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ABSTRACT

ANALYSIS OF FIBER REINFORCED COMPOSITE VESSEL UNDER
HYGROTHERMAL LOADING

Sayman, Stimeyra
M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. Levend Parnas

December 2003, 74 Pages

The aim of this study is to develop an explicit analytical formulation based on the
anisotropic elasticity theory that determines the behavior of fiber reinforced
composite vessel under hygrothermal loading. The loading is studied for three cases
separately, which are plane strain case, free ends and pressure vessel cases. For free-
end and pressure vessel cases, the vessel is free to expand, on the other hand for
plane strain case, the vessel is prevented to expand. Throughout the study, constant,
linear and parabolic temperature distributions are investigated and for each
distribution, separate equations are developed. Then, a suitable failure theory is
applied to investigate the behavior of fiber reinforced composite vessels under the
thermal and moisture effects.

Throughout the study, two computer programs are developed which makes possible
to investigate the behavior of both symmetrically and antisymmetrically oriented
layers. The first program is developed for plane strain case, where the second one is
for pressure vessel and free-end cases.

Finally, several thermal loading conditions have been carried out by changing the
moisture concentration and temperature distributions and the results are tabulated for

comparison purposes.
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HiGROTERMAL YUKLEME ALTINDAKI ELYAF TAKVIYELI
KOMPOZIT KAPLARIN ANALIZi

Sayman, Stimeyra
Yiiksek Lisans, Makina Miihendisligi Bolimii

Tez Yoneticisi: Prof. Dr. Levend Parnas

Aralik 2003, 74 Sayfa

Bu calismanin amaci, anizotropik elastisite teorisine dayali olarak higrotermal
ylikleme altindaki elyaf takviyeli kompozit kaplarin agik analitik formiilasyonunu
gelistirmektir. Yikleme ii¢ durum icin ayr1 calisilmistir, bunlar diizlem sekil
degistirme durumu, uglarin agik oldugu ve basingh kap durumlaridir. iki ucun agik
oldugu ve basingli kap durumlarinda, kap genislemeye serbesttir, Obiir taraftan
diizlem sekil degistirme durumu igin, kabin genislemesi engellenmistir. Calisma
boyunca sabit, lineer ve parabolik sicaklik degisimleri incelenmis ve her bir degisim
icin, farkli denklemler gelistirilmistir. Ardindan, termal ve nem etkileri altindaki
elyaf takviyeli kompozit kabin davranisini incelemek i¢in uygun bir kirilma teorisi
uygulanmigtir.

Bu calisma boyunca, hem simetrik hem de antisimetrik yonlendirilmis katlarin
davranisini incelemeyi miimkiin kilan iki bilgisayar programu gelistirilmistir. ilk
program diizlem sekil degistirme durumu icin ¢alisirken, ikinci program iki ucun
acik oldugu ve basingli kap durumlar i¢in caligmaktadir.

Son olarak, nem katsayisim1 ve sicaklik dagilimmi degistirmek suretiyle cesitli
termal yiikleme durumlart ¢aligilmis ve sonuglar mukayese amaciyla tablo olarak

sunulmustur.



Anahtar kelimeler: Elyaf takviyeli kap, kompozit malzeme, basin¢h kap, kompozit
silindirler, ortotropik, termal yiikleme, higrotermal yiikleme,

sicaklik, nem
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CHAPTER 1

INTRODUCTION

A composite material is defined as a combination of two or more materials on a
macroscopic scale to form a useful third material. The advantage of composite
materials is that they usually exhibit the best qualities of their components and often
some qualities that neither their components possesses. The main objective with
composite material is to create a material that has only the designed characteristic
required to perform the design task. A composite material contains reinforcements
supported by a matrix material. Reinforcement can be implemented by fibers or
particles. The fibers usually have high strength than the matrix. The matrix has the
functionality to keep the fibers in desired position and orientation. Some of the
properties that can be improved with a composite material are strength, stiffness,
corrosion resistance, strength-to-weight ratio, stiffness-to-weight ratio, low specific
gravities, fatigue damage tolerance, noncorrosive behavior, chemical resistance and
temperature dependent behavior, impact resistance. In recent years because of these
features and with the development of manufacturing technologies, of composites
became widespread in many parts of the industry such as aerospace industry,

marine, sport applications and automotive industry.

1.1. Fiber Reinforced Composite Materials

Composite materials can be classified according to the physical properties as:
e Fibrous composite materials that consist of fibers in a matrix
e Laminated composite materials that consist of layers of various materials

e Particulate composite materials that are composed of particles in a matrix



e Combinations of some or all of the first three types

1.1.1. Fibrous Composite Materials

Fibrous composites consist of fibers in a matrix. They are common since long fibers
in various forms are much stiffer and stronger than the material in the bulk form.
The fibers have different properties from the bulk form because of the perfect
structure of fibers, since the crystals are aligned along the fiber axis and there are

fewer internal defects in fibers than in bulk material.

1.1.2. Mechanical Behavior of Composite Materials

Composite materials have mechanical behavior characteristics that are different
from those of more conventional engineering materials. Some characteristics are
merely modifications of conventional behavior; others are totally new and require
new analytical experimental procedures [3].

Most common engineering materials are both homogeneous and isotropic:

A homogeneous body has uniform properties throughout, i.e., the properties are
independent of position in the body.

An isotropic body has material properties that are the same in every direction at a
point in the body, i.e., the properties are independent of orientation at a point in the
body.

Bodies with temperature-dependent isotropic material properties are not
homogeneous when subjected to a temperature gradient, but still are isotropic.

In contrast, composite materials are often both inhomogeneous and nonisotropic
(orthotropic or, more generally anisotropic):

An inhomogeneous body has nonuniform properties over the body, i.e., the
properties depend on position in the body.

An orthotropic body has material properties that are different in three mutually
perpendicular directions at a point in the body and, further, has three mutually
perpendicular planes of material property symmetry. Thus, the properties depend on

orientation at a point in the body.



An anisotropic body has material properties that are different in all directions at a
point in the body. No planes material property symmetry exists. Again, the
properties depend on the orientation at a point in the body.

Because of the inherently heterogeneous nature of composite materials, they are
conveniently studied from two points of the view: micromechanics and
macromechanics.

Use of the two concepts of macromechanics and micromechanics allows the
tailoring of a composite material to meet a particular structural requirement with
little waste of material capability. The ability to tailor a composite material to its job
is one of the most significant advantages of a composite material over an ordinary
material. Perfect tailoring of a composite material yields one of the stiffness and
strength required in each direction, no more. In contrast, an isotropic material is, by
definition, constrained to have excess strength and stiffness in any direction other
than that of the largest required strength and stiffness.

The inherent anisotropy (most often only orthotropy) of composite materials leads
to mechanical behavior characteristics that are quite different from those
conventional isotropic materials.

For isotropic materials, application of normal stress causes extension in the
direction of the stress and contraction in the perpendicular directions, but no
shearing deformation. Also, application of shear stress causes only shearing
deformation, but no extension or contraction in any direction. Only two material
properties, Young’s modulus and Poisson’s ratio, are needed to quantify the
deformations. The shear modulus could be used as an alternative to either Young’s
modulus or Poisson’s ratio.

For orhotropic materials, like isotropic materials, application of normal stress in a
principal material direction results in extension in the direction of the stress and
contraction perpendicular to the stress. The magnitude of the extension in one
principal material direction under normal stress in that direction is different from
the extension in another principal material direction under the same normal stress in
that direction. Thus, different Young’s moduli exist in the various principal material
directions. In addition, because of different properties in the two principal material
directions, the contraction can be either more or less than the contraction of a

similarly loaded isotropic material with the same elastic modulus in the direction of
3



the load. Thus different Poisson’s ratios are associated with different pairs of
principal material directions (and with the order of the coordinate direction numbers
designating the pairs). Application of shear stress causes shearing deformations, but
the magnitude of the shearing deformation is totally independent of the various
Young’s moduli and Poisson’s ratio. That is, the shear modulus of an orthotropic
material is, unlike isotropic materials, not dependent on other material properties.
Thus, at least five material properties are necessary to describe the mechanical
behavior of orthotropic materials.

For anisotropic materials, application of a normal stress leads not only to extension
in the direction of the stress and contraction perpendicular to it, but to shearing
deformation. Conversely, application of shearing stress causes extension and
contraction in addition to the distortion of shearing deformation. This coupling
between both loading modes and both deformation modes, i.e., shear-extension
coupling, is also characteristic of orthotropic materials subjected to normal stress in
a non-principal material direction. Even more material properties than for
orthotropic materials are necessary to describe the mechanical behavior of

anisotropic materials because of the additional response characteristics.

1.2. Manufacturing of Fiber-Reinforced Composite Materials

Unlike most conventional materials, there is a very close relation between the
manufacturing of a composite material and its mechanical properties. Hand lay-up
technique was the first manufacturing technique. The open mold process with
spray-up of chopped fibers was also used for development of work, prototype
fabrication and production of large components and relatively small quantities.

A major breakthrough in composite manufacturing technology occurred with the
development of “prepreg tape”, which is a tape consisting of fibers precoated with
the polymer resin. Most prepreg tape is made by the hot-melt process. Autoclave
molding is the standard process for fabrication with prepreg tapes.

Sheet-molding compound (SMC) is an important innovation in composite
manufacturing.

Nowadays, in addition to these techniques, new production techniques are

developed. These are pultrusion, reinforced reaction injection molding,
4



thermoplastic molding, resin transfer molding, structural reaction injection molding

and filament winding.

1.3. Filament Winding

Filament winding is widely used to produce such structures as rocket motor cases,
pressure vessels, shafts, piping and tubing.

Filament winding, which involves winding of resin-coated fibers onto a rotating
mandrel, may be used to produce any composite structure, which has the form of a
body of revolution.

Another advantage of this process is that by controlling the winding tension on
fibers, they can be packed together very tightly to produce high fiber volume

fractions.

1.4. Analysis of Hygrothermal Behavior of Composite Materials

Many researches have been performed for the prediction of mechanical behavior of
composite structures. The determination of mechanical properties of the composite
materials, the stress and strain analysis of composite structures, the failure analysis,
the structural optimization of the composite structures are the basic aims of the
studies. In addition to these, some experiments were also made to verify analytical
models developed.

Lekhnitskii [2] made a deep investigation on Composite cylinders under internal
pressure, twisting moment, axial load or bending moment.

L. Parnas and E. Ahg¢t [4] investigated fiber reinforced composite rocket motor case
and presented a method to analyze and improve the composite structure, which is
subjected to various load. The analysis method can also be applied to composite
pressure vessels, storage tanks, and cylinders. The aim of this study is to develop an
analytical method that determines the mechanical behavior of the composite
structure under combined mechanical (internal and moisture changes) loads. The
optimum winding angle that provides the maximum strength to the composite
structure and the burst pressure for a certain loading condition and given geometry

were also be calculated by this method. The improvement of the composite
5



structure on the basis of winding angle was made by utilizing the 3-D Quadratic
failure in the strain space. A user-friendly computer program running under
Microsoft Windows and using the results of this study was developed in Microsoft
Visual Basic 4.0 Language for analysis and design purposes. The results obtained
were also compared with the experimental findings.

L. Parnas and S. Alecakir [5] obtained explicit analytical solutions for the stresses
and displacements in each orhotropic layer of a multi-layered filament-wound tube
subjected to axi-symmetric loads and bending separately that is based on
anisotropic elasticity theory. An experimental study has also been carried out for
investigating the bending behavior of composite tubes. A special bending test setup
has been designed, produced and bending tests have been performed on 120 sample
composite tubes manufactured with a combination of two different fiber types:
carbon and glass; two different type of resin systems: two epoxies with different
glass transition temperatures; two different diameters and four different winding
angles. Using the results of the experiments, a database has been formed for design
purposes. The experiments have also been simulated by utilizing the analysis and
comparison have been made between the experimental and the theoretical results.
The stress-analysis performed has been combined with a suitable, interactive, stress-
based macroscopic failure criterion and a good-fitting correlation based on the
laminated plate theory for estimating the through thickness elastic constants, to
enable the safe design of filament-wound composite tubes under combined loading.
L. Parnas and N. Katirci [6] developed an analytical procedure to design and
predict the behavior of the reinforced composite pressure vessels. The classical
lamination theory and generalized plane strain model is used in the formulation of
the elasticity problem. Internal pressure, axial force and body force due to rotation
in addition to temperature and moisture variation throughout the body are
considered. Some 3D failure theories are applied to obtain the optimum values for
the winding angle, brust pressure, maximum axial force and the maximum angular
speed of the pressure vessel. These parameters are also investigated considering
hygrothermal effects.

M. Xia, H. Takayanagi and K. Kemmochi [7] investigated multi-layered filament-
wound (FW) structures. Each layer of the pipes is assumed to be anisotropy. Based

on the three-dimensional (3-D) anisotropic elasticity, an exact elastic solution for
6



stresses and deformations of the pipes under internal pressure is presented.
Moreover, detailed stress and strain distributions for three given angle-ply pipe
designs are investigated by using the present theory. The shear extension coupling
is also considered because the lay-up angles with +@ and -@ layers cannot exist in
the same radius. For cylindrical-pressure vessels with different angle-ply pipe, the
ratio of applied hoop-to-axial stress in each layer is different. Even if quite a thin-
walled pipes, the ratio of hoop—to-axial stress is no longer a constant of 2:1.

P. M. Wild and G. W. Vickers [8] developed an analytical procedure to assess to
stresses and deformations of filament-wound structures under loading conditions
particular to centrifuge rotors and to assess the effects of winding angle variation
through the centrifuge wall. This procedure is based on classical laminated plate
theory and models both plane stress and plane strain states of cylindrical shell
comprising a number of cylindrical sublayers, each of which is cylindrically
orthotropic. Available loading conditions are: radial body force due to rotation
about the cylinder axis, internal and external pressures and axial force. The analysis
is applied to three examples: a pressure vessel, a centrifuge rotor and a flywheel. It
is shown that the benefit of winding angle variation is more significant for
applications in which there is no axial loading to cylindrical shell. It is also shown
that, where axial loading is present, the benefits of wind angle variation are more
significant under the last ply failure criterion than under the first ply failure
criterion.

Based on the curved composite-beam and multilayer-buildup theories, M. Xia, H.
Takayanagi, K. Kemmochi [9] presented two methods to analyze the stresses and
deflections of multi-ply cylindrical pipes under transverse loading conditions.
According to the presented solutions, numerical results are given for a common
sandwich type. Stress distributions within a pipe and deflections are also discussed.
Simple analytical methods can be used to evaluate the stresses and deflections of
multiple-layer cylindrical structures under transverse loading conditions. The results
of the experimental investigations of a sandwich pipe are compared to the results of
the theoretical calculations. The values obtained from the experimental results fall
between the values obtained when each theory is applied separately.

Another work by M. Xia, K. Kemmochi, H. Takayanagi [10] is a presentation based

on the classical laminated-plate theory of an elastic solution for the thermal stress
7



and strain in a filament-wound fiber-reinforced sandwich pipe subjected to internal
pressure and temperature change. The sandwich pipe is created using resin material
for the core layer and reinforced materials with an alternate-ply for the skin layers.
Considering the complicated material properties of the skin layers reinforced by
alternate-ply composites, the thermal stress analysis is based on treating typical
sandwich pipes that are three-dimensional, cylindrical, and orthotropic. A computer
program was developed to conduct stress and deformations analysis of sandwich
pipe with different winding angles. Moreover, an optimum winding angle of the
filament-wound fiber-reinforced materials was designed by using a netting
approach analysis.

Jiann-Quo Tarn, Yung-Ming Wang [11] presented a state approach to extension,
torsion, bending, shearing and pressuring of laminated composite tubes. One of the
novel features is that they have formulated the basic equations of an anisotropic
elasticity in the cylindrical coordinate system into a state equation by a judicious
arrangement of the displacement and stress variables so that the system matrix is
independent of . The formulation suggests a systematic way using matrix algebra
and the transverse matrix is determine the stress and deformation in a multilayered
cylindrically anisotropic tube under applied loads that do not vary in the axial
direction. An exact analysis of the tube subjected to uniform surface tractions, an
axial force, a torque and bending moments is presented. The solution consists of an
axisymmetric state due to extension, torsion, uniform pressuring and shearing, and
an asymmetric state due to bending. The formalism indicates that extension, torsion
and pressuring interact; uniform shearing causes pure shears in the laminated tube,
regardless of the number of layers. These deformations are uncoupled with bending
of the tube.

Cho-Chung Liang, Hung-Wen Chen, Cheng-Huan Wang [12] investigated the
optimum design of dome contours for filament-wound composite pressure vessels,
subjected to geometrical limitations, winding condition, and the Tsai-Wu criterion
and maximizing shape factor, the feasible direction method being employed. An
actual design example, presented by Fukunaga is adapted to the study the optimum
dome contour using the present method. Results reveal that the dome contours using
the present method, Fukunaga’s method and the netting method can be

approximated using elliptic curves, and that the depth is the major parameter for
8



optimizing the design of dome contour, and the dome, designed using the present
methods has stronger structure and greater internal volume than those designed
using other approaches. Results reveal that the present method is usable for the
optimum design of dome contours for filament-wound composite pressure vessels.
In this study, a method for analyzing fiber reinforced composite vessels under
hygrothermal loading has been developed. For this, an explicit analytical
formulation is developed based on the anisotropic elasticity theory that determines
the behavior of the vessel under thermal and moisture effects.

In the present study, stress analysis and as a result of this stress analysis, failure
analysis were investigated in multiple layered composite cylinders under internal
pressure and hygrothermal loads. The solution was carried out analytically. The
elastic formulation was obtained for a layer. Then, it was evaluated for n layers. In
the solution, the integral constants are determined by using the boundary conditions
in a matrix form. This method can be applied to all long composite cylinders,
pressure vessels and tanks. After finding analytical solution, two different computer
programs are developed to find the behavior of the tube under hygrothermal loading

conditions.



CHAPTER2

THEORETICAL ANALYSIS

2.1. Introduction

In general, composite materials are used in the form of laminates. In order to
understand the physical behavior of composite cylinders, pressure vessels and
rocket motor cases, it is necessary to review the theory of anisotropic elasticity. In
this chapter, the developed analytical procedure is explained in detail starting from

the equations of anisotropic elasticity.

2.2. Constitutive Relationships for an Orthotropic Lamina

The stress-strain relations in the principal material directions 1,2 and 3 for a single
unidirectional fiber-reinforced lamina, in a linear orthotropic material, are given in
the matrix (2.1), where direction 1 is the fiber directions and 2, 3 are perpendicular
to the fibers. Direction 1 and 2 are in plane and direction 3 is in the trough-thickness

direction as presented in the figure 2.1.

10



213 r,3

Figure 2.1. Representation of cartesian, cylindrical and material coordinates

All the elastic constants including the through-thickness constants have been
determined by hypothetical tests. In these tests, each layer of filament-wound tube
is modeled as a balanced angle-ply.

Equations representing the Generalized Hook’s Law in the principal (material
directions) 1,2 and 3 for a single orthotropic unidirectional fiber-reinforced lamina

(using row-normalized elastic constants) are as follows

L _Yi Yis 0 0 0
E, E, E,
Vo 1 Vs
£ - —_— 0 0 0 o
! E, E, %) !
“2 Y Ve L 0 0 0 72
€33 _| Esy E, E, O33 @.1)
Vs 0 0 0 4 o o ||™
Y13 G23 1 T3
712 0 0 0 0 G_ 0 T
13
0 0 0 0 0 L
L Glz _

When the compliance matrix above is inverted, the stress—strain equations become

11



o, ¢, C, C; O 0 0 |[l&
o, ¢, C, C,; 0 0 0 (s,
05 ¢, G, C; 0 0 0 ||&
[ 10 0 0 Cc, 0 0 |
T3 0 0 0 0 Cix 0 |y,
T, | 0 0 0 0 Cq 7

(2.2)

The coefficients C, (i, j =1,2,....6)are the stiffness of the composite material and

defined as follows, in terms of the engineering constants

C,, ={=v,vy, VE,
C,, =C,, = (v, +vyvy, WE,
C; =G5 = (vy vV, VE,
C,, =(1=v;v)VE,
C,, =C;, =(vy, + vy v, VE,

Cy; = (L=, VE,

Cu=G,

Cy, =G,

Ci =G,

where

- 1

L= v,y = Vigvs; = Vaysvsy — 20, v3v5

2.3)

When the stresses are transformed from the material directions 1, 2, 3 to loading

directions X, y, z (Fig 2.1) by rotating through an angle @ about the z-axis, then the

matrix in equation (2.4) is obtained

12



XX

8]
[
>N

g}’y

[
w
(=

Ve
Vs
Vi

[y
[

o o D100

o o DIOI0

Vo o IO

Ao o SILALA
N

N
g
I
o
=N
9!
[55
=
[99)
SN
=N
=

(2.4)

where the elements of the transformed stiffness matrix having fibers at an angle

+a to the loading direction, are obtained as follows

L =m*C,, +2m’n*(Cp, +2C, ) +n*C,,

A9l

,=m’n*(C,, +C,, —4C, )+ (m* +n*)C,,

O

_ 2 2
,=mCy+n"Cy

Al

o =—mn’C,, + m’nC,, —mn(m*> —n)(C,, +2C)

C,, =n*C,, +2m*n*(C,, +2C,)+m'C,,

C,, =n’C,, +m°Cy

626 = —m3nC22 +mn3C11 +mn(m® —nz)(C12 +2C)
C, =Cy,

C,, =mn(C; —C,,)

o

) 2
y, =mCyy+n°Cg

Al

s =mn(Cys —Cy,)

) 2
55 =mCss+n°Cyy

a

566 = mznz(cn +C,, —2C12)+(m2 _”2)C66

where m = cos() and n =sin(a) .

2.5)

The effective through thickness elastic constants for the laminate, which actually

correspond to the transformed elastic coefficients for any layer of a filament-wound

tube, can be found from the hypothetical tests by evaluating the stress resultants in

terms of the above coefficients. The elastic constants for a laminate are

13



E = 11 22C33 et 23C23:6’12C13§3 : 331212 +2 233112
" C22C33 - 23C23
E = _11_22633 B _11_23623 :(_jiz_l3g3 :_33_12_12 + 2_23_31_12
. C11 33 13C13
E = _11_22633 __11_23623 :(_ji2_13§3 :_33_12_12 +2_23_31_12
- C11 2 12C12
Gyz = 644
ze = C_VSS
G = 533666__ 636536
" C33
v C22C33 _C23C23
v = §2§3 _§3§23
" C11C33 _C13C13
Vv = Cjngzz _§2§23
- C11C22 - C12C12
Yy = §13§22 _(212@3
- sz C33 - C23 C23
o §1§23 _§12§13
7 C11C22 _C12C12
v = gn(zzs _gzgs
* C,.C.,.-C,.C

(2.6)

At this point, noting that the angle ply is part of any layer of a filament wound tube

where x axis of the x-y-z loading axis coincides with the z-axis of the tube, in order

to switch to the tube coordinates, a change of subscripts shown below, which is

actually equivalent to a positive rotation of 90° about the r-axis of a #-z-r coordinate

system is enough:
xX—z
y—0

z—r

14



The winding angle and the stresses are dependent of the sign of «, but the elastic
constants are not. Since each layer of the filament-wound tube is composed of two
sub layers of + a and — a, before failure prediction, the stresses for these sub-layers

should be separately transformed to the principle material directions.

2.3. General Relations

In this section, the governing equations are developed which will be used for three
cases investigated in this study. These are plane strain case, free ends and pressure
vessel cases. For the most general case, the strain-stress relations can be written in a

symmetric matrix formula as

_grr ] _a“ ap 4 4y 45 A __Grr ] 2.7)
€0 Ay Gy Ay Gy Gy Ay || Oy
= |_|9n G dyp dy Ay dy || O
Ve Ay Qg Qg3 Ay Gys Ay || Ty
Yz s ds; Qg3 dsy Qss Asg || T,
1Yo ] |91 G Qo3 Ges Qs Ao || Tro |

IfF, ¥ are the stress functions and U is the potential function respectively, the
stress components are derived from reference [2] as

2 QE—
o :laF(r,G)Jri@ F(r,9)+U
r or rt 06°

82F(r,¢9) —
=—4U
v or?
o* F(r,0
Z-r19 =- ( ( )
orof r
1w
r or

_o¥
or

) (2.8)

Ty =

No body force = U =0

O’ F(r,0)
2

Axially symmetric, therefore =0and7,=0,7,=0

rz

15



o, and o,, can be simplified as

1 oF

o-rr =
r or

o - 0’F
“o o

For this problem, M=0, M: Torsional moment

Figure 2.2 Representation of cylindrical coordinates

j.Zﬂr&rrdrzM = j.2mzfa(3—lfdr=M

r=a a

b
jzﬂrZ\P:M SYf(r=M M=0= ¥=0

=17,=0
This problem is axially symmetric. Moreover from reference [2];
Qpp =y, Ayy = Ay Q13 = Ay

Hence, the matrix reduces to

& a, dp A3 || 0,
oo |=|G1a Gy Ay || O
& A3 Gy Ay || O

16
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Figure 2.3 Matrix and fiber directions

Strain- displacement equations are defined as

ow
gZZ:_
Oz
ou
& =— 2.12
s (2.12)
_Llov, u

Eoo = +
rod r

Thermal expansion coefficients and hygrothermal expansion coefficients in z and

@ directions can be written as

a.=a,cos’@+a,sin’ 0

a,=a, sin’ @+a,cos’ 0 (2.13)
B.= B, cos’ @+ f,sin” O

B,= P, sin’ 0+ B, cos’ 0
where «,, a, are the thermal expansion coefficients in the principal material
direction and f,, [, are the moisture expansion coefficients in the principal

material directions.

It is assumed that the material properties in the direction of r are equal to the
material properties in the transverse directions.

After adding hygrothermal effects to mechanical stresses; then the following stress-
strain relations are obtained

grr = allo-rr + aIZO-HH +a13 O-zz +arT + IBrC (2'14)

Egp = Ay0,, + a0y +ay 0., +a,T+ Py (2.15)

17



£.=0,30, +a,04 tay,0, +a T+ f.c (2.16)
where T is the temperature and c is the moisture concentration, which is defined as

the ratio of mass of moisture to mass of dry material in a unit.

2.3. Plane Strain Case

Plane strain is the case that the cylinders are closed by two fixed and plane surfaces.
Long cylinders, which have very small % ratio, are assumed also as the plane

strain problem. Since the tube is prevented to expand by fixed surfaces, the strain in
z- direction is equal to zero; therefore the equation (2.16) can written as
£, =0,,0, +a,,0, +a,0_+aT+Pc=0 (2.17)

From the equation (2.17) o, can be found as

_As 4 ol P
zz rz 00
as; as; az; 4z

| Plane

Strain

Figure 2.4 the tube modeled as plane strain case subjected to internal pressure

After replacing o _ in the equations (2.14) and (2.15), then the equations (2.18) and

(2.19) are obtained
a a a.a a
&, =(ay _ian )o,, +(a, _ian)aae +(a, _Z—B)T‘*‘(ﬂr _h)c (2.18)
3 as; as; as;

18



a a a.a p..a
Ego = (ay, __13“23 )o,. +(ay _iazs)aea +(a, - —)T + By — - =)
33 33 as; as;
(2.19)
or the equations (2.18) and (2.19) can be written shortly as
8rr = lgllo-rr + ﬂlZGQH + arrT + rrc (2'20)
w0 = B0, + B0y +ayT + Bye
where B\, B, B, , &y, B, and B,, are defined as
a 2 a,a a : a.a
13%;3 3
1311:“11_1_3’ P =a, - =, ﬁZZZaZZ_A’arr:ar -
33 33 A3 as;
p.a o.a p.a
B, =B —— = s Uy =0y ———22, By, = fy =2 (2.21)
as; as; as;

If the equation (2.12) is put into the equation (2.20), then the following equation
will be obtained

b=+ Basy ta, T+ e (222)
or dr

Similarly, &,, can be written as

10v u
Epp =—— 7+ == P10, + B0y + T + Bye (2.23)
rod r

Since the problem is axially symmetric, S—V =0

If the relations presented in the equation (2.10) are put into the equations (2.22) and

(2.23), then these equations can be written as

= _1311 +,312F +Ta, +cp, (2.24)

=—= ﬂlz + ﬁzzF +Tag, +cBy (2.25)

The derivative of u in the equation (2.25) should be equal to &, , given in the

equation (2.24), since ¢, = Z—u
r

B F7+ PuF +Ta, +cf, = PuF + PpF + forF " +Tay, +1T ay, +cf, Of
Lot F 4 Bt F = BF = (@, = ay)rT =yt T + (B, — Byy)er (2.26)

19



Multiplying the equation (2.26) with—— , then the equation (2.27) is obtained:

22

PE 42 F ke = (G ey op Qo sy (P~ Py (2.27)

22 22 22

Bu

22

where £k is defined as &k =

If a,,, a,, and o, are defined as
a, = &, — Qg , ) :_%, 2 = B, = B
P B P
Then the equation (2.27) becomes
PF +7F —k*rF =Ta, 7’ +T a,,r’ +ca,r’ (2.28)
The equation (2.28) is the fundamental equation to be solved in the following

sections, which includes non-homogenous roots. To solve the homogenous

equation, r should be defined as

!

r=e
@ _dFd_
dr dt dr

Putting the derivatives of the stress function into the equation (2.28), then the

homogenous equation can be written as

(€)Y @BeF =3e'F +e " F )+ (') (=™ F +e ™ F")—k*r(e'F)=0

2F" -3F +F +(-F +F)-k’F =0

F'-2F +(1-k*)F =0 (2.29)
The roots of the homogeneous equation (2.29) are R, =0,R, =1+kand R, =1-k
Then, the homogenous solution is presented as

F,=C,+C,e"™ +C,e"™" or

1+k 1-k
F,=C, +C,r"™ +Cr'™
2.3.1 Non-Homogenous Solution
Putting the roots of the homogenous solution into the equation itself, the equation

(2.28) becomes:
20



F'=2F +(1-k*)F =a,,Tr’ + Ty i’ + cay,r’ (2.30)
In this study, the solution is carried out under the uniform, linear and parabolic
temperature distribution. The uniform temperature distribution is usually seen in
composite cylinder applications. When the temperature distribution is different in
the inner and outer surfaces of the composite cylinder in the steady state case, the
temperature function takes a logarithmic form. The parabolic temperature
distribution may be seen at any time interval for transient thermal stress cases. For
this reason, the solution is also performed under the parabolic temperature

distribution.

2.3.2. Constant Temperature Distribution (7' =7;)

Since T is constant, the derivative of T is equal to 0. Then the equation (2.30)

becomes
F'=2F +(1-k)F =Ty, + ca,)r’ (2.31)
If A; is defined as 4, =T\, + ca;;, then the equation (2.31) becomes
F'=2F +(1-k)F = 4¢e” (2.32)
To solve the equation, it is required to define the non-homogenous solution by a
coefficient D as
F,, = Dée"
Putting F,,, into the equation (2.32), this equation can be written as
8De* —8De” +2(1—k*)De™ = 4,e* (2.33)
Then from the equation (2.33), D is found as

A

2(1-k%)

Combining the homogeneous and non-homogenous solution, then the stress

function becomes

A4 )

F=C+Cr"" +Cp' ™ + ———r
20— k)

(2.34)

. F . . .
Since o, =—, as it is presented in the equation (2.9), then o, becomes
r

21



1 _Alkz (2.35)

o, =L =+t Oy -k 4
r

rr

and since o, = F as it is presented in the equation (2.10), theno,, becomes

4,

0, = Cok(1+ k)r*™ = Cik(1 = k)r ™" + e

From equation (2.25), u can be found as

. _ A _
u=p,C 1+ k)"/ + B,C(1=k)r “y B ﬁ" + B Ck(1+ k)”k = B Cik(1=k)r g
+ 5, ﬁr + oy, Tr + Byscr (2.36)

The equations (2.35) and (2.36) will be used as boundary condition to solve the

problem. As it can be seen, there are two unknown constants for each layer given by

C, and C;.

2.3.3.Linear Temperature Distribution (7 = A(b—r))

Te

Linear

Figure 2.5 Linear temperature distributions on the cross-section of the tube

. T,
T is equal to 7, at the inner surface where A is defined as A =—"—. Thus
-a

T'=-1
If T is put into the equation (2.30), then this equation becomes

F'=2F +(1-k)F =a,,(-2)r + A(b—r)a,r* +co,r* or
22 11 33
22



F"=2F +(1-k))F =-A(ay, +a,)r + (Aay,b + azc)r’ (2.37)
If 4, and A4, are defined as

A =-Ma,, +a,)

A4, = Aoy,b+ o5

Then, the equation (2.37) becomes

F' =2F +(1-k)F = Ae” + A,e” (2.38)
To solve the non-homogenous equation (2.38), it is required to define two unknown
coefficients D, and D, as

F\; =De" + D,e”

If F,, issubstituted in the equation (2.38), then this equation becomes

27De" +8D,e” —18D¢” —8D,e” +(1—k*)3De” +2D,e*) = 4’ + A,e” (2.39)
D, and D, can be found from the equation (2.39) as

4

A4 =012-3k)D, =D =—"1+
1 ( ) 1 1 3(4_k2)

=2-2k)D, =p,-—"t
2(1-k%)
Then, F becomes

Al 3 A2 2

F=C+Cr"* +Cr'"™ + r’+ r 2.40
b } 34—k 201-k%) (2.40)
Therefore the stress components are found as
F' k-1 —k-1 Al AZ
o,=—=01+Cr"" +(1-bCyr™ + r+ 2.41
rr r ( ) 2 ( ) 3 4 _ k2 1—k2 ( )
" k-1 —k-1 4 4,
and o, =F =(+k)kCr"" —k(1-k)Cr" +2 PRyE r+ T

Finally, u can be found from the equation (2.25) as:

u =BGy k) + BaCyl— k) + 5, Lk F P fuCk(I B 4
A

= P k(1= 2.y

,822 r+a,Tr+ B,cr (2.42)

- k2
Same as the constant temperature distribution case, there are two unknown
coefficients given by C, and C, for each layer. The equations (2.41) and (2.42) will

be used as the boundary conditions to solve the problem.
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2.3.4. Parabolic Temperature Distribution (7 = A(b* —r7))

Porokolic

Figure 2.6 Parabolic temperature distributions on the cross-section of the tube

. . . T
Temperature is equal to 7, at the inner surface where 4 is defined as A = 5 o If
—a

Tand T are substituted in the equation (2.30), then the equation (2.43) will be

obtained

F" =2F +(1-k)F =a,,(24r)7r + A(b* —r’)a, 7’ + car’

F' =2F +(1-k)F =(Aoyb” +cay)r’ +(-Aay, —2Aa,)r' (2.43)
If 4, and 4, are defined as

A = Aoy b’ +ca,

A, =-Aa,, -2a,,

Then the equation (2.43) becomes

F'=2F +(1-k*)F = 4¢* + 4,e" (2.44)
Non-homogenous solution can be written in terms of the two coefficients D,
and D, as

_ 2t 4t
Fuy, =De” +D,e

24



If F,,, and its derivatives are substituted in the equation (2.44), then this equation

becomes

8.De* +64D,.e" —8De* —32D,e* +(1-k*)(2D,e* +4D,e*) = Ae* + A,e* (2.45)

D, and D, can be found from the equation (2.45) as

4

Al =2(1—kz)l)1 :>D1 zm

4,=(36-4kK)D, —p -—L _
409 —k?)
Then the stress function F becomes

A 2, A4, 4

F=C+Cr"* +Cr"™+ r r 2.46
1 2 3 2(1_k2) 4(9_k2) ( )
The stress components for parabolic temperature distribution are found as
F . o A A
o, :7:(l+k)C2rk "t A-k)Crt T+ 1—1kz + 9_21{2 r (2.47)
" k-1 —k-1 A] A2 2
and o, =F =(+k)kCyr"" —k(1-k)Cr" + ~+3 =
1-k 9-k
Thus
u= ﬂ12C2(1+k)”k +:B12C3(1_k)r7k +ﬂ12 + B, 9_ kz r +1322C k(l+k)rk +
s A,
- B, Ck(1=k)yr™ + ,822 k r+ 3,6’22 0 P +a,,Tr + By,cr (2.48)

Again, for each layer, there are two unknown constants given by C, and C;.

2.4. Example: T is constant in a plane strain problem

At this part of this study, a tube with the plane strain condition, having 4 layers will
be investigated as an example. As it indicated in the previous sections, there are 2
unknown constants for each layer; therefore there are totally 8 unknown constants

for a 4-layered tube.
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D000 0000
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8*1 L—_18%]

8 boundary conditions are required to solve this matrix. These are indicated in the

Figure 2.7.
g: =10
Uz = U Oz — On
]_11'2 — Ur3 @/ O — Ox "E
U = Ur O = O E
NON =
Or — Pi b
o =
"6 =
=
e gy ey o) 3 vy, !q-; ey
=
B=

Figure 2.7 Boundary conditions of a 4-layered tube subjected to internal pressure

The equations (2.35) and (2.36) will be used to establish an 8*8 matrix, since the
boundary conditions are the equivalence of the radial stresses and radial

displacements. B,,, B,,, @y, By, k and A, are shown as B,., Baris Qs Boa
k. and A, for i" layer . Since temperature is constant for this example, it is not

required to use a subscript for it.

1. Boundary Condition, o, = P, (internal pressure) where 7, = a, a is inner diameter

A p
1k,

26
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= [0+ k)t + [a -k .
-k,

2. Boundary Condition, o, =0, , where r, =a +t, tis the thickness of one layer

All

. A
G

C(1+k)r" ™ +Cy(1—k)r, ™ T
—

- =C,(1+k)n" " + C,(1-k,)r,
N
la+ k) o +la-rkyn ™ o, + | a+ ks e+ a-k)n e, =

A12 _ A11
1-k,° 1-k°

3. Boundary Condition, u, =u, where r, =a+t, t is the thickness of one layer

_ 4,
B C(1+k )rzkl + B C(1=k)r, ot ﬂ121 k 51+ B Gk (1+ K )”zkI

1

_ A,
= P Cok (1= ke )r, ot ﬂ221 k 51 + Qg T1,y + Booicty = B C(1+k )rzkz

1

_ A, _
BinC(0=ky)r, “ +ﬁ122 2 51 + By Cik, (1 + £, )rzkz = B Cik, (1= ky)r, Ly

2

18222 k 51y + U, Ty + Bygcr,
)

4. Boundary Condition, o,,, = o,,, where r, = a + 2¢, t is the thickness of one layer
ky-1 —ky—1 AIZ k-1 —ky—1 A13
C(+k)r,> +Cy(1-k)r, = + > =Cs(I+kry +Ci(1-ky)r +—1 P
3

= [+ k)n o+ |a-i)n 7 oy + s ks oy + | a-n e, =

A13 _ A12
1-k° 1-k,’°

5. Boundary Condition, u, =u, where r, = a + 2t , t is the thickness of one layer

- A,
PG+ k, )’”31(Z + PinCi(1—ky)r - +18122 k2 715+ B G, (1+ &, )”3

2

_ A,
= B Cle, (1= ky)ry = ﬂzzz k2 51+ Ao Ty + Bogocry = Py Cs (1 + k. )”3k3

2

_ A, _
PisCe(l=ky)r, . +ﬁm R 515+ PGk (1+ Ky )”31{3 = B Ceky (1= ky)r, bt

3

18223 k 51+ Qs T1 + Byt
3

6. Boundary Condition, o, =0

3 4

where r, = a + 3¢, t is the thickness of one layer
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A, ki1 k-1
=C,(1+k)r, +C(1=k)r, ™ +
e (+ky)r, s(1=k ), -k

3
= |+ k)= o+ [a-k)n o+ | as ke, =k e =
A, A
-k 1-k;

C(1+ ks)rztk}_l +C(1- k3),,4—k2-1

7. Boundary Condition, u, =u, where r, = a +3t, t is the thickness of one layer

_ A,
PiCs(1+ Ky )”4k3 + B Ce(l= k), b +ﬂ1231 P 2 + Lo Csles (1 + )’”4k3

3

A,
— B Ceks (1= ky)r, s +:B223 x 5Ty + Qg Tr, + Bopsery, = B, Cr(1+ K, )r4k4

3

_ A4, _
B C(1=k)r, 8 +ﬂ1z4 R 51y + By Crk, (1 + k), 5 — B Gk, (1= k,)r, ot

4

:3224 k 5Ty + Ay Try + Byguct
4

8. Boundary Condition, o, =0 (internal pressure) where r, = b, a is outer diameter

G A

C,(1+ k) + C(1— k)™ .
1-k,

= o+ kon e +a-kyn e = -
2.5. Free-End and Pressure Vessel

Free-end case is the one where the ends of the tube are free to expand. Since there
are no caps on the ends and no force acting on the tube in z-direction, the resultant

force is equal to zero, which is given by

R= jaZZZﬂrdr =0

r=a
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Figure 2.8 Tube with free ends to expand

On the other hand, the resultant force is not equal to zero for pressure vessel. Since
two caps at the ends close the tube, the resultant force in z-direction is equal to the
force created by internal pressure on the caps, which is given by

b
R= I o 2mdr = a’P,

r=a

Figure 2.9 Pressure vessel subjected to internal pressure
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T
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o~
Figure 2.10 Cross section of a pressure vessel
For both cases, a parameter D can be defined as
(C"zz = a136rr + a320-96 +a33 Gzz + azT + ﬁzc = D (249)
Then, from the equation (2.49), o_ can be found as
D . a a a
O-zz :__(_Bgrr_io-ﬂﬁ_ = T_&C) (2'50)
ay; A4y as; as; as;

If o_ 1is substituted in the equations (2.15) and (2.16), then the following two

equations will be obtained

du a ? a,.a a
13 137723 13

a a
— — 13 13
g, = e a,0, +a,0,+—D—-——0 al—-——=pc+

33 a3 a3 as; as;

+a T+ p.c (2.51)

rr z

u a a,,a a a a
_"_ 23 y_ Y3%; _ Yy _ 4y _ Gy
Egp = . a,,0, + 0,0, +—=D o Cp——al——=pc+

3 as, as, as, as,

+a,T + B, (2.52)
or these two equations (2.51) and (2.52) can be written simply as

£, = % =0, + P,0y +a, T+ P c+ p,D (2.53)
P % =BGy + PGy + gy T + Bl + Py D (2.54)
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where B, B, Bn, &, , &y, B, and B, are defined in the equations (2.21)
and S, and f,; are defined as

a
b= —+
ay3
a
,Bz3 =2
Ay3

If the derivative of u is taken with respect to r in the equation (2.54), then this will

be equal to ¢, in the equation (2.53). Substituting o, ¥ and o, =F in the
r

equation as well, it becomes

F' \
Bi—+BLF +a,T+pB,.c+f:;D= |:ﬂ12 r+ ﬂzzF r+a,Tr+ ﬂaac”} +
r

+ i (B;Dr) or
dr

r3ﬁ22FW + FZﬂZZF” - rﬁllF' = (arr - aGB)Trz + (ﬂrr - ﬁ&&)crz _agﬁ fllT 7"3 +
r
+ (ﬂl} - ﬂ23)Dr2 or

PE 1 F kK F = (@, _age)Trz + P~ Pog) (ﬂrr ﬂea) 2 %ﬁrz " (B — ﬁz3)Dr2

B P P dr P
(2.55)
where k is defined as k = &
22
Ifa,, B,, a, and B, are defined as
aa — (arr — a@ﬁ)
P
ﬂa (ﬂrr 1809)
P
a, = Lo
P
,Bd (1313 1323)
B
Then, the equation (2.55) becomes
PF + 7 F +-krF =Ta,e” +cBe —a,Te" + DB, (2.56)
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To find the homogenous solution, it is required to define r and F as

r=e
o _drd_ .,
dr dt dr

Putting F and its derivatives into the equation (2.56), then the homogenous solution

can be found as

(€Y BeF =3e¢'F +eF' )+ () (=™ F +eF)—k*r(e'F)=0

or F'—2F +(1-k>)F =0

The roots of the homogenous solutionare R, =0, R,=1+k and R,=1-k
Therefore, the homogenous solution is presented as

F,=C +Ce"™ +Ce" ™ or

F,=C +Cyp" +CypP
2.5.1. Non-homogenous Solution

If the roots of the homogenous solution are put into the equation (2.56), then this

equation becomes

F' -2F +(1-k)F =Ta,e" +cBe” —a,T e’ + DB (2.57)

2.5.2. Constant Temperature Distribution (7' =1)

If Temperature and its derivative are substituted in the equation (2.57), it becomes
F'-2F +(1-k)F =Tae™ +cpe” + Dp,e” (2.58)

To solve the equation (2.58), it is required to define the a non-homogenous function

by a coefficient as

F,, = Ae”

Putting the function F,,, into the equation (2.58), then this equation becomes

84e” —2(44.)+(1-k*)24.e =Tya,e” +cB.e + DB,e™ (2.59)
Then from the equation (2.59), the coefficient A can be found as

A:];)au—i_cﬁu—i_Dﬂd
2(1-k%)

32



Thus
F=C+Cyp'™ +Cr'™" + 4r
Then o,, and o, are found as

o, =1 e (- Cr T 124 (2.60)
r

rr

Oy =F =(1+kkCr" —k(1-k)Cr " +24
and the radial displacement can be written as

u=pB,0+k)Cr* + B,(A—k)C,r™ +2.8,.Ar + B,.(1+ k) k.C,.r* — B k.(1—k).C,.r * +
28, Ar + a,,Tr + Byycr + By,Dr (2.61)

There are two unknown constants for each layer as C, and C,. In addition to these

constants, there is one more unknown, D for the whole structure, which will be used

to make iteration in the numerical program.

2.5.3. Linear Temperature Distribution (7 = A(b—r))

T,
_a.

Temperature is equal to 7; at the inner surface where A is defined as A =

The derivative of T is equal to — 4.

T =-21

Then the non-homogenous equation becomes

F'=2F +(1-k)F = A(b-r)a,e” +cp,e” + la,e’ + DB,e” or

F"=2F +(1-k)F =(Aba, +cf,+ DB,)e” +(-La, + Aa,)e” (2.62)
Defining 4, and 4, as

A =ba,+cp,+Dp,

A, =-Aa,+ Ala

Then the equation (2.62) can be written as

F'=2F +(1-k)F = 4" + 4,¢” (2.63)
To find the non-homogenous solution, it is required to define the function F in

terms of two coefficients as B, and B,.

_ 2t 3t
Fy, =Be” +B,e
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If F,,, is substituted in the equation (2.63), then this equation becomes

8Be™ +27B,e" —2(4Be” +9B,e” )+ (1-k*)(2Be” +3B,e”) = Ae™ + A,e” (2.64)
B, and B, can be found from the equation (2.64) as

_A

2(1-k%)

_ 4

3(4-k%)

B(8-8+2-2k)=4, =B =

B,(27-18+3-3k*)=4, = B, =

Thus

4 5 4 4 5 7
20—k T 34—k

F=C+Cr"™ 4.t h 4

Then the stress components o, and o, are found as

F . o, A A
o, =7=(1+k)C2rk "+ (1-k)Cy* 1+ﬁ+4_2kzr (2.65)
_ " k k k-1 k k —k-1 Al AZ
Oy =F =(1+k)kC,r"" —k(1-k)Cyr +1—k2+24—k2r
Finally, the radial displacement can be written as
_ A
u= ﬁ12(1+k)Cr + B, -k)Cyr g +1312 :B124 B r’ +ﬁzz(1+k)kcr

— B k(1-k)Cyr ™ + ﬂ22 r+2p, Ak 7’ + 0 Tr + Byycr + B, Dr (2.66)

k

Again there are two unknown constants given by C,and C, for each layer with

linear temperature distribution, in addition to D.

2.5.4. Parabolic Temperature Distribution (7 = A(b> —77%))

Temperature is equal to 7; at the inner surface where A is defined as A= byj)a .
Thus

T ==2r

Putting Tand T into the equation (2.57), then the equation becomes

F' =2F +(1-k)F = A(b* —r)a,e” +cB.e” +2ra,e’ + DB,e” or

F'=2F +(1-k)F =(Ab’a, +cf, + DB,)e" +(—Aa, +22a,)e™ (2.67)
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If A, and A, are defined as

A =’a,+cf,+ DB,

A4, =-Aa, +24a,

Then the equation (2.67) becomes

F'=2F +(1-k)F = 4" + 4,e" (2.68)
Non-homogenous solution can be defined as in terms of two coefficients as

F,, =Be" + B,e"

Putting F,, and its derivatives into the equation (2.68), then this equation becomes
8Be* +64B,e" —8Be” —32B,e" +(1-k*)(2Be* +4B,e*") = Ae” + A,e”  (2.69)
B,and B, can be found from the equation (2.69) as

4

B(8-8+2-2k)=4 =B =—"—
l( ) 1 1 2(1_k2)

Bz(64—32+4—4k2)=A2 = B, =L2
409-k%)
Then the stress function can be written as

A12r2+ A22r4
2=k T 49—k

F=C+Cpr™ 4+ Cr'™ 4

o, and o,, for parabolic temperature distribution can be found as

F _ ke A A
>0, == (A+k)Cr* " + (A= k)Cr ™" + - lkz 3 _ZkZ r (2.70)
" k-1 —k-1 A1 Az 2
and o, =F =(1+kkC,r" —k(1-k)Cyr™ ™ + ~+3 =
1-k 9-k
And radial displacement is found as
- A4
u=p,1+k)C, r* + B,(1-k)Cyr k +,3,21 e r+ p,—— 5 k2 P + 6,1+ k)kC, r*

- Bok(1-k)C, 4 ﬁzz r+3p, Ak P+ (sz,@/l(b2 -r )r + Byocr + Py Dr

k
(2.71)

Again there are two unknown constants for each layer, in addition to D. The

equations (2.70) and (2.71) will be used as boundary conditions to solve the

problem.
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2.6. Hoffman Failure Criteria

Failure prediction for a laminate requires knowledge of the stresses or strains or
sometimes both in each lamina. In the previous sections of this study, the stresses
under hygrothermal loading acting in the principal directions for each lamina have
been found. To select a proper failure criteria, it is required to know the advantages
and disadvantages of each failure criteria and the material properties as well. In
case that compressive and tensile strength of a structure are different which is the
case of the selected structure, Hoffmann criteria and Tsai-Wu give better and
consistent solution than Tsai-Hill, since Tsai-Hill, which is an extension of von
Mises' yield criterion, is useful for anisotropic materials those have the same yield
points in tension and compression. For this problem, Hoffman failure criteria is
selected for failure check, since it is more practical to use than Tsai-Wu. The
advantages of Hoffman critera are as listed below:

1. In design , the Hoffman criteria is the simplest criterion of all the criteria

2. Interaction between failure modes is treated instead of separate criteria for failure
like the maximum stress or maximum strain failure criteria.

3. A single failure criterion is used in all quadrants because of different strengths in
tension and compression.

Tsai-Wu criteria has the following advantages:

l.Increased curve fitting capability over the Tsai-Hill and Hoffman criteria because
of an additional term in the equation.

2.The additional term can be determined only with an expensive and difficult
biaxial test.

Therefore the use of Hoffman criterion is easier than Tsai -Wu criterion.

To account for different strengths in tension and compression, Hoffman added
linear terms to Hill’s equation. (The basis for the Tsai-Hill criteria) [3]. The
summation of the stresses with linear terms is equal to an index, which is defined as
Hoffman index and shown as H, which is given by

K (0,-0) +K,(0,-0,) +K,(0,-0,) +K,0,+K,.0,+ K0, + K, 755" +K, 7,

+ K1, =H (2.72)

If the Hoffman index exceeds 1, the structure will fail.
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The material, which was used in the computer-program, is Epoxy-Carbon [6]
laminate (T300/N5208). The mechanical properties of the material are presented as
X, : Ultimate tensile strength in fiber direction (MPA): 1500

X : Ultimate compressive strength in fiber direction (MPA): 1500

Y, : Ultimate tensile strength in matrix direction (MPA): 40

Y,.: Ultimate compressive strength in matrix direction (MPA): 146

Z, =Y, and Z_. =Y, Ultimate compressive and tensile strengths in z-direction are

assumed to be equal in y-direction
S: Ultimate in-plane shears strength (MPA): 68 (assumed to be equal for all

directions)

«,: Thermal expansion coefficient in fiber direction (10%0 ): 0.02

a, : Thermal expansion coefficient in matrix direction (10%0 ): 22.5

Since matrix is made of epoxy and fiber is carbon, thermal expansion in matrix
direction is much more greater than in fiber direction.
L, :Moisture expansion coefficient in fiber direction: 0
3, : Moisture expansion coefficient in matrix direction: 0.6
where the coefficients K, are determined from the 9 strengths in principal
coordinates: X,, X, Y, Y., Z ,Z , Sy, S;, and S, .
For this problem, there are no shear stresses, hence K, =K, =K, =0
Therefore the equation (2.72) reduces to
K .(0,-0,) ' +K,.(0,~0) +K,(0,~0,) +K,0,+K,.0,+K, .0, =1 (2.73)

The coefficients are determined by applying normal stress in several directions.

1) Apply only tensile stress in fiber direction

Put into the equation (2.73)

K,(-0,)’ +K,0 ' +K,0, =1
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KX’ +KX'+K,X =1 (2.74)

2) Apply only compressive stress in fiber direction

o, =—X, (For compressive stresses, use (—X_), since X is an inherently
negative number for Hoffman criteria [3].

o,=0,=0

Put into the equation (2.73)

K,(-0,)’ +K,0 ' +K,0, =1

KX +KX’-KX =1 (2.75)
Since X, = X_ from the equations (2.74) and (2.75), K, can be easily found as
K,=0

And K, +K, = % (2.76)

t

3) Apply only tensile stress in (2) matrix direction
o,=Y,
o,=0,=0

Putting these into the equation (2.73), then the equation (2.77) will be obtained

as

KY'+KY +KJY =1 (2.77)

4) Apply only compressive stress in (2) matrix direction
o, =-Y,
o,=0,=0

If these equations are put into equation (2.73), then the following equation is
obtained

K (-1)" + K (-Y)" + K(-Y) =1

KY’ +KY'-KJY =1 (2.78)
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5) Apply only tensile stress in (3) matrix direction

Since the structure behaves similarly in (2) and (3) directions, it can be written
that

oy =Y,

0,=0,=0

If these equations are put into equation (2.73), then we obtain

KY'+KY +KJY =1 (2.79)

t

6) Apply only compressive stress in (3) matrix direction
oy =-Y,
0,=0,=0
Putting these equations into the equation (2.73), then the following equation is
obtained as

K (X + K, (-Y)* + K (-Y) =1

KY’ +K)Y -KY =1 (2.80)

From the equations (2.68) to (2.71), the coefficients are determined as

K, =K, =181576*107" L -
MPA
K. =K =2%10"
o MPA?
K, =1710*107" : 5
MPA

Then the Hoffman equation becomes

1710.107 (0, = 0,)° +2.107 (0, — 5,)> + 2.107 (0, - ,)> +181576.10 &, +

+181576.107 0, =1

This relation is used for the failure check of the cylinders.
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CHAPTER 3

NUMERICAL RESULTS AND DISCUSSIONS

In this chapter, the numerical results of the computer program are tabulated and
some outputs of these results are discussed. In these solutions, the computer
program has been run for four layers oriented as [30/-30/-30/30], [45/-45/-45/45]
and [60/-60/-60/60] under different hygrothermal and mechanical conditions. The
selected material is Epoxy-Carbon laminate (T300/N5208). The material properties
are presented in the chapter 2, section 2.6. It is assumed that the material starts to
degrade at 150° C, so the program is stopped to run at this temperature rate. The
stresses calculated for the interface surfaces and boundary surfaces are presented in
the tables for 5 surfaces for each loading case. The Hoffman index are calculated
for each of 5 surfaces, but the indexes given in this chapter are the highest index
between them, since it is the worst situation which may cause failure of the
structure. Sometimes, it is preferred also to make a deeper analysis by calculating
the stresses on the matrix plane, which is the weakest plane and may cause failure
of the structure since it has lower strength values. The projection of the calculated

stresses on the matrix plane can be found as
0, =0..sin’(-a)+ 0,,.co8’ (—a) 3.1)

since + « 1is the fiber plane, o, is calculated for —« .

3.1 Plane Strain

The results for plane strain case are summarized in the following graphs:

40



—— 31073
—— =5%10"3
—h— =10*10"-3

PRESSURE [MPA]

0 T T T T —o T T
0 20 40 60 80 100 120 140

TEMPERATURE [°C]

Figure 3.1. Fail pressure of a vessel with [45°/-45°] for parabolic temperature
distribution
For parabolic temperature distribution, with increasing pressure rate, failure
temperature decreases, since the stresses inside and outside of the tube have
different sign for parabolic temperature distribution, the value of stresses increases.

o_ 1s tensile at low temperatures, but then with increasing temperature it will be
compressive around the inner surface, and tensile around the outer surface due to
temperature distribution, since the temperature value is the highest at the inner

surface and it is equal to 7,. At the outer surface, the effects of both temperature

and pressure can be noticed. o_ is going to be compressive with increasing
temperature since the effect of temperature is greater than the effect of internal
pressure which is in opposite sign of the temperature effect where high temperature
results compressive stress due to plane strain conditions in which the tube is
prevented to expand..

o, 1s always compressive due to plane strain conditions where o, is always

tensile due to internal pressure. . The magnitude of o, is the highest at the inner
surface and 0 at the outer surface due to boundary conditions. Failure occurs mostly
at the outer surface where both o, and o,_ are tensile. The Hoffman index is
calculated smaller than 1 as 4.313*107 for a 45° layered tube for parabolic

temperature distribution and ¢=3*10" with the temperature value of 0°C and
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internal pressure of SMPA, therefore for this condition failure does not occur where
o, and o_ are tensile, whereas o, is compressive. o, is calculated as 19.99MPA.
The stresses are tabulated in Table 3.1.

Table 3.1. The stress distribution at P=SMPA, T=0°C

Surface D Orr Goo Oz
1 30 -5,00 39,91 6,85
2 31 -3,58 38,46 5,89
3 32 -2,28 37,32 5,15
4 33 -1,09 36,45 4,59
5 34 0 35,8 4,19

Plane Strain, 6=45, Parabolic

——ocIr
—— 600
10 4 —&—ozz

Stresses (Mpa)
[\e]
S

30 31 32 33 34

Diameter (mm)

Figure 3.2. The stress distribution at P=SMPA, T=0°C

If T reaches to 42° C for P=5SMPA, failure occurs since the Hoffman index is
calculated as 1.0207. The stresses are tabulated in Table 3.2.

42



Table 3.2. The stress distribution at P=SMPA, T=42°C

Surface D Orr Goo [
1 30 -5,00 16,07 | -22,89
2 31 -4,15 26,65 | -12,08
3 32 -3,02 37,37 -1,04
4 33 -1,63 48,29 10,26
5 34 0 59,45 21,86
Plane Strain, 6=45, Parabolic
55 4
g 35 1 —e—or1r
N /‘ o
g —k—ozz
@ 5 . *
‘25 T T T
30 31 32 33 34
Diameter (mm)

Figure 3.3. The stress distribution at P=SMPA, T=42°C

The tube with 45° layered fibers and parabolic temperature distribution, where
internal pressure is SMPA, fails at the temperature value of 0°C due to the internal

pressure at the inner surface.
o, =64.51%cos’(—45) +24.99 *sin’ (-45) = 44.75MPA
The stress components in matrix direction is greater than the strength, hence at

internal pressure rate of 8 MPA, the tube fails at 0° C. The stress distributions are

tabulated in Table 3.3.
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Table 3.3. The stress distribution at P=8MPA, T=0°C for moisture concentration of

3%107
Surface D Orr Goo O
1 30 -8,00 64,51 24,99
2 31 -5,71 61,85 | 23,19
3 32 -3,63 59,71 21,75
4 33 -1,74 58,00 | 20,63
5 34 0 56,67 19,78

The Hoffman index is calculated as 1.1434.

Plane Strain, 6=45, Parabolic

= w
55
E
s 354 —e—or
5 15T * * A —#—ob
§ > —&k— 6z
B e
'25 T T T
30 31 32 33 34

Diameter (mm)

Figure 3.4. The stress distribution at P=SMPA, T=0°C for moisture concentration of
3*107
Before this study, it was expected that with increasing moisture concentration, the
tube would fail at the lower internal pressure values. But as it can be seen from the
results, with the increasing moisture concentration, the fail pressure is also
increasing, since in this study, there are several factors that affect failure of the
tubes. Sometimes, these effects may act reverse. The stress components of o is
superposition of the hygrothermal and internal pressure effects where

o_=v.(o, +0,). The parts of o_ created by internal pressure is tensile, the other

part of o_ created by hygrothermal loading is compressive due to plane strain

conditions.
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At the temperature value of 0°C and internal pressure of 8MPA, the stress
distribution of a tube with 45° layered fibers with parabolic temperature distribution

for 3 different moisture concentrations are tabulated in Tables 3.3-5.

Table 3.4. The stress distribution for moisture concentration of 5%10

Surface D Crr Goo Cu
1 30 -8 63,78 9,4
2 31 -5,72 61,5 7,89
3 32 -3,65 59,72 6,73
4 33 -1,75 58,36 5,87
5 34 0 57,35 5,26

The Hoffman index is calculated as 7.3585*10°.

Table 3.5. The stress distribution for moisture concentration of 10%¥10

Surface D Crr Goo Cu
1 30 -8 61,93 | -29,55
2 31 -5,77 60,63 | -30,34
4 32 -3,71 59,76 | -30,82
7 33 -1,79 59,25 | -31,05
8 34 0 59,04 | -31,05

The Hoffman index is calculated as 2.875*107".

As it can be seen from Tables 3.3-5, o, values are going to be negative for
¢=10%107, since hygrothermal loading results in an increase of o_ value as
negative. So, superposition of o_ gives smaller tensile stress or compressive stress
for c=10*107. Therefore, the tube fails later for c=10*107 than ¢c=3*10" where the
tube for moisture concentration of 3*107 fails at 0° C for the internal pressure value

of 8MPA, since stress component in matrix direction is found greater than the

strength in this direction.

c=3*10" = o, =24.99*cos’(—45)+ 64.51*sin’ (—45) = 44.75MPA
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c=5*10" = o, =9.4*cos’(—45) + 63.78 *sin’ (—45) = 36.59MPA

c=10*%10" = o, =-29.55*cos’(—45)+61.93*sin” (-45) = 16.19MPA

In order to see the moisture effect, fail temperatures of a tube with 45° layered
fibers for parabolic temperature distribution and for different moisture
concentration values are investigated and tabulated in Table 3.6 for the absence of

internal pressure.

Table 3.6.Fail temperatures for various moisture concentrations

c 3%107 | 5%107 [ 10*107 | 15*%107 [ 20%107 | 30*107 | 35*%107 | 40*10°°

Ttail 104 118 152 134 102 38 6 0

As it can be followed from Table 3.6, the effect of moisture can be easily realized
for high moisture concentration. But as it is explained previously, for small
moisture concentration values, moisture effect may act reverse and the tube may fail

at higher temperature values.

——c=3*10"3
——c=5+10"3
—h— c=10*10"-3

PRESSURE [MPA]

0 ‘ ‘ ‘ ‘ —

0 20 40 60 80 100 120 140
TEMPERATURE [°C]

Figure 3.5. Fail pressure of a vessel with [45°/-45°] for linear temperature
distribution

As it can be followed from Figure 3.1 and 3.5, the results for parabolic and linear

temperature distribution are almost similar.
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Figure 3.6. Fail pressure of a vessel with [45°/-45°] for constant temperature
distribution
It is seen from Figure 3.6 that, the failure pressure for all the moisture concentration
increases when temperature is increased. The tube is subjected to compressive axial
stresses , since its axial hgyrothermal expansion is prevented by rigid planes at the
ends. As a result of this ,the tube has a large axial compressive stress at the high
temperatures. This compressive stress component increases the failure pressure.This
negative effect of temperature can be seen for constant temperature distribution,
since both inside and outside of the tube are heated, hence AT results greater
compressive axial stress compared with parabolic temperature distribution, since
temperate difference for parabolic temperature distribution is highest at the inside
of the tube which is equal to Ty, where it is Ty for the whole structure with constant

temperature distribution.
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Figure 3.7. Fail pressure of a vessel with [60°/-60°] for parabolic temperature
distribution
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Figure 3.8. Fail pressure of a vessel with [60°/-60°] for linear temperature
distribution
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Figure 3.9. Fail pressure of a vessel with [60°/-60°] for constant temperature
distribution
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Figure 3.10. Fail pressure of a vessel with [30°/-30°] for parabolic temperature
distribution

As it can be seen from the results, the tube, which is layered with the fibers
6 =30°, fails mostly at the lower internal pressure comparing with the angle 45°
and 60°, since the stress components on the matrix plane, which is weak, can be

written as:
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o, =0_.cos (—60) + 7,,.sin*(—60) where cos (-60)=0.5 and sin (-60)=0.866
0,, has usually greater value than o_ . On this plane, the projection of o,,, which
is calculated as (0.866)°* 5, causes failure.

For the tube with the fibers layered 60°, the stress distribution on the weak matrix
plane can be calculated as below

o, =0_.cos (-30) + o ,,.sin’(=30) where cos (-30)=0866 and sin (-30)=0.5

For same internal pressure, the material with the fiber 60° resists on the higher
pressure where the tube with the fibers layered 30° fails.

For a =45, o,,1s calculated as

o, =0_.cos (—45) + o ,,.sin” (—45) where cos (-45)=0.7077 and sin (-45)=0.707
The results of the tube with the fibers layered 45° are between 30° and 60°, since
the projection constants are between them.

As a result, it can be concluded that under the same hygrothermal effect, the
material with the fibers layered 30° fails mostly at the lower internal pressure than
60° and 45° or it can be also said that at the same internal pressure, a tube with the

fibers layered 30° fails at lower temperature than 60° and 45°.

——c=3*10"3
—l— c=5*10"-3
—h—c=10*10"-3

PRESSURE [MPA]

0 20 40 60 80 100 120 140
TEMPERATURE [°C]

Figure 3.11. Fail pressure of a vessel with [30°/-30°] for linear temperature
distribution
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Figure 3.12. Fail pressure of a vessel with for [30°/-30°] for constant temperature
distribution

3.2 Pressure Vessel

The results of the pressure vessel case are summarized in the following:

—— 31073
—W—c=5¥10"3
—A—c=10%10"3

PRESSURE [MPA]

0 20 40 60 80 100 120 140
TEMPERATURE [°C]

Figure 3.13. Fail pressure of a pressure vessel with [45°/-45°] for parabolic
temperature distribution

The resultant stress of the axial stresses in a pressure vessel gives za” P, hence for

the absence of internal pressure, the resultant stress gives 0. This can be followed in
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Table 3.7-9, where the stress distributions of the pressure vessel with 45° layered
fibers and parabolic temperature distribution for different moisture concentrations
c=3*107, 10*10>, 20%*10° with the internal pressure value of OMPA and
temperature of 0° C are tabulated.

With increasing moisture concentration, the Hoffman index is also increasing.
c=3*10" = o, = 2.25%cos” (—45) + 3.04 *sin’ (—45) = 2.645MPA

c=10*107 = o, = 7.44*cos®(-45) +10.13 *sin’ (-45) = 4.285MPA

¢=20*10" = o, =14.85*cos’ (—45) +20.26 * sin> (—45) = 17.11MPA

Table 3.7. The stress distribution for ¢=3*10"

Surface D Orr Goo O
1 30 0,00 -3,30 -2,49
2 31 -0,08 -1,56 -1,20
3 32 -0,10 0,07 0,02
4 33 -0,07 1,59 1,16
5 34 0 3,04 2,25

The Hoffman index is calculated as 4.9160*107 for the moisture concentration of
3%107™,
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Figure 3.14. The stress distribution for c=3%10"
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Table 3.8. The stress distribution ¢=10%*10

Surface D Grr Goo [
1 30 0,00 -11,01 | -8,35
2 31 -0,26 -5,20 -4,03
3 32 -0,33 0,22 0,01
4 33 -0,23 5,31 3,82
5 34 0,00 10,13 7,44

The Hoffman index is calculated as 1.7265*10°' for the moisture concentration of

10*10™!
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Figure 3.15. The stress distribution for c=10%107

Table 3.9. The stress distribution for ¢=20%10

Surface D Grr Goo [
1 30 0,00 -22,01 | -16,72
2 31 -0,52 | -10,40 | -8,09
3 32 -0,66 0,44 0,00
4 33 -0,47 10,62 7,62
5 34 0,00 20,26 | 14,85
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The Hoffman index is calculated as 3.7138*10°! for the moisture concentration

of 20%107".

As moisture concentration increases, the absolute value of the stresses increases
also. Axial stress is tensile at the outer surface and compressive at the inner surface
of the tube. Because of the tensile stress at the outer surface, the vessel fails at the
lower temperature rate with the increasing moisture concentration. In Table 3.10,

for different moisture concentrations, the fail temperatures are given where internal

Stresses (Mpa)

—eo—o1r
——c00
—h—ozz

Diameter (mm)

Figure 3.16. The stress distribution for c=20%107

pressure is absent.

Table 3.10. Fail temperatures for various moisture concentrations

3*%107

5%10

10%107 | 20%107

30%10°

40*10°°

50%10°

Ttait

66

64

56 40

26

10

0

Table 3.11. The stress distribution at P=1IMPA, T=0°C

Surface D Orr Goo O
1 30 -1,00 5,11 1,53
2 31 0,78 6,34 2,46
3 32 0,54 7,52 3,37
4 33 -0,28 8,67 4,25
5 34 0,00 9,80 5,12
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The Hoffman index is calculated as H=1.4488*10"'.

Stresses (Mpa)
w i

——o1r
——c00
—k— 07z

32

Diameter (mm)

33

34

Figure 3.17. The stress distribution at P=IMPA,T=0°C

Table 3.12. The stress distribution at P=7MPA T=0°C

-10

0—”_/./"_,_,._’——0
<

Surface D Gyr Goo Gy
1 30 -7,00 55,52 26,47
2 31 -5,01 53,68 25,26
3 32 -3,20 52,26 24,34
4 33 -1,54 51,20 23,69
5 34 0,00 50,44 23,24
60
50 ﬁ\.\.\.\i
= 40~
=) 30 —e—orr
§ ;— 3 —h— A ——c00
5;3 20 1 —&— o077
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32
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Figure 3.18. The stress distribution at P=7MPA, T=0°C
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If the stresses tabulated in Table 3.12 are compared with the stress values given in
Table 3.11 where internal pressure is IMPA and other conditions are same, it can be
easily concluded that the stress values are bigger at the internal pressure value of

7MPA. The Hoffman index is calculated as 1.0113, hence the tube fails at 0°C.
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Figure 3.19. Fail pressure of a pressure vessel with [45°/-45°] for linear temperature
distribution

As it can bee seen from Figure 3.19, the results are similar compared with parabolic

temperature distribution.

Table 3.13. Fail pressure of a pressure vessel with [45°/-45°] for constant
temperature distribution

c=3*10" c=5*10" c=10%10-3
T P T P T P
10 7.00 10 7.00 10 7.40
50 7.00 50 7.20 50 7.40
80 7.00 80 7.20 80 7.20
100 7.20 100 7.20 100 7.20
150 7.20 150 7.40 150 7.20

It is seen from Table 3.13, the failure pressure does not change much at the high
temperatures for pressure vessels.The ends of the vessels are free for the

hgyrothermal expansions.As a result of this, the axial stress component is affected
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very small at the high temperatures. If the vessel is manufactured by 0 and 90
oriented plies ,the axial stress has high stress values, since different oriented plies

apply internal forces each other.
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Figure 3.20. Fail pressure of pressure vessel with [60°/-60°] for parabolic
temperature distribution
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Figure 3.21. Fail pressure of a pressure vessel with [60°/-60°] for linear temperature
distribution



Table 3.14. Fail pressure of a pressure vessel with [60°/-60°] for constant

temperature distribution

c=3*10" c=5*10" c=10%10-3
T P T p T P
10 8.40 10 7.80 10 6.40
50 8.00 50 7.40 50 6.00
80 7.80 80 7.20 80 5.60
100 7.60 100 7.00 100 5.40
150 7.00 150 6.40 150 5.00

PRESSURE [MPA]

0 20

40

——c=3%10"3
—W—c=5*10"3
—A—c=10%10"3

60 80 100 120 140
TEMPERATURE [°C]

Figure 3.22. Fail pressure of a pressure vessel with [30°/-30°] for parabolic

temperature distribution
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Figure 3.23. Fail pressure of a pressure vessel with [30°/-30°] for linear temperature
distribution

Table 3.15. Fail pressure of a pressure vessel with [30°/-30°] for constant
temperature distribution

c=3*10" c=5*10" c=10%10-3
T P T P T P
10 4.80 10 5.60 10 5.60
50 5.60 50 5.60 50 5.60
80 5.60 80 5.60 80 5.60
100 5.60 100 5.60 100 5.60
150 5.60 150 5.60 150 5.60

3.3. Free-End Case

The results of the vessel with free-end case are summarized in the following graphs:
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Figure 3.24. Fail pressure of a vessel with [45°/-45°] for parabolic temperature
distribution

In order to investigate the effect of the moisture concentration on the tube with free

ends, the stress distributions for three different moisture concentrations of 3*¥107,

5%10 and 10*10~ are tabulated in Table 3.16-18.

Table 3.16. The stress distribution for ¢=3*10">

Surface D Orr Goo Oz
1 30 0,00 -3,30 -2,49
2 31 -0,08 -1,56 -1,20
3 32 0,10 0,07 0,02
4 33 -0,07 1,59 1,16
5 34 0,00 3,04 2,25

The Hoffman index is calculated as 4.9160*1072.
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Figure 3.25. The stress distribution for the moisture concentration of 3*107

Table 3.17. The stress distribution for ¢=10%107

Surface D Orr Goo Oz
1 30 0,00 -11,01 | -8,35
2 31 -0,26 -5,20 -4,03
3 32 -0,33 0,22 0,01
4 33 -0,23 5,31 3,82
5 34 0,00 10,13 7,44

where the Hoffman index is calculated as 1.7265%10!
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Figure 3.26. The stress distribution for the moisture concentration of 10%107
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Table 3.18. The stress distribution for ¢=20%*10"

Surface D Crr Goo Cu
1 30 0,00 -22,01 | -16,72
2 31 -0,52 | -10,40 | -8,09
3 32 -0,66 0,44 0,00
4 33 -0,47 10,62 7,62
5 34 0,00 20,26 | 14,85

where the Hoffman index is calculated as 3.7138%107!
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Figure 3.27. The stress distribution for the moisture concentration of 20%¥10

As it can be seen from Tables 3.16-18, with increasing moisture concentration the
absolute value of axial, tangential and radial stresses and as result of this, the
Hoffman index increase also. In Table 3.19, the fail temperatures for different

moisture concentration values are presented.

Table 3.19. Fail temperatures of a tube for various moisture concentrations

c 3*107 | 5*10° [ 10*107 [ 20*%107 | 30*107 | 40*107 | 50*107
Thai 66 64 56 40 26 10 0

62



In Table 3.20, the stress distributions for the moisture concentration of 3*107 with

the temperature value of 66°C and internal pressure of OMPA are presented as

Table 3.20. The stress distribution at T=66°C

Surface D Crr Goo Cu
1 30 0,00 -41,61 | -41,13
2 31 -1,00 | -20,53 | -20,99
3 32 -1,29 0,15 -0,95
4 33 -0,93 20,61 19,12
5 34 0,00 40,99 | 39,33

The Hoffman index is calculated as H=1.0049.
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Figure 3.28. The stress distribution at P=OMPA, T=66°C

In Table 3.16, all the conditions are identical with the conditions presented in Table
3.21 except the temperature. In Table 3.17, temperature is 0° C, whereas in Table
3.21, 66° C. It can be easily seen from these tables that the absolute value of the
stresses increases at T=66°C compared with T=0°C. T=66°C is the fail temperature
at the given conditions, as the Hoffman index is calculated greater than 1.

In order to see the pressure effect, the results are tabulated for two different pressure
rates, where other conditions have been kept same. In Tables 3.21 and 3.22, the

stress distributions of a tube with free ends for parabolic temperature distribution
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and the moisture concentration of 5¥107 with the internal pressure values of IMPA

and 6MPA are presented.
Table 3.21. The stress distribution at P=1MPA, T=0°C

Surface D Orr Goo Ou
1 30 -1,00 3,24 -3,27
2 31 -0,83 5,45 -1,61
3 32 -0,60 7,56 -0,01
4 33 -0,32 9,58 1,52
5 34 0,00 11,52 2,99
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Figure 3.29. The stress distribution at P=IMPA, T=0°C

Table 3.22. The stress distribution at P=6MPA, T=0°C

Surface D Crr Goo [
1 30 -6,00 46,96 1,22
2 31 -4,31 45,72 0,43
3 32 -2,76 44,81 -0,13
4 33 -1,33 44,19 -0,47
5 34 0,00 43,81 -0,64
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Figure 3.30. The stress distribution at P=6MPA, T=0°C

As it can be seen from these graphs, tangential stresses and radial stresses increase

with increasing pressure.
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Figure 3.31. Fail pressure of a vessel with [45°/-45°] for linear temperature
distribution
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Table 3.23. Fail pressure of vessel with [45°/-45°] for constant temperature

distribution
c=3*10" c=5*10" c=10*10-3
T P T P T P
10 7.00 10 7.00 10 7.40
50 7.00 50 7.20 50 7.40
80 7.00 80 7.20 80 7.20
100 7.20 100 7.20 100 7.20
150 7.20 150 7.40 150 7.20
<
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Figure 3.32. Fail pressure of vessel with [60°/-60°] for parabolic temperature
distribution
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Figure 3.33. Fail pressure of vessel with free ends for [60°/-60°] for linear
temperature distribution

Figure 3.24. Fail pressure of vessel with [60°/-60°] for constant temperature

distribution

c=3*10" c=5%10" c=10*10-3
T P T P T P
10 8.40 10 7.80 10 6.40
50 8.00 50 7.40 50 6.00
80 7.80 80 7.20 80 5.60
100 7.60 100 7.00 100 5.40
150 7.00 150 6.40 150 5.00
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Figure3.34. Fail pressure of vessel with [30°/-30°] for parabolic temperature

distribution
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Figure 3.35. Fail pressure of vessel with [30°/-30°] for linear temperature
distribution
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Figure 3.25. Fail pressure of vessel with [30°/-30°] for constant temperature

distribution

c=3*10" c=5*10" c=10*10-3
T P T P T P
10 4.80 10 5.60 10 5.60
50 5.60 50 5.60 50 5.60
80 5.60 80 5.60 80 5.60
100 5.60 100 5.60 100 5.60
150 5.60 150 5.60 150 5.60

3.4. Optimum Winding Angle Determination

Mechanical properties of a composite structure are highly dependent on the winding
angle used because of the nature of the fiber-reinforced composite materials. To
obtain a mechanical structure satisfying the needs, determination of the optimum
winding angle becomes important.

In Figure 3.36, the Hoffman indexes are presented for different winding angles for a
vessel with plane strain case, linear temperature distribution and c=10%107.
Hoffman indexes are calculated for each winding angle at T=20° C and P=4 MPA
are compared each other. Then, the winding angle with minimum Hoffman index is
chosen as optimum winding angle since at the same loading conditions, it results

minimum effect on the structure.
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Figure 3.36. Hoffman index comparison for different winding angles
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It can be seen from Figure 3.36, that & =51° is the optimum winding angle for the

composite structure with plane strain case.

The stress distribution for & = 51° is presented in Table 3.26.
Table 3.26. The stress distribution at & =51°

Surface D Crr Goo (o
1 30 -5,00 | -48,01 |-121,98
2 31 -5,66 -3,52 | -92,36
3 32 -4,93 38,70 | -63,66
4 33 -2,99 79,13 | -35,69
5 34 0,00 118,17 | -8,26
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CHAPTER 4

CONCLUSION AND FUTURE RECOMMENDATIONS

In this study, an explicit analytical formulation is developed based on the
anisotropic elasticity theory that determines the behavior of fiber reinforced
composite vessel under hygrothermal loading. The loading was studied for three
cases separately. These are plane strain case in which the tube is prevented to
expand and free-end and pressure vessel cases in which the tube is free to expand.
Throughout the study, constant, linear and parabolic temperature distributions are
investigated and for each distribution, separate equations are developed. The
numerical solution enables to investigation of the behavior of the vessel under
different hygrothermal and internal pressure conditions. By taking the moisture
concentration constant of throughout the body, hygrothermal stresses and
displacements are determined.

The tube has been modeled as a set of cylindrically orthotropic layers. Each layer
has an angle ply of (+) and (-) @ where « is the winding angle of any layer. The
trough thickness elastic constants have been found from the correlations derived
from a recent study.

For each layer, two different equations are developed. These are the correlations of
radial stress and radial displacements. These relations have been solved using the
boundary conditions. Since there are two unknown for each layer and there are 2*n
boundary conditions for n number of layers, the computer program is capable to
solve this set of equations.

Throughout the study, two computer programs are developed. The first one is
developed for the plane strain case where the other program is both for pressure

vessel and free-end cases.
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In free-end case, the resultant force along the tube axis is equal to zero, since both
ends of the tube are free to expand .On the other hand, for the pressure vessel, the
resultant force along the tube is equal to the effect of internal pressure on the caps
of the pressure vessel. After finding the stresses, Hoffman failure criteria is applied
to investigate the behavior of fiber reinforced composite vessel under the effects of
both thermal and moisture. The reason to choose this criteria is that Hoffman
criteria gives much more consistent solution when the material has different
compressive and tensile strengths.

In this study, it is assumed that the mechanical properties of the material do not
change with increasing temperature up to 150° C. After this temperature rate, the
material properties will degrade.

From the results, it can be concluded that the results for linear and parabolic
temperature distributions give almost the similar results. On the other hand,
constant temperature distribution has a different characteristic than the others. For
parabolic temperature distribution, with increasing temperature rate, failure pressure
decreases, whereas the failure pressure for constant temperature distribution
increases for plane strain case. On the other hand, the failure pressure does not
change much at the high temperatures for pressure vessels and free ends with
constant temperature distribution.

It is found also that the tube, which is layered with the fibers 30 °, fails mostly at the
lower internal pressure comparing with the angle 45° and 60°, since the stress
components on the matrix plane are greater for30 °.

It is concluded from the results that for plane strain case and small moisture
concentration values, moisture effect may sometimes act reverse and the tube may
fail at higher temperature.

The method developed in this study can be applied to all long composite cylinders,
pressure vessels and tanks.

As a future work, the vessel under axisymmetric and non-axisymetric loading with
the internal pressure and hygrothermal effects can be investigated. The vessel under
a single force with pressure and hgyrothermal effects can be seen in practical
applications. Also in these applications, the vessel can have metallic or plastic

liners.
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