 10*10-3 20*10-3 30*10-3 40*10-3 50*10-3

Tfail 66 64 56 40 26 10 0 
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In Table 3.20, the stress distributions for the moisture concentration of 3*10-3 with 

the temperature value of 66°C and internal pressure of 0MPA are presented as 

 

Table 3.20. The stress distribution at T=66°C 
 

Surface D σrr σθθ σzz 

1 30 0,00 -41,61 -41,13 

2 31 -1,00 -20,53 -20,99 

3 32 -1,29 0,15 -0,95 

4 33 -0,93 20,61 19,12 

5 34 0,00 40,99 39,33 

  
The Hoffman index is calculated as H=1.0049. 
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Figure 3.28. The stress distribution at P=0MPA, T=66°C 
 

In Table 3.16, all the conditions are identical with the conditions presented in Table 

3.21 except the temperature. In Table 3.17, temperature is 0° C, whereas in Table 

3.21, 66° C. It can be easily seen from these tables that the absolute value of the 

stresses increases at T=66°C compared with T=0°C.  T=66°C is the fail temperature 

at the given conditions, as the Hoffman index is calculated greater than 1. 

In order to see the pressure effect, the results are tabulated for two different pressure 

rates, where other conditions have been kept same. In Tables 3.21 and 3.22, the 

stress distributions of a tube with free ends for parabolic temperature distribution 
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and the moisture concentration of 5*10-3 with the internal pressure values of 1MPA 

and 6MPA are presented.  

Table 3.21. The stress distribution at P=1MPA, T=0°C 
 

Surface D σrr σθθ σzz 

1 30 -1,00 3,24 -3,27 

2 31 -0,83 5,45 -1,61 

3 32 -0,60 7,56 -0,01 

4 33 -0,32 9,58 1,52 

5 34 0,00 11,52 2,99 
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Figure 3.29. The stress distribution at P=1MPA, T=0°C 
 

Table 3.22. The stress distribution at P=6MPA, T=0°C 
 

Surface D σrr σθθ σzz 
1 30 -6,00 46,96 1,22 

2 31 -4,31 45,72 0,43 

3 32 -2,76 44,81 -0,13 

4 33 -1,33 44,19 -0,47 

5 34 0,00 43,81 -0,64 
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Figure 3.30. The stress distribution at P=6MPA, T=0°C 
 
As it can be seen from these graphs, tangential stresses and radial stresses increase 

with increasing pressure. 
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Figure 3.31. Fail pressure of a vessel with [45°/-45°] for linear temperature 
distribution 
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Table 3.23. Fail pressure of vessel with [45°/-45°] for constant temperature 
distribution 

 
c=3*10-3 c=5*10-3 c=10*10-3 

T P T P T P 
10 7.00 10 7.00 10 7.40 
50 7.00 50 7.20 50 7.40 
80 7.00 80 7.20 80 7.20 
100 7.20 100 7.20 100 7.20 
150 7.20 150 7.40 150 7.20 
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Figure 3.32. Fail pressure of vessel with [60°/-60°] for parabolic temperature 
distribution 
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Figure 3.33. Fail pressure of vessel with free ends for [60°/-60°] for linear 
temperature distribution 

 

Figure 3.24. Fail pressure of vessel with [60°/-60°] for constant temperature 
distribution 

 
c=3*10-3 c=5*10-3 c=10*10-3 

T P T P T P 
10 8.40 10 7.80 10 6.40 
50 8.00 50 7.40 50 6.00 
80 7.80 80 7.20 80 5.60 
100 7.60 100 7.00 100 5.40 
150 7.00 150 6.40 150 5.00 
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Figure3.34. Fail pressure of vessel with [30°/-30°] for parabolic temperature 
distribution 
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Figure 3.35. Fail pressure of vessel with [30°/-30°] for linear temperature 
distribution 
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Figure 3.25. Fail pressure of vessel with [30°/-30°] for constant temperature 
distribution 

 
c=3*10-3 c=5*10-3 c=10*10-3 

T P T P T P 
10 4.80 10 5.60 10 5.60 
50 5.60 50 5.60 50 5.60 
80 5.60 80 5.60 80 5.60 
100 5.60 100 5.60 100 5.60 
150 5.60 150 5.60 150 5.60 

 

3.4. Optimum Winding Angle Determination 

 

Mechanical properties of a composite structure are highly dependent on the winding 

angle used because of the nature of the fiber-reinforced composite materials. To 

obtain a mechanical structure satisfying the needs, determination of the optimum 

winding angle becomes important. 

In Figure 3.36, the Hoffman indexes are presented for different winding angles for a 

vessel with plane strain case, linear temperature distribution and c=10*10-3. 

Hoffman indexes are calculated for each winding angle at T=20° C and P=4 MPA 

are compared each other. Then, the winding angle with minimum Hoffman index is 

chosen as optimum winding angle since at the same loading conditions, it results 

minimum effect on the structure. 
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Figure 3.36. Hoffman index comparison for different winding angles 
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It can be seen from Figure 3.36, that =θ 51° is the optimum winding angle for the 

composite structure with plane strain case. 

 

The stress distribution for =θ  51°   is presented in Table 3.26. 

Table 3.26. The stress distribution at =θ 51° 
 

Surface D σrr σθθ σzz 

1 30 -5,00 -48,01 -121,98 

2 31 -5,66 -3,52 -92,36 

3 32 -4,93 38,70 -63,66 

4 33 -2,99 79,13 -35,69 

5 34 0,00 118,17 -8,26 
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CHAPTER 4 
 

 

CONCLUSION AND FUTURE RECOMMENDATIONS 

 

 

In this study, an explicit analytical formulation is developed based on the 

anisotropic elasticity theory that determines the behavior of fiber reinforced 

composite vessel under hygrothermal loading. The loading was studied for three 

cases separately. These are plane strain case in which the tube is prevented to 

expand and free-end and pressure vessel cases in which the tube is free to expand. 

Throughout the study, constant, linear and parabolic temperature distributions are 

investigated and for each distribution, separate equations are developed. The 

numerical solution enables to investigation of the behavior of the vessel under 

different hygrothermal and internal pressure conditions. By taking the moisture 

concentration constant of throughout the body, hygrothermal stresses and 

displacements are determined. 

The tube has been modeled as a set of cylindrically orthotropic layers. Each layer 

has an angle ply of  (+) and (-) α  where α  is the winding angle of any layer. The 

trough thickness elastic constants have been found from the correlations derived 

from a recent study. 

For each layer, two different equations are developed. These are the correlations of 

radial stress and radial displacements. These relations have been solved using the 

boundary conditions. Since there are two unknown for each layer and there are 2*n 

boundary conditions for n number of layers, the computer program is capable to 

solve this set of equations. 

Throughout the study, two computer programs are developed. The first one is 

developed for the plane strain case where the other program is both for pressure 

vessel and free-end cases. 
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In free-end case, the resultant force along the tube axis is equal to zero, since both 

ends of the tube are free to expand .On the other hand, for the pressure vessel, the 

resultant force along the tube is equal to the effect of internal pressure on the caps 

of the pressure vessel. After finding the stresses, Hoffman failure criteria is applied 

to investigate the behavior of fiber reinforced composite vessel under the effects of 

both thermal and moisture. The reason to choose this criteria is that Hoffman 

criteria gives much more consistent solution when the material has different 

compressive and tensile strengths.  

In this study, it is assumed that the mechanical properties of the material do not 

change with increasing temperature up to 150° C. After this temperature rate, the 

material properties will degrade. 

From the results, it can be concluded that the results for linear and parabolic 

temperature distributions give almost the similar results. On the other hand, 

constant temperature distribution has a different characteristic than the others. For 

parabolic temperature distribution, with increasing temperature rate, failure pressure 

decreases, whereas the failure pressure for constant temperature distribution 

increases for plane strain case. On the other hand, the failure pressure does not 

change much at the high temperatures for pressure vessels and free ends with 

constant temperature distribution. 

It is found also that the tube, which is layered with the fibers30 °, fails mostly at the 

lower internal pressure comparing with the angle 45° and 60°, since the stress 

components on the matrix plane are greater for30 °.  

It is concluded from the results that for plane strain case and small moisture 

concentration values, moisture effect may  sometimes act reverse and the tube may 

fail at higher temperature. 

The method developed in this study can be applied to all long composite cylinders, 

pressure vessels and tanks. 

As a future work, the vessel under axisymmetric and non-axisymetric loading with 

the internal pressure and hygrothermal effects can be investigated. The vessel under 

a single force with pressure and hgyrothermal effects can be seen in practical 

applications. Also in these applications, the vessel can have metallic or plastic 

liners. 
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