
 

 

 

 

 

DEVELOPMENT OF A 3 AXES PC NUMERICAL CONTROL SYSTEM FOR 

INDUSTRIAL APPLICATIONS 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

BY 

 

FEZA BAŞAR 

 

 

 

 

 

 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 

 

 

 

SEPTEMBER 2003 



 ii

Approval of the Graduate School of Natural and Applied Sciences 

 

 

Prof. Dr. Canan Özgen 

                                                                                                     Director 

 

 

I certify that this thesis satisfies all the requirements as a thesis for the degree of 

Master of Science. 

 

                                                                                    Prof. Dr. Mübeccel Demirekler 

                                                                                        Head of Department 

 

 

This is to certify that we have read this thesis and that in our opinion it is fully 

adequate, in scope and quality, as a thesis for the degree of Master of Science. 

 

 

                                                                           Prof. Dr. Mirzahan Hızal 

                                                                          Supervisor 

Examining Committee Members 

 

Prof. Dr. Ahmet Rumeli   

 

Prof. Dr. Muammer Ermiş 

 

Prof. Dr. Mirzahan Hızal   

 

Prof. Dr. Nevzat Özay 

 

M.Sc. Abdullah Nadar 



 iii

 

 

ABSTRACT 

 
DEVELOPMENT OF A 3 AXES PC NUMERICAL CONTROL SYSTEM FOR 

INDUSTRIAL APPLICATIONS 

 

 

BAŞAR, Feza 

M.Sc. ,  Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mirzahan Hızal 

 

September 2003, 96 Pages 

 

In this study, a three-axes PC numerical control system for industrial 

applications has been developed. With this system, fast and cheap prototyping of 

designed objects can be realized. The system consists of software and a hardware 

which includes an XYZ positioning table and three step motors controlling this table. 

A proper drive circuit for the stepper motors is utilized. The software digitizes two 

dimensional drawings of three dimensional objects and generates the control signals 

for the XYZ positioning table.  

 

The software is developed under Microsoft Studio Visual Basic 6.0 

environment regardless of the OS of the PC. The parallel port of the PC has been 

utilized for generating the necessary control signals for the stepper motors.   

  

Keywords: Machine Tool, Step Motor, Motion Control, Parallel Port 

Programming, Step Motor Drive 



 iv

 

 

ÖZ 

 
ENDÜSTRİYEL AMAÇLI 3 EKSENLİ BİR BİLGİSAYAR SAYISAL KONTROL 

SİSTEMİNİN GELİŞTİRİLMESİ  
 

 

BAŞAR, Feza 

Yüksek Lisans , Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mirzahan Hızal 

 

Eylül 2003, 96 sayfa 

 

 Bu çalışmada endüstriyel amaçlı üç eksenli bir bilgisayar sayısal kontrol 

sistemi geliştirilmiştir. Bu sistemle tasarlanan objelerin hızlı ve ucuz prototipleri 

gerçekleştirilebilir. Sistem bir yazılım ve XYZ ekseninde hareket eden tezgahtan ve 

bu tezgahı kontrol eden üç adet adımlı motordan oluşmaktadır. Adımlı motorlar için 

uygun bir sürücü devresi kullanılmıştır. Yazılım ise iki boyutlu olarak modellenen üç 

boyutlu nesneleri sayısallaştırıp tezgah için gerekli kontrol işaretlerini üretmektedir.  

 

Yazılım bilgisayarın işletim sisteminden bağımsız olarak Microsoft Studio 

Visual Basic 6.0 ortamında geliştirilmiştir. Adımlı motorların gerekli kontrol 

işaretleri bilgisayarın paralel kanalının kullanılması ile oluşturulmaktadır. 

  

Anahtar Kelimeler: Tezgah, Adımlı Motor, Hareket Kontrol, Paralel Kanal 

Programlama, Adımlı Motor Sürücüsü 



 v

 

 

 

 

 

 

 

 

 

 

 

 

 

to my beloved husband Çağrı, 



 vi

 

 

ACKNOWLEDGEMENTS 

 

  

I would like to express my sincere appreciation to Prof. Dr. Mirzahan Hızal 

for his encouragements, guidance and supervision. 

  

 Special thanks to my pet Pisigül for her great interest in my papers. 

 

Finally, I would like to thank my beloved husband Çağrı for his precious 

help, great support and understanding. I believe without him this thesis would not 

have been completed. 

 



 vii

 

 

TABLE OF CONTENTS 

 

ABSTRACT............................................................................................................iii 

ÖZ ........................................................................................................................... iv 

ACKNOWLEDGEMENTS .................................................................................... vi 

TABLE OF CONTENTS.......................................................................................vii 

LIST OF TABLES ................................................................................................... x 

LIST OF FIGURES ................................................................................................ xi 

LIST OF ABBREVIATIONS............................................................................... xiv 

CHAPTER 

1.  INTRODUCTION............................................................................................... 1 

2.  STEPPING MOTORS ........................................................................................ 4 

2.1 Stepping Motor Types.............................................................................. 6 

2.1.1 Permanent Magnet Motors............................................................... 6 

2.1.2 Variable Reluctance Motors............................................................. 7 

2.1.3 Hybrid Motors.................................................................................. 7 

2.1.4 Comparison of Motor Types ............................................................ 8 

2.2 Stepping Motor Winding Types............................................................... 9 

2.2.1 Unifilar Winding .............................................................................. 9 

2.2.2 Bifilar Winding ................................................................................ 9 

2.3 Stepping Modes...................................................................................... 10 

2.4 Drive Circuits ......................................................................................... 11 

2.5 Static Torque Characteristics ................................................................. 13 

2.6 Torque-Speed Characteristics ................................................................ 17 

2.7 Step Motor Control ................................................................................ 19 

2.7.1 Open-Loop Control ........................................................................ 20 

2.7.2 Closed-Loop Control...................................................................... 21 

3.  HARDWARE AND SOFTWARE SOLUTIONS ............................................ 23 



 viii

3.1 Hardware ................................................................................................ 23 

3.1.1 Digital I/O ...................................................................................... 24 

3.1.1.1 Requirements for Digital I/O ..................................................... 24 

3.1.1.2 Parallel Port of PC...................................................................... 24 

3.1.2 Stepper Motor Driver Circuit ......................................................... 27 

3.1.3 Stepper Motors ............................................................................... 30 

3.1.4 Drilling Material and Cutting Tools............................................... 30 

3.2 Software ................................................................................................. 31 

3.2.1 GUI Based Programming Languages............................................. 32 

3.2.2 Step Motor Control Software ......................................................... 33 

3.2.3 Parallel Port Control Software ....................................................... 34 

3.2.4 Image Processing Software ............................................................ 35 

3.2.4.1 Definitions of Connectivity and Contour Tracing ..................... 35 

3.2.4.2 Pseudo Code of Contour Tracing............................................... 37 

4.  SOFTWARE DESCRIPTION .......................................................................... 38 

4.1 Software Requirements Specifications .................................................. 38 

4.1.1 Image Requirements and Limitations ............................................ 40 

4.2 Software Modules .................................................................................. 43 

4.2.1 “Start Up” Module ......................................................................... 44 

4.2.2 “User Information Interface” Module............................................ 45 

4.2.3 “Drill Options” Module ................................................................. 46 

4.1.1.1 Calculation of the Prototype Dimensions .................................. 47 

4.1.2 “Go To Information” Module ........................................................ 48 

4.1.3 “Profile Selection” Module ............................................................ 49 

4.1.4 “Main” Module .............................................................................. 50 

4.1.4.1 Loading the Object..................................................................... 51 

4.1.4.2 Digitizing Two Dimensional Object .......................................... 52 

4.1.4.3 Digitizing Three Dimensional Object ........................................ 54 

4.1.4.4 Saving / Loading the Digitized Object....................................... 55 

4.1.4.5 Drilling the Object ..................................................................... 56 

4.1.5 “About” Module............................................................................. 59 

5.  RESULTS ......................................................................................................... 61 



 ix

5.1 Image Processing Performance .............................................................. 61 

5.2 Drilling Performance.............................................................................. 62 

5.3 Drilled Samples...................................................................................... 64 

6.  CONCLUSIONS............................................................................................... 68 

REFERENCES....................................................................................................... 71 

    APPENDIX 

A  Modules and Critical Variables of the Software……………………………. 73

B  Parameters/Selections in the Software……………………………………… 75

C  Motor Drive Circuit Components…………………………………………... 77

C.1 L298 Dual Full-Bridge Driver…………………………………………... 77

C.2 L297 Stepper Motor Controller…………………………………………. 78

C.3 Two Phase Bipolar motor Control Circuit with L297 and L298………... 80

D  Declarations and Relations of Functions and Subs of the Software ……...... 81

D.1 “Main” Form..……………………………………................................... 81

D.2 “GoTo” Form..…………………………………...................................... 89

D.3 “Information” Form..…………………………….................................... 91

D.4 “Options” Form..…………………………………................................... 91

D.5 “Profile” Form……………………………………................................... 92

D.6 “Start Options” Form..…………………………...................................... 93

D.7 “Main” Module..…………………………………................................... 94



 x

 

 

 

LIST OF TABLES 

 

 

3.1  Parallel Port Address Table................................................................................. 24 

3.2  Cable connection of X-Y axis card ..................................................................... 29 

3.3  Cable connection of Z axis card.......................................................................... 30 

3.4  Cable connection of cards and supply................................................................. 30 

3.5  A rough estimation of average number of LOC required for building one 

complexity unit in various programming languages. .......................................... 33 

5.1  Comparison of the drilling process time with respect to selected options.......... 63 

B.1 Parameters/Selections in “Start Up Options”……………….............................. 75

B.2 Parameters/Selections in “Drilling Options”………………............................... 75

B.3 Parameters/Selections in “Go To Coordinates”…..…………........................... 76

B.4 Parameters/Selections in “Main”…….……………………….......................... 76

C.1 Absolute maximum ratings of L297  ..………………………........................... 78

C.2 Absolute maximum ratings of L298 ...………………………........................... 79

 



 xi

 

 

LIST OF FIGURES 

 

 

1.1    An object that cannot be represented by only one two-dimensional view.......... 2 

2.1    Permanent Magnet Motor ................................................................................... 6 

2.2    Variable Reluctance Motor ................................................................................. 7 

2.3    Hybrid Motor ...................................................................................................... 8 

2.4    4-Lead Unifilar Motor......................................................................................... 9 

2.5    6 and 8-Lead Bifilar Motors.............................................................................. 10 

2.6    Drive circuit scheme ......................................................................................... 11 

2.7    One phase of a transistor bridge bipolar drive circuit ....................................... 12 

2.8    Three phase unipolar drive circuit..................................................................... 13 

2.9    Static torque/rotor position characteristics at various currents ......................... 14 

2.10  Static torque/rotor position characteristics at rated phase currents................... 15 

2.11  Static torque/rotor position characteristics for a variable reluctance stepping    

 motor (a) one-phase-on excitation  (b) two-phases-on excitation ..................... 17 

2.12  A typical torque-speed characteristics of a stepping motor .............................. 18 

2.13  Simplified step motor control system ............................................................... 20 

2.14  A typical microprocessor-based open-loop control .......................................... 21 

2.15  Block diagram of a closed-loop control of a stepping motor............................ 22 

3.1    Block diagram of the parallel interface............................................................. 26 

3.2    Parallel Port I/O Scheme................................................................................... 27 

3.3    (X-Y) Axis Drive Circuit .................................................................................. 28 

3.4    Z Axis Drive Circuit ......................................................................................... 29 

3.5    Software Modules Data Flow Diagram ............................................................ 32 

3.6    Flow Chart of the Step Motor Control Software............................................... 34 

3.7    I/O ActiveX Communications Software Message Box .................................... 35 



 xii

3.8    Neighbors of a pixel p in a square tessellation.................................................. 36 

3.9    Examples of (a) 4-connectivity  (b) 8-connectivity .......................................... 36 

3.10  The tracking sequence of neighbors for 4-connectivity.................................... 37 

4.1    A typical drawing for a two dimensional object ............................................... 40 

4.2    The requirements and limitations concerned with the peripherals.................... 41 

4.3    The requirements and limitations concerned with the number of neighbors of a           

point .................................................................................................................. 41 

4.4    A typical drawing for a three dimensional object ............................................. 42 

4.5    A typical drawing for a profile.......................................................................... 43 

4.6    Software Data Flow Diagram ........................................................................... 44 

4.7    Start Up Module User Interface ........................................................................ 45 

4.8    User Information Interface................................................................................ 46 

4.9    Drill Options Interface ...................................................................................... 47 

4.10  Go To Information Interface ............................................................................. 48 

4.11  Profile Selection Interface................................................................................. 49 

4.12  Main module of the drilling program................................................................ 51 

4.13  The neighborhood scanning order for a point for digitizing a two dimensional 

object. ............................................................................................................... 53 

4.14  Digitizing and drilling path for a non closed curve with “Digitize Min 

Distance” and “Digitize Top”........................................................................... 54 

4.15  The neighborhood scanning order for a point for digitizing a three dimensional 

object. ............................................................................................................... 55 

4.16  Digitizing process of a three dimensional object .............................................. 55 

4.17  Digitizing with two-dimensional method examples ......................................... 57 

4.18  Digitizing with three-dimensional method example ......................................... 58 

4.19  Consecutive and simultaneous movement paths for X and Y motors .............. 59 

4.20  About module of the drilling program .............................................................. 60 

5.1    Top drawing of an ellipse as a two-dimensional object.................................... 62 

5.2    A sample of a drilled object by 2D modelling .................................................. 64 

5.3    A gear realized by 2D modelling ...................................................................... 65 

5.4    A pyramid realized by 3D modelling................................................................ 65 

5.5    A dome realized by 3D modelling .................................................................... 66 



 xiii

5.6    A heart realized by 3D modelling ..................................................................... 66 

5.7    A stamp realized by 2D modelling ................................................................... 67 

5.8    An application of labelling by 2D modelling.................................................... 67 

C.1   Block Diagram of L298  ……………………............................................... 77

C.2   Block Diagram of L297  ……………………............................................... 79

C.3   Two Phase Bipolar Stepper Motor Control Circuit with L297 and L298…. 80



 xiv

 

 

 

LIST OF ABBREVIATIONS 

  

 

BMP : Bit Map 

CAD : Computer Aided Design 

DC : Direct Current 

I/O : Input/Output 

JPG     : Joint Photographers Experts Group  

OS : Operating System 

LOC : Lines of Code 

PC : Personal Computer 

IC : Integrated Circuit 

GUI : Graphical User Interface 

TIFF :  Tagged Image File Format  

 

 



 1

 

 

 

CHAPTER 1  

 

 

INTRODUCTION 

 

 

The efficiency of the industrial applications has increased enormously with 

the introduction of the computers to the processes. Computers have started to take 

place in every single point in the industry enhancing the development and 

manufacturing stages. One of the important areas of interest in the application of 

computers is the “Computer Aided Design” (CAD) followed by implementation and 

production stages.  

 

CAD can be efficiently used for prototyping issues in industrial applications. 

A proper prototyping machine tool with specially designed CAD program will 

decrease the time for design and implementation of prototypes.  

 

The three-dimensional objects can be represented in the CAD applications by 

various methods. One method is to show a three dimensional object represented by 

three views which are drawn from “Front”, “Left” and “Top” [1]. The advantage of 

this method is that no information on the object is ambiguous so that the object is 

totally represented by the drawing, but this method requires intensive care while 

drawing the object and requires specially trained technicians.  

 

Another method for representing the three dimensional objects is using two 

dimensional models where only the top view is sufficient. In this method, the depth 

information is kept in an algorithm or a color pattern. It is obvious that, an object as 



 2

shown in Figure 1.1 cannot be represented by this method. But the advantage of this 

method is ease of generating the views and the digital image of the object.  

 

 

Figure 1.1 An object that cannot be represented by only one two-dimensional 

view 

 

In the industry, various motion control tools are used widely but among these, 

step motors are one of the easiest to be applied and cheapest to be purchased. The 

simple drive circuits can easily be controlled via digital signals which enable full 

control over a regular PC. By the application of these motors, an XYZ positioning 

system can easily be constructed and furthermore this machine tool will be easily 

controlled via a PC. 

 

In this study, a CAD program has been developed to recognize objects from 

standard image files (BMP, JPG, TIFF, etc.) that contain only top view. This method 

accelerates the digitizing process of the objects with respect to the modeling with 

three views. 

 

The program generates the necessary control signals for a specially designed 

three-axes positioning table that is controlled by three step motors. The step motors’ 

movements are based on the digitizing process i.e. the motors follow the path that is 



 3

specified by the digitizing process resulting in fast response of the system. The 

motors never move on points that will never be drilled. Furthermore, all points 

having the same depth level are drilled consequently which lead to smooth shape of 

the drilled object as well as saving time.   

 

The software has been developed under Microsoft Studio Visual Basic 6.0 

environment. This tool has been chosen because of its superior properties and ease of 

programming. The system requires no extra hardware except the three axes XYZ 

positioning table and so the cost of the system is decreased. The parallel port of the 

PC has been utilized for sending the necessary control signals for the stepper motors.  

An ActiveX based special interface software for the parallel port is used to free the 

software of the OS of the PC. 

 

The organization of the thesis is as follows: 

¾ In Chapter 2, general properties, types, operation principles, modes, driver 

circuits, characteristics and control types of step motors are given. The 

advantages of using step motors are discussed. 

¾ In Chapter 3, the hardware and software solutions are introduced and GUI 

based programming languages and definitions about image processing are 

discussed. 

¾ In Chapter 4, the image requirements specifications are given. The software 

modules and their tasks are explained and analyzed in detail.  

¾ In Chapter 5, the image processing and drilling performances are analyzed 

and the drilled samples are given. 

¾ In Chapter 6, the final conclusions on this study are made and the further 

work on this area is proposed. 

 

 

 

 

 



 4

 

 

 

CHAPTER 2  

 

 

STEPPING MOTORS 

 

 

A stepping motor is a permanent magnet or variable reluctance dc motor that 

has the following performance characteristics: 

• rotation in both directions, 

• precision angular incremental changes, 

• repetition of accurate motion or velocity profiles, 

• a holding torque at zero speed, and 

• capability for digital control. 

 It is an electromechanical device which converts electrical pulses into discrete 

mechanical movements. Basically, it is a synchronous motor with the magnetic field 

electronically switched to rotate the armature magnet around. The shaft or spindle of 

a stepper motor rotates in discrete step increments when electrical command pulses 

are applied to it in the proper sequence.  

  

 The number and rate of the pulses control the position and speed of the motor 

shaft. The motor rotation has several direct relationships to these applied input 

pulses. The sequence of the applied pulses is directly related to the direction of motor 

shafts rotation. The speed of the motor shaft’s rotation is directly related to the 

frequency of the input pulses and the length of rotation is directly related to the 

number of input pulses applied. Generally, stepping motors are manufactured with 



 5

steps per revolution of 12, 24, 72, 144, 180, and 200, resulting in shaft increments of 

30, 15, 5, 2.5, 2, and 1.8 degrees per step. 

 

 Theoretically, a stepping motor is a marvel in simplicity.  They are very 

reliable at low cost, since there are no brushes or contacts in the motor. Therefore the 

life of the motor is simply dependent on the life of the bearing. The rotation angle of 

the motor is proportional to the input pulse and the motor has full torque at standstill 

if the windings are energized.   

  

 Stepping motors have precise positioning and repeatability of movement 

since good stepper motors have an accuracy of 3 – 5% of a step and this error is non 

cumulative from one step to the next. They give excellent responses to 

starting/stopping/reversing actions and it is possible to achieve very low speed 

synchronous rotation with a load that is directly coupled to the shaft. Also, there is a 

wide range of rotational speeds that can be realized as the speed is proportional to the 

frequency of the input pulses. Besides all these advantages, resonances that can occur 

and the difficulty of operation at high speeds are the disadvantages of using a 

stepping motor. 

  

 Stepping motors are either bipolar, requiring two power sources or a 

switchable polarity power source, or unipolar, requiring only one power source. They 

are powered by DC current sources and require digital circuitry to produce the coil 

energizing sequences for rotation of the motor. Feedback is not always required for 

control, but the use of an encoder or other position sensors can ensure accuracy when 

it is essential. Generally, stepping motors produce less than one horsepower (746W) 

and therefore they are frequently used in low-power position control applications. A 

stepper motor can be a good choice whenever controlled movement is required. They 

can be used to advantage in applications where you need to control rotation angle, 

speed, position and synchronism. 

 

 

 



 6

2.1 Stepping Motor Types 

There are basically two types of motors as permanent magnet and variable 

reluctance stepping motors and the hybrid type of these two basic ones. They differ 

in terms of construction based on the use of permanent magnets and/or iron rotors 

with laminated steel stators. The type of the motor determines the type of the circuit 

driver and the type of the translator to be used. 

 

2.1.1 Permanent Magnet Motors 

The permanent magnet motor has, as the name implies, a permanent magnet 

rotor. It is a relatively low speed, low torque device with large step angles of either 

45 or 90 degrees. Its simple construction and low cost make it an ideal choice for non 

industrial applications.  

 

Figure 2.1 Permanent Magnet Motor 

 

Unlike the other stepping motors, the permanent magnet motor’s rotor has no 

teeth and is designed to be magnetized at a right angle to its axis. The permanent 

magnet motor shown in Figure 2.1 is a simple, 90 degree permanent magnet motor 

with four phases (A-D). Applying current to each phase in sequence will cause the 

rotor to rotate by adjusting to the changing magnetic fields. Although it operates at 

fairly low speed the permanent magnet motor has a relatively high torque 

characteristic.  



 7

2.1.2 Variable Reluctance Motors 

The variable reluctance motor does not use a permanent magnet. As a result, 

the motor rotor can move without constraint or “detent” torque. This type of 

construction is good in non industrial applications that do not require a high degree 

of motor torque, such as the positioning of a micro slide . 

 

Figure 2.2 Variable Reluctance Motor 

 

The variable reluctance motor in Figure 2.2 has four "stator pole sets" (A, B, 

C,), set 15 degrees apart. Current applied to pole A through the motor winding causes 

a magnetic attraction that aligns the rotor (tooth) to pole A. Energizing stator pole B 

causes the rotor to rotate 15 degrees in alignment with pole B. This process will 

continue with pole C and back to A in a clockwise direction. Reversing the procedure 

(C to A) would result in a counterclockwise rotation. 

 

2.1.3 Hybrid Motors 

Hybrid motors combine the best characteristics of the variable reluctance and 

permanent magnet motors. They are constructed with multi-toothed stator poles and 

a permanent magnet rotor. Standard hybrid motors have two hundred rotor teeth and 

rotate at 1.80 step angles. Other hybrid motors are available in 0.9 and 3.6 degrees 

step angle configurations. As they exhibit high static and dynamic torque and run at 



 8

very high step rates, hybrid motors are used in a wide variety of industrial 

applications.  

 

Figure 2.3 Hybrid Motor 

 

2.1.4 Comparison of Motor Types 

Variable-reluctance motors have two important advantages when the load 

must be moved a considerable distance. Firstly, typical step lengths are longer than in 

the hybrid type so less steps are required to move a given distance. A further 

advantage is that it has a lower rotor mechanical inertia than the hybrid and 

permanent-magnet types, as there is no permanent-magnet on its rotor. 

 

Hybrid motors have a small step length which can be a great advantage when 

high resolution angular positioning is required. The torque producing capability for a 

given motor volume is greater in the hybrid than in the variable-reluctance motor.   

Therefore, a hybrid motor is obviously a better choice, compared with the variable 

reluctance one, for applications requiring a small step length and high torque in a 

restricted working space. When the winding of the hybrid motor are unexcited the 

magnet flux produces a small detent torque which retains the motor at the step 

position. Although the detent torque is less than the motor torque with one or more 

windings fully excited, it can be a useful feature where the rotor position must be 

preserved during a power failure.   

 

The permanent-magnet stepping motor has a similar stator construction to the 

single-stack variable reluctance type, but the rotor is not toothed and is composed of 



 9

permanent magnet material. It is difficult to manufacture a small permanent-magnet 

rotor with a large number of poles and consequently stepping motors of this type are 

restricted to step lengths in the range 30-90 degrees. 

 

2.2 Stepping Motor Winding Types 

Stepping motors are classified as unifilar and bifilar  according to the winding 

number per stator pole. 

 

2.2.1 Unifilar Winding 

Unifilar, as the name implies, has only one winding per stator pole. Stepper 

motors with a unifilar winding will have 4 lead wires. The wiring diagram in Figure 

2.4 illustrates a typical unifilar motor:  

 

Figure 2.4  4-Lead Unifilar Motor 

 

2.2.2 Bifilar Winding 

Bifilar wound motor means that there are two identical sets of windings on 

each stator pole. This type of winding configuration simplifies operation in that 

transferring current from one coil to another one, wound in the opposite direction, 

will reverse the rotation of the motor shaft. Whereas, in a unifilar application, to 

change direction requires reversing the current in the same winding.  



 10

 

Figure 2.5  6 and 8-Lead Bifilar Motors 

The most common wiring configuration for bifilar wound stepping motors is 

8 leads because they offer the flexibility of either a series or parallel connection. 

There are however, many 6 lead stepping motors available for series connection 

applications. 

 

2.3 Stepping Modes 

 The most common drive modes of the stepping motors are wave drive (1 

phase on), full step drive (2 phases on), half step drive (1 & 2 phases on) and  

microstepping (continuously varying motor currents). 

 

 In wave drive mode, only one winding is energized at any given time. The 

disadvantage of this drive mode is that it is not possible to get the maximum output 

torque from the motor. 

 

 In full step drive mode, two phases are energized at any given time. It offers 

the simplest control electronics and it is recommended for high- and medium-

frequency operation. At these frequencies, the inertia of the motor and the load 

smooth out the torque, resulting in less vibration and noise compared to low-speed 

operation. 

 

 Half stepping with 140% 1-phase-on current gives smoother movement at 

low step rates compared to full stepping and can be used to lower resonances at low 

speeds. Half stepping also doubles the system resolution. Compared to the full 

stepping, there is a slightly-higher torque at low speed and a small decrease at higher 



 11

step rates. The main advantage is the lowered noise and vibrations at low stepping 

rates. If maximum performance at both low and high step rates is essential, a switch 

to full-step mode can be done at a suitable frequency.  

 

 In microstepping drive the currents in the windings are continuously varying 

to be able to break up one full step in many smaller discrete steps. The smoothest 

movements at low frequencies are achieved with microstepping and higher resolution 

is also offered. If resonance-free movement at low step rates is important, the 

microstepping driver is the best choice. Microstepping can also be used to increase 

stop position accuracy beyond the normal motor limits.  

 

2.4 Drive Circuits 

The stepper motor driver receives low-level signals from the indexer or 

control system and converts them into electrical (step) pulses to run the motor. One 

step pulse is required for every step of the motor shaft. This process is shown in 

Figure 2.6. 

  

Figure 2.6  Drive circuit scheme 

 

Speed and torque performance of the step motor is based on the flow of 

current from the driver to the motor winding. The factor that inhibits the flow, or 

limits the time it takes for the current to energize the winding, is known as 

inductance. The lower the inductance, the faster the current gets to the winding and 

the better the performance of the motor. To reduce inductance, most types of driver 

circuits are designed to supply a greater amount of voltage than the motors rated 

voltage.  



 12

The stepper motor driver circuit has two major tasks: 

 

• To change the current and flux direction in the phase windings 

• To drive a controllable amount of current through the windings, and enabling 

as short current rise and fall times as possible for good high speed 

performance. 

 

Stepping of the stepper motor requires a change of the flux direction 

independently in each phase. The direction change is done by changing the current 

direction. It may be done in two different ways, using a bipolar or a unipolar drive.  

 

Bipolar drive refers to the principle where the current direction in one winding is 

changed by shifting the voltage polarity across the winding terminals. The bipolar 

drive method requires one winding per phase. A two-phase will have two windings 

and accordingly four connecting leads. One phase of a transistor bridge bipolar drive 

circuit is given in Figure 2.7 [2]. 

 

 

Figure 2.7  One phase of a transistor bridge bipolar drive circuit 

 

Dc supply +Vs

A- 
Control 
Signal 

base 
drive 

A+ 
Control 
Signal 

base 
drive 

base 
drive 

A- 
Control 
Signal 

A+ 
Control 
Signal 

base 
drive 

Phase 
winding and 
forcing 
resistance



 13

The unipolar drive principle requires a winding with a center-tap or two 

separate windings per phase. Flux direction is reversed by moving the current from 

one half of the winding to the other half. This method requires only two switches per 

phase. On the other hand, the unipolar drive utilizes only half the available copper 

volume of the winding. Power loss in the winding is therefore twice the loss of a 

bipolar drive at the same output power. The three-phase unipolar drive circuit is 

given in Figure 2.8 [2]. 

 

 

 

Figure 2.8  Three phase unipolar drive circuit 

 

2.5 Static Torque Characteristics 

The static torque/rotor characteristic, that shows the torque developed by the 

motor as a function of rotor position for several values of winding current, supply the 

information about the torque producing capability of a stepping motor. A typical 

static torque/rotor position characteristic at various currents is shown in Figure 

2.9.[2] When the step motor is energized and with its rotor at the equilibrium 

position i.e. the step position, no torque is developed on the rotor shaft. When the 

rotor is displaced from the equilibrium position, a restoring torque, that is called 

base 
drive 

Dc supply +Vs

Freewheeling 
resistance 
and 
Diode 

Switching 
Trannsistor 

Control 
Signal 

Forcing 
Resistance 
and phase 
winding 
resistance 



 14

static holding torque, is developed which tends to restore the rotor to its stable 

equilibrium position. [3] 

 

 In general, the shape of the torque/rotor curves depend on the construction of 

the motor as well as the way the motor is excited. 

 
 

Figure 2.9 Static torque/rotor position characteristics at various currents 

 

If the displacement is more than half a rotor tooth pitch, the equilibrium is at 

a distance which is a multiple of the rotor tooth pitch from the required step position. 

(See Figure 2.10) 

 

rotor 
position

-1/2 rotor 
tooth pitch 

step
position

-1/2 rotor 
tooth pitch 

1*rated current

2/3* 

*peak 
static 
torque 

1/3* 

0



 15

 
Figure 2.10 Static torque/rotor position characteristics at rated phase currents 

 

The phase windings of both hybrid and variable reluctance stepping motors 

are electrically isolated and each phase is excited by a separate drive circuit, so it is 

possible to excite several phases at any time. When the static torque/rotor 

characteristics for one-phase and two-phases on excitation in Figure 2.11(a) and (b) 

are compared, it is apparent that they are still sinusoidal. The excitation of a three 

phase variable reluctance motor with two phases on rather than one phase on, has the 

benefit of reducing the static position error, which results from the displacement of 

the rotor by a small angle from the expected step position because of the torque 

developed by the motor to balance the load torque. This can be confirmed 

analytically with the following formulations. The torque equations for each phase for 

the static torque/rotor position characteristics of Figure 2.11(a) are 

 

)3/4sin(
)3/2sin(

)sin(

πθ
πθ

θ

−−=
−−=

−=

pTT
pTT

pTT

PK

PKB

PKA

C

                                (2.1) 

 

rotor 
position

static torque

Alternative 
equilibrium 
position 

Required 
step 
position 

Alternative 
equilibrium 
position 

Rotor 
tooth 
pitch 

0



 16

and the resultant torque equations for “phase A + phase B” and “phase B + phase C”  

for the static torque/rotor position characteristics of Figure 2.11(b), that are simply 

obtained by summing the corresponding phase torque expressions, are   

                          

)sin(
)3/sin(

πθ
πθ
−−=+=

−−=+=
pTTTT

pTTTT

PKCBBC

PKBAAB                          (2.2) 

 

It is obvious that the both graphical and analytical results indicate that the 

only difference between the excitation schemes is in the equilibrium positions. 

  

An alternative method for minimizing the static position error is to connect 

the motor to the load by a gear.  

 

It is true that the excitation of several phases improves the torque produced, 

but in applications where the available power is limited to drive the motor, it should 

be considered that the more power is required to excite the extra phases.  

 



 17

 
Figure 2.11 Static torque/rotor position characteristics for a variable reluctance 

stepping motor (a) one-phase-on excitation  (b) two-phases-on excitation 

 

2.6 Torque-Speed Characteristics 

 The torque-speed characteristics, that show the maximum torque which the 

motor can develop at each operating speed, are the key to selecting the right motor 

rotor 
position 

Static torque 

+T

-T

+T′

rotor 
position 

-T′

A B C

A+B B+C

Static torque 

(a)

(b)



 18

and drive method for a specific application. These characteristics are dependent upon 

the motor, excitation mode and type of driver or drive method. A typical torque-

speed characteristic of a stepping motor is given in Figure 2.12 in which there are  

pull-in and pull-out curves. The former defines an area referred to as the start stop 

region and this is the maximum frequency at which the motor can start/stop 

instantaneously, with a load applied, without loss of synchronism while the latter 

defines an area referred to as the slew region and it defines the maximum frequency 

at which the motor can operate without losing synchronism. Since this region is 

outside the pull-in area the motor must accelerated or decelerated into this region.  

 

 The pull-in characteristics vary also depending on the load as having the 

larger the load inertia the smaller the pull-in area. From the shape of the curve, it can 

be seen that the step rate affects the torque output capability of stepper motor. The 

decreasing torque output as the speed increases is caused by the fact that at high 

speeds the inductance of the motor is the dominant circuit element. The shape of the 

speed - torque curve can change quite dramatically depending on the type of driver 

used. 

 

 
Figure 2.12 A typical torque-speed characteristics of a stepping motor 

 
 
 
 
 

speed 

torque 

Pull-out 
torque curve 

Pull-in 
torque curve



 19

2.7 Step Motor Control 

Step motors have an increasing application area and this is due to the wide 

selection of motor control systems that are currently available. The choice of a 

particular control scheme depends largely on whatever performance criteria and 

economic factors that has to be met in a specific application. Once an initial selection 

has been made among the types of the step motors, the next step is to determine the 

best combination of the motor and the control type.  

 

Step motor control systems can be generally classified into two groups: the 

open-loop and closed-loop systems. In these basic categories there are several control 

variations, each of which has its own characteristics and applications. In general, any 

step control system can be represented by a simplified system as shown in Figure 

2.13. In this system, the command source, where start-stop and direction commands 

are generated, may be a manual or local control or part of a controller in a larger 

system. The function generator is the source of step motor advance pulses which are 

manipulated in such a manner so as to achieve the desired motor dynamics. The 

sequence logic provides for proper driver switching sequences. The motor drive 

circuits consist of solid state devices capable of sufficient current carrying capacity 

and voltage breakdown protection to handle worst case operating conditions. If 

closed loop operation is desired then an optical, magnetic or capacitive feedback 

device is used in conjunction with an amplifier to supply feedback signals to the 

function generator. 



 20

 

Figure 2.13  Simplified step motor control system 

 

 Stepping motors are often used as output devices for microprocessor-based 

control systems. The essential feature of these systems is that the microprocessor 

program produces a “result” and the stepping motor must then move the load to the 

position corresponding to this “result”. Figure 2.14 shows an open-loop 

microprocessor controlled step motor where the phase control signals are calculated 

within the microprocessor according to the timing and sequencing requirements.  

  

 The second method is hardware-based system in which the microprocessor 

program feeds the target position information and a start controller which generates 

the phase control signals for the motor drive circuits and a finish signal for the 

microprocessor when the target is reached. In applications involving the real-time 

control of several other devices this method may be the only realistic alternative 

because of programming constraints. 

 

2.7.1 Open-Loop Control 

The open-loop control scheme has the advantages simplicity and low cost. A 

typical microprocessor-based open-loop control system is shown in Figure 2.14. as 

Command 
Source 

Motor 
Drive 

Sequence 
Logic 

Function 
Generator

Amp

Stepping 
Motor

Feedback 
Transducer



 21

seen in this figure, the digital phase control signals are generated by the 

microprocessor and amplified by the drive circuit before being applied to motor. 

 

 

Figure 2.14  A typical microprocessor-based open-loop control 

 

 

In an open-loop system there is no feedback of load position to the controller 

and therefore it is imperative that the motor responds correctly to each excitation 

change. If the excitation changes are made too quickly the motor is unable to move 

the load to the new demanded position and so there is a permanent error in the actual 

load position compared to the expected one. Also it is important that in the 

applications where the load is likely to fluctuate the timings must be set for the worst 

conditions, i.e. the largest load, and the control scheme is then non-optimal for all 

other loads. As there is no feedback in this type of control,  the need for expensive 

sensing and feedback devices such as optical encoders is eliminated. The position 

data is simply get by keeping track of the input step pulses. 

 

An open-loop control system of a step motor suffers from the disadvantage 

that the motor may not be able to follow the input pulse train so that the top speed 

which a motor can run is limited. Also, the speed of a step motor under open-loop 

control may have wide fluctuations. But it is still true to say that an open-loop system 

is entirely adequate for many applications. 

 

2.7.2 Closed-Loop Control 

A closed loop system can overcome the difficulties met in an open-loop 

control system by using positional feedback to the step motor to determine the proper   

Microprocessor Drive Circuit Motor Load

timed phase 
control signals 

phase 
currents

torque 



 22

positions at which phase switchings should occur. With the closed loop control, one 

not only achieves much higher speeds and more stability in speed, but more 

versatility in many other aspects of the control of the step motor. Each step command 

is issued only when the motor has responded satisfactorily to the previous command 

and so there is no possibility of the motor losing synchronism. 

 

A block diagram illustrating a closed-loop control scheme of a step motor is 

shown in Figure 2.15. The feedback sensor in this case could either be a 

photoelectric device or a magnetic pickup device which would give a pulse for every 

step of motion. The motor is started initially with one pulse from the controller and 

subsequent pulses are generated from the feedback sensor assembly. [3] 

 

 

Figure 2.15  Block diagram of a closed-loop control of a stepping motor 

 

Logic 
Circuit Controller Motor Feedback

sensor

Reference 
Input 



 23

 

 

 

CHAPTER 3  

 

 

HARDWARE AND SOFTWARE SOLUTIONS 

 

 

It is obvious that in order to obtain a drilling process from a digitally 

generated object will require hardware and properly designed software. As it is 

desired to have a precisely drilled object it is convenient to use step motors, as 

covered in the previous chapter, for this specific application.  

 

The critical point in the software is that to convert the given image of the 

object in a way that the computer can send the data through the parallel port to the 

hardware of the system as digital control signals. The digital control signals for the 

step motor drive circuit are generated from the parallel port of the computer. As a 

control method, an open-loop control system (see 2.7.1) is used with only full step 

mode of operation (see 2.3). The mode of operation for all motors is always full step 

regardless of the direction of rotation of the motors that is clockwise or counter-

clockwise. 

 

3.1 Hardware 

 Hardware configuration consists of three stepping motors (X, Y and Z 

motors) that are responsible from the control of movements in the corresponding 

directions, driver cards for each motor, a XYZ positioning table and digital I/O for 

the control motors.  

  



 24

3.1.1 Digital I/O 

3.1.1.1 Requirements for Digital I/O 

Base drive circuit is designed such that the control signals are at TTL logic 

level which is 0 or 5 Volts. In order to have maximum efficiency in the system, these 

control signals must be as fast as possible. This speed depends on the torque 

requirement from the motor, simply the physical characteristics of the material 

drilled, and the control scheme of the motors. As stated in the previous chapter, 

closed-loop control scheme will require faster signals than the open-loop case. 

Experimental results show that with the open-loop control scheme, motor types and 

material given, 5 msec, as the step motor pulse duration is adequate.   

 

 These signals may be generated by specially designed, commercially 

available professional devices that are sold by various vendors with respectively 

higher prices. Another solution for digital I/O is utilizing the parallel port which is 

available on every personal computer.  

 

3.1.1.2 Parallel Port of PC 

Parallel port is a standard I/O interface for all PCs. Today, there exists at least 

one parallel port for various applications such as connection of a printer or a hard-

key. In Table 3.1, the base hardware addresses of the parallel ports are given.  

 

Table 3.1  Parallel Port Address Table 

 

Name of the Port Data Port Status Control

LPT1 378h 379h 37Ah 

LPT2 278h 279h 27Ah 

LPT3 3BCh 3BDh 3BEh 

  

  



 25

 There exist three types of I/O interface in the parallel port namely data port, 

status port and control port.  

 

• Data Port : There exist eight digital output terminals that are accessed by 

data ports. 

• Status Port : There exist five digital input terminals, of which one of them 

is inverted, that are accessed by status ports. 

• Control Port : There exist four digital output terminals, of which three of 

them are inverted, that are accessed by control ports. 

 

 All ports are defined at TTL logic levels (An electrical "high" on the pin is 

TTL high, +2.4 to +5 volts. An electrical "low" is TTL low, 0 to +0.8 volts.). Data 

port is driven by the high impedance octal D-type flip-flop (74LS374). This IC can 

source 2.6 mA while it can sink 24 mA. As these values are relatively low, it may be 

necessary to amplify the outputs for specific applications. Control port pins are 

driven by the 7405 inverter IC which may supply 1 mA up to 7 mA. In parallel port 

applications, for not to damage the mainboard the driver circuits should fulfill the 

requirements given above. 

 

 In Figure 3.1, the block diagram of the parallel interface is given while in 

Figure 3.2 the illustration of a parallel port is shown.  



 26

 
Figure 3.1  Block diagram of the parallel interface 

PC
 Interface 

IRQ Logic

Control 
Register 

 
Data Register 

 
 
Status Register 

 
 

Address 
Decode 
Control 

5 

3 

2 

1 

4 

6 

7 

9 

10 

11 

12 

8 

17 

16 

14 

13 

15 

18 

19 

25 

24 

23 

22 

21 

20 

GND 

IRQ5/7 

D0..D7 

A0..A9 

IOR 

IOW 

FEH 

DSL 

INI 

ALF 

STB 

D0..D7

ACK 

BSY 

PAP 

ONOF 



 27

 

Figure 3.2 Parallel Port I/O Scheme 

 

3.1.2 Stepper Motor Driver Circuit 

 The drive circuits are used to drive the two phase bipolar X, Y and Z step 

motors. The drive circuit to drive the X and Y axes is given in Figure 3.3 while the 

circuit for driving the Z axis is given in Figure 3.4. The principal function of the 

driver circuits is to generate motor phase sequences.  

 

 In these circuits L298 dual full-bridge driver and L297 stepper motor 

controller IC (see Appendix C) are used as motor drive circuit components. There are 

three control signals, which are used to control the each of the motor axes, as “clock” 

to give the stepping command, “direction” to determine the sense of rotation of the 

motor and “half/full” to decide whether to operate in full or in half step mode. 

Although it is possible to choose full or half step mode, only the full step mode is 

used as it is indicated before. Normal drive mode is practiced to for the full step 

mode and it is selected by a low logic level on Half/Full* input (Full step mode). In 

this mode Inh1* and Inh2* outputs remain high throughout the operation [4]. 

 

 The cable connection used between the stepper motor controller circuit inputs 

to the proper outputs in order to drive the step motors are given in Table 3.2, Table 

3.3 and Table 3.4. 



 28

 

 
Figure 3.3 (X-Y) Axis Drive Circuit 

 

1
2
3
4
5
6
7
8
9
10

SYNC 
GND 

HOME 

A 

INH1 

B 

C

INH2 

D

ENABLE 

20 
19 
18 
17 
16 
15 

13 
12 
11 

14 

CONTROL 

HALF/FULL 

CLOCK 

CW/CCW 

OSC 

VREF 

SENS1 

SENS2 

VS 

RESET 2 
4 
6 
8 

OUTPUT1 
VS 

ENABLE A 

GND 

INPUT3 

INPUT4 

OUTPUT4 

1
3
5
7
9
11

15
13

OUTPUT2 

INPUT1 

INPUT2 

VSS

ENABLE B 

OUTPUT3 

C.SEN. B 

C. SEN. A 

10 
12 
14 

1
2

3
4
5
6
7
8
9
10

SYNC 
GND 

HOME 

A 

INH1 

B 

C

INH2 

D

ENABLE 

20 
19 
18 
17 
16 
15 

13 
12 
11 

14 

CONTROL 

HALF/FULL 

CLOCK 

CW/CCW 

OSC 

VREF 

SENS1 

SENS2 

VS 

RESET 2 
4
6 
8 

OUTPUT1 
VS 

ENABLE A 

GND 

INPUT3 

INPUT4 

OUTPUT4 

1
3
5
7
9
11

15
13

OUTPUT2 

INPUT1 

INPUT2 

VSS

ENABLE B 

OUTPUT3 

C.SEN. B 

C. SEN. A 

10 
12 
14 

KN1 

KN1 

KN1 

KN1 

KN1 

KN3 

KN3 

KN3 

KN3 

KN3 

L297 

L297 

L298 

L298 

3.3 
nF 

C 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

3.3 
nF 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 2 3 

5 6 7 

D 
IN4001 

D 
IN4001 

R 
DR5

100 nF

100 nF

470 nF
/50 V 

470 nF 
/50 V 

D 
IN4001 

D 
IN4001 

R 
DR5 

D 
IN4001 

D 
IN4001 

R 
DR5 

D 
IN4001 

D 
IN4001 

R 
DR5 

D 
IN4001 

D 
IN4001 

D 
IN4001 

D 
IN4001 

D 
IN4001 

D 
IN4001 

D 
IN4001 

D 
IN4001 

R 
R 

R 

C 

R 

R 



 29

 
Figure 3.4 Z Axis Drive Circuit 

 

 

Table 3.2  Cable connection of X-Y axis card 

 
X-Y Axis Card Parallel Port Connector Stepper Motor 

KN1-1 - GND pin of Y axis motor 
KN1-2 - Phase line 1 of Y axis motor 
KN1-3 - Phase line 2 of Y axis motor 
KN1-4 - Phase line 3 of Y axis motor 
KN1-5 - Phase line 4 of Y axis motor 
KN3-1 - GND pin of X axis motor 
KN3-2 - Phase line 1 of X axis motor 
KN3-3 - Phase line 2 of X axis motor 
KN3-4 - Phase line 3 of X axis motor 
KN3-5 - Phase line 4 of X axis motor 
KN2-1 Pin 1 (Half/Full*) - 
KN2-2 Pin 6 (Clock X) - 
KN2-3 Pin 7 (Cw/CCw X) - 
KN2-5 Pin 1 (Half/Full*) - 
KN2-6 Pin 4 (Clock Y) - 
KN2-7 Pin 5 (Cw/CCw Y) - 

 
 
 
 

1 
2 
3 
4 
5
6
7
8
9
10

SYNC 
GND 

HOME 

A 

INH1 

B 

C

INH2 

D

ENABLE 

20 
19 
18 
17 
16 
15 

13 
12 
11 

14 

CONTROL 

HALF/FULL 

CLOCK 

CW/CCW 

OSC 

VREF 

SENS1 

SENS2 

VS 

RESET 2 
4 

6 
8 

OUTPUT1 
VS 

ENABLE A 

GND 

INPUT3 

INPUT4 

OUTPUT4 

1
3
5
7
9
11

15
13

OUTPUT2

INPUT1

INPUT2

VSS

ENABLE B

OUTPUT3

C.SEN. B

C. SEN. A 

10 
12 
14 

KN1 

KN1 

KN1 

KN1 

KN1 

3 

4 

2

1 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

K
N

2 

5 

1 2 3 

100 nF 
470 nF
/50 V 

D 
IN4001 

D 
IN4001 

R 
DR5 

D 
IN4001 

D 
IN4001 

R 
DR5 

3,3 nF 

R 

C 
R 

R 



 30

 
 

Table 3.3  Cable connection of Z axis card 

 

Z Axis Card Parallel Port Connector Stepper Motor 
KN1-1 - GND pin of Z axis motor 
KN1-2 - Phase line 1 of Z axis motor 
KN1-3 - Phase line 2 of Z axis motor 
KN1-4 - Phase line 3 of Z axis motor 
KN1-5 - Phase line 4 of Z axis motor 
KN2-1 Pin 1 (Half/Full*) - 
KN2-2 Pin 2 (Clock Z) - 
KN2-3 Pin 3 (Cw/CCw Z) - 

 
 

Table 3.4  Cable connection of cards and supply 

 
X-Y Axis Card Z Axis Card Power Supply Cable Connector 

KN2-8 KN2-8 +5V - 
KN2-4 KN2-4 GND GND pin1 
KN2-9 KN2-9 +24V - 

 

 

3.1.3 Stepper Motors 

 The stepping motors are used to drive the positioning table in X and Y 

directions and the cutter in Z direction. The motors used are two phase bipolar 

stepping motors with 1.8 degrees per step. The rated voltage for one of them is 5 V 

DC and 3.2 V DC for the other two. In case of using motors with different degrees 

per step, the constant values in the equations (4.1) and (4.2) must be changed due to 

the motor type selection.  

 

3.1.4 Drilling Material and Cutting Tools 

 For different types of applications there exist various kinds of drilling 

materials and consequently there are proper cutting tools for every drilling material. 

The drilling materials can be classified basically as follows. 

 



 31

• Soft Materials (perspex, fiber, etc.) 

• Soft Metals (brass, aluminum, etc.) 

• Materials made of steel 

 

 As a cutting tool, the HSS (High Speed Steel) is used for the first two types 

while tungsten-carbide type is preferred for the materials that are made of steel. The 

tip type must also be considered according to the object to be drilled. For example, it 

is proper to use a cornered tip for a rectangular shape, while a round tip is more 

convenient for an elliptical one. 

 

3.2 Software 

 The software should be developed under a GUI based programming language, 

which is a more powerful language compared to the other ones, following the 

reasons given in 3.2.1.  

 

 The software consists of three main modules (Figure 3.5) which are image 

processing software module that handles the digitizing issues of the image, step 

motor control software module that is associated with the drilling process and finally 

the parallel port control software module that is, in fact can be thought as a 

submodule of the step motor control software module, responsible for the 

communication between the hardware part and the software. 



 32

 

Figure 3.5 Software Modules Data Flow Diagram 

 

3.2.1 GUI Based Programming Languages 

 GUI based languages, such as Visual Basic and Visual C, are today’s state-of-

the-art programming languages that are respectively powerful than the former 

programming tools. They ease the burden of programming with more user friendly 

graphical interfaces. In Table 3.5, the lines of code per complexity unit are given for 

different programming languages [7].  

 

Among various GUI based languages, Visual Basic is the most user-friendly 

and easy to use respectively. Because of these properties, Microsoft Visual Basic 6.0 

is used in this thesis.  

 

 
Main Module 

Step Motor 
Control 
Module 

Image 
Processing 

Module 

Paralel Port 
Control  
Module 



 33

 

 

Table 3.5  A rough estimation of average number of LOC required for building one 

complexity unit in various programming languages. 

 
Programming Language LOC/Complexity Unit  

Assembly language 320 

C 128 

Cobol 105 

Fortran 105 

Pascal 90 

Ada 70 

Object-oriented languages 30 

Grapchical languages  4 

 

3.2.2 Step Motor Control Software 

One of the critical points in the software is to send the data to the driver 

circuit properly i.e. to the right axis with the right timing. The main module sends 

how many pixels to move in which direction.  

 

The first step is to determine the movement axes that are in fact to determine 

to change which bits of the parallel port. Then the number of steps should be 

extracted from the multiplication of the step/pixel and the pixel count. A counter 

variable is utilized to keep the track of the steps achieved where the value of is 

initialized to zero. According to the axes and movement determined the signals are 

generated and sent to the driver circuit. Note that there should be a delay between the 

two steps of the motors because of the reasons discussed in Section 2.6. The usage of 

the open-loop control simplifies the process as there is no feedback. In Figure 3.6 the 

flowchart of the step motor control software is illustrated.   



 34

  

Figure 3.6 Flow Chart of the Step Motor Control Software 

 

3.2.3 Parallel Port Control Software 

Microsoft Visual Basic could access the parallel port of the computer without 

introducing an additional interface program (these programs are called drivers) in 

Windows 9X OS. By using “c:\windows\system\win95io.dll” library file it is 

possible to access the parallel port of the computer [5]. Because of the “Hardware 

Abstraction Layer” of Windows NT and Windows 2000, none of the applications can 

directly access to the hardware, ports and devices. The remedy for this problem is to 

START

Determine the movement axes 

Movement# =step/pixel * pixel count

Reset the counter

Send step command to excitation 
sequence control 

Increment counter

Wait 

Counter==movement#

NO 

Exit to 
main 

YES



 35

introduce a third party program. One of these third party programs that can be easily 

obtained and can be used is the “I/O ActiveX Communications Control Software” 

(Figure 3.7) [6]. Application of this program will provide the developed software to 

run independent from the type of the windows OS.  

 

The I/O ActiveX Communications Control Software is an ActiveX control 

software component that can easily be used in a variety of “Visual” programming 

environments.  To use an ActiveX control, it must first be installed on the system 

being used for development.  Then it can be inserted into the programming 

environment where it will be used. ActiveX controls are typically inserted on a form.  

After the control is placed on the form the member functions and properties are 

available to be used by the programmer.  

 

 

Figure 3.7 I/O ActiveX Communications Software Message Box 

 

3.2.4 Image Processing Software 

 The modules and the critical methods used while developing the modules are 

explained in Chapter 4 in detail. The critical algorithm of the software is built by the 

connectivity and contour tracing issues.    

 

3.2.4.1 Definitions of Connectivity and Contour Tracing 

 In a discrete binary image, objects are represented in terms of discrete pixels. 

A square tessellation is a partitioning of a plane into regions of square parts and a 

regular tessellation means a tessellation made up of regular polygons that are same 

size and shape [8]. In Figure 3.8, a black pixel p and the neighborhood of p, that is 



 36

the set of pixels intersecting p, are shown. The eight neighbors of p can be classified 

into two groups as having an edge in common with p or having a point in common 

with p. The former, which is shown with shaded areas in Figure 3.8, is called the “4-

neighbors” of p while the latter, that is the whole neighbors of p, is called “8-

neighbors” of p. 

 

 

Figure 3.8 Neighbors of a pixel p in a square tessellation 

 
 An object or pattern in a tessellation is said to be a connected component of 

black pixels where the background is assumed to be consisted of white pixels or vice 

versa. As having two types of neighbors, there are two types of connectivity as “4-

connected” and “8-connected”. In other words, if the neighbors of a pixel, in an 

object or pattern, are only of type “4-neighbors” then it is said to be a “4-

connectivity”, otherwise “8-connectivity”. In Figure 3.9 examples of 4- and 8-

connectivity are shown. Following the connectivity definitions, Jordan Curve 

Theorem says a simple closed curve separates the plane into two simply connected 

components (namely, the inside and the outside) [9, 10]  

 

 

Figure 3.9 Examples of (a) 4-connectivity  (b) 8-connectivity 

 

P

  

(a) (b)



 37

3.2.4.2 Pseudo Code of Contour Tracing 

 For the contour tracing of a point with 4-connectivity, whose neighbor 

tracking sequence is given in Figure 3.10, the following algorithm is used.  Note that 

the final value for counter I in this code would be converted to eight in case of the 

application of an 8-connected point.   

 

The pseudo code for the algorithm: 

Repeat until no black_neighbor found 

 For I=1 to 4  

  If neighbor(I)=black then  

   Assign this point to next examination point 

   Save this point 

   Break 

  Else 

   Continue 

  End If 

 Next I 

Loop Repeat  

 

 
Figure 3.10 The tracking sequence of neighbors for 4-connectivity  

 

4 2

3

1
P



 38

  

 

 

CHAPTER 4  

 

 

SOFTWARE DESCRIPTION 

  

 

4.1 Software Requirements Specifications 

 
• Software should be able to load, digitize and drill the 2D and 3D images 

which are properly designed and drawn as given in 4.1.1.  

 

• The program should let the user to choose the following options to be chosen 

from the start up screen. 

o Show/Do not Show “Current Position” of the motors in “mm” units. 

o Show/Do not Show “Current Position” of the motors in “pixel” units. 

o Enable/Disable “Pause Program”. 

o Draw/Do not Draw the track of the motor movement. 

 

• The main screen of the program should show the following information. 

o A user information message area. 

o Elapsed and remaining time information during the drilling process. 

o The name and the path of the selected image file. 

o The required options that are selected from the start up screen. 

o A “Stop” button to stop the drilling. 

o A “Start At (X, Y, Z)” button to start the drilling at a specified (X, Y, 

Z) point. 

o A “Pause” button to pause the drilling process. 



 39

o A ”Pause Program” button to program the position of the pause 

action. 

o  A “GoTo (X, Y,  Z)” button to make the motors to go to a specified 

point. 

o A menu consisting of “File”, “Digitizing”, “Drilling”, “3D Menu”, 

“About” and “Exit”. 

o The menu items are going to be enabled in a logical way. For example 

the “Digitizing” item is going to be enabled only after the file to be 

loaded is selected. 

o The “File” item should consist of   “Load Image File”, “Load 

Digitized Image” and “Save Digitized Image”. 

o The “Digitizing” item should consist of “Digitize Min Distance” and 

“Digitize Top”. 

o The “Drilling” item should consist of   “Drill Image”, “Drill Options” 

and “repeat Drill”. 

o The “3D Menu” item should consist of   “3D Imaging”. 

 

• After the selection of the image file from the  “Load Image File” item under 

the “File” item of the menu, the “Digitizing “ item should be enabled. 

 

• After the digitizing process, that begins with the selection of either “Digitize 

Min Distance” or “Digitizing Top”, an “Image Property Window” showing 

the following information should appear. 

o Maximum dimensions of the object that would be drilled in pixel and 

mm. units. 

o Number of images found. 

o A warning for checking the image file if the number of images found 

is not the expected one. 

 

• After closing the “Image Property Window” the “Drilling Options” window 

should open having the following properties. 



 40

o A textbox to enter the pulse delay value of X and Y motors and a 

textbox to enter the pulse delay value of Z motor in milliseconds. 

o A textbox to enter the step per pixel value of X and Y motors and a 

textbox to enter the step per pixel value of Z. 

o The possibility of choosing “Delta Z Profile” to use a z-axis profile 

file, “Delta Z Uniform” to use a uniform depth or “Delta Z” to give 

different depth levels (up to 20 levels at most depending on the 

number of images) manually. 

o A “Defaults” button to have the default values instead of entering 

them manually. 

 

• A “Job Finished” message box also showing the total time elapsed for 

drilling. 

 

• General requirement for the program: 

o All errors will be handled by the error handling procedures.  

 

4.1.1 Image Requirements and Limitations 

 For the drawing of a two dimensional object, that means in fact a three 

dimensional object is got from the drawing of top view and proper depth value(s), the 

following requirements and limitations should be covered. 

 

• The background should be white where the drawing is black in color. A 

typical drawing for a two dimensional object is shown in Figure 4.1 

 

  

Figure 4.1 A typical drawing for a two dimensional object 



 41

• There should not be any points on the neighborhood of the peripherals. 

 

 

Figure 4.2 The requirements and limitations concerned with the peripherals 

 
• There should not be more than two neighbors of a point. 

 

 

Figure 4.3 The requirements and limitations concerned with the number of neighbors 

of a point 

 

 For the drawing of a three dimensional object, that means a three dimensional 

object is got from the drawing of top view, whose inside region is red, and proper 

profile, the following requirements and limitations should be held. 

 

• The background should be white where the drawing is black and the inside 

part of the drawing is red in color. A typical drawing for a two dimensional 

object is shown in Figure 4.4. 

 

 

False True 



 42

 

Figure 4.4 A typical drawing for a three dimensional object 

 
• The contour of the drawing, i.e. the black part, must be closed.  

 

• There should not be any contour, i.e. black points, on the neighborhood of the 

peripherals and there should not be more than two neighbors of a black point 

as it is in the requirements and limitations of the drawing of a two 

dimensional object. 

 

  The drawing of a profile to be used as the depth function of 3D images the 

following requirements should be covered. 

 

• The horizontal axis should be the axis for the layers of the object and the 

vertical one for the depth values of the layers in the z-direction. 

 

• There should not be any points on the neighborhood of the peripherals and 

there should not be more than two neighbors of a point. 

 

• There should be only one z depth value for a given layer.  

 

• The origin (0, 0) point should be in red color where the background in white, 

the axes in black and the function in blue color. A typical drawing for a two 

dimensional object is shown in Figure 4.5. 

 



 43

 

Figure 4.5 A typical drawing for a profile 

 

4.2 Software Modules 

Each of the modules of the program consists of the forms in Visual Basic. 

The modules are illustrated in Figure 4.6. As it is seen from the figure, the software 

consists of a main module which is responsible from all of the abilities of the system. 

Note that this figure does not show the sequence but the data flow between the 

modules.  

 

“depth 
values” 

axis 

“layers” 
axis 

origin 

“depth”  
function 



 44

 

Figure 4.6 Software Data Flow Diagram 

 

4.2.1 “Start Up” Module 

As the name implies, the “Start Up” module is the first user interface seen 

when the program starts. Identity of the program and the programmer with the 

options are shown on this form. As seen in Figure 4.7, the following options, that 

would be used as the program is running, are available. 

 

• The current position information (in pixel or millimeter units) that 

would appear in the main module to show the position of the cutter as 

the object is being drilled,  

 

• The pause program option to be able to pause the drilling action and 

start again from the same position whenever wanted as the drilling of 

the object is going on. 

 

• The drill tracking option that would show the track of drilling with a 

different color as the drilling of the object. 

 

Start Up

 
Main 

Profile 
Selection 

Go To 
Information 

Drill Options 
selection 

Pause At 
Programming 

User 
Information 

Interface 

File System 



 45

 Although all these options useful in use, as they cause about a 10% increase 

in drilling time it is convenient not to select them when drilling time is important.   

 

 
 

Figure 4.7 Start Up Module User Interface 

 

4.2.2 “User Information Interface” Module 

The “User Information Interface” module is called after an image digitizing 

process of the main module. On this form, the requirement of showing the physical 

properties, i.e. the dimensions, of the object is satisfied. With this property the user 

can know the exact size of the drilling material block that will be used for the desired 

object. Also the number of the images detected and a warning message against some 

mistakes that may be caused by the drawings out of standards are displayed.  For 

example, if there is an extra point that does not belong to the object in fact, the 

program will take it as an object and the number of images counted by the program 

will be one more than the actual one. In such a case the user can control the drawing 

again to prevent a mistake.   

 



 46

 

Figure 4.8 User Information Interface  

 

4.2.3 “Drill Options” Module 

 The “Drill Options” module that is used for specifying motor actions and 

depth levels of the layers for the object to be drilled is called after “User Information 

Interface” module. In this module there are three options to specify the depth levels 

as “Delta Z Profile” accessing a z-axis profile file (see Section 4.1.1), “Delta Z 

Uniform” using a uniform depth level for all layers and “Delta Z” giving different 

depth levels. There are at most twenty different levels that can be specified manually. 

The number of those boxes, used to specify different depth levels, change in respect 

of the number of the objects detected. For example if there object are detected in the 

digitizing process, there will be three delta depth value boxes. The pulse delay values 

that are necessary for proper motor actions are also set on this form. As “diagonal 

movement”, that is to move x and y motors simultaneously, is used the pulse delay 

values for these should be same. The number of steps for each motor per pixel is also 

set on this form. As it is seen in Figure 4.9 there is a “Default” button for using the 

default values that are the optimal ones for the motors specified. “Drill Options” 

module can also be used to change the options by the menu item “Drilling Options” 

under “Drilling”. 

  



 47

 

Figure 4.9 Drill Options Interface  

 

4.1.1.1 Calculation of the Prototype Dimensions 

 In the prototyping process of an object, it is important to use the appropriate 

values in the “Drilling Options” to get the desired prototype with the desired size. As 

it is given in the equations (4.1) and (4.2), the actual size of the prototype is directly 

proportional with the number of pixels and step per pixel value for the relative 

direction and a constant. 

                          

0289.0*)/(* )/()()(/ YXpixelmmYXPHYSICAL pixelstepnd =                          (4.1) 
 

0157.0*)/(* )()()( ZpixelmmZPHYSICAL pixelstepnd =                          (4.2) 
 



 48

4.1.2  “Go To Information” Module 

The “Go To Information” module that is used to specify the position 

information of the actions “Go To”, “Start At” and “Pause At” is called with the 

relevant buttons on the main form. For “Go To” that is called to move the motors to 

the desired position there are also buttons to move them pixel by pixel. The 

movements are in terms of entered pixel value times the step per pixel value that is 

specified in the “Drilling Options” form. With “Pause At” it is possible to program 

the pause position before starting drilling but he position information that should be 

given in pixels has to match to a point on the drawing of the object otherwise it will 

not have any effect. There are also buttons on this form to move the motors to the 

desired position. 

 

 

Figure 4.10 Go To Information Interface  

 



 49

4.1.3 “Profile Selection” Module 

The “Profile Selection” module is called when the “Delta Z Profile” option in 

the “Drilling Options” form is selected.  With the use of this module the drawing of a 

profile file, whose requirements given in Section 4.1.1, is called to be used as the 

depth function of three dimensional images. The critical point in loading a profile file 

is that the number of layers in the profile should be equal or greater than the number 

of layers that are found in the digitizing process of the three dimensional object, 

otherwise there will be an error message indicating this situation.  

 

 
 

Figure 4.11 Profile Selection Interface  

 



 50

4.1.4 “Main” Module 

 The main module interface is shown in Figure 4.12 where the main drilling 

machine program controls take place. In this interface there are menu items as file, 

digitizing, drilling, 3D menu, about and exit with their sub-items and for the most 

common used ones shortcuts on the toolbar.   There exist also two textboxes, one to 

show the file name and its path that is being digitized or drilled and one to give 

messages to the user for the next step to run the program properly.  

 
 The loaded object comes into sight on the “picture box“ which changes its 

size automatically up to the size of the picture loaded.  During the drilling process, 

the progress bar showing the percentage of the completed part, the time elapsed, 

current positions both in pixels and millimeters depending upon the choice made at 

the beginning of the program (see 4.2.1) are activated.  

 

 The “Start At (X, Y, Z)”, “Go To (X, Y, Z)” and “Pause Program” buttons are 

used for the relevant actions (see 4.1.2). When the “Pause” button is clicked the 

program pauses regardless of the position of the cutter until it is re-clicked. With the 

“Stop” button it is possible to stop the process that is going on and start the process 

for a new object without exiting the program. 

 

 As the “Debug Mode” is enabled by clicking its checkbox, the drilling 

process is carried without sending any signals to the parallel port, i.e. it does not drill 

in fact but the drilling process can be observed on the screen as if it is drilling.  It is 

obvious that a this kind of process takes much shorter time than drilling the object 

with the cutting tool so it is sometimes better to use this property before drilling. 

 



 51

 
 

Figure 4.12 Main module of the drilling program 
 

4.1.4.1 Loading the Object  

An image file is selected by using the “Load Image File” under the “File” 

item (“mnuLoadImageFile” is called) which will trigger a “Microsoft Common 

Control Dialog Box” object to select the image file. The selected image is loaded into 

a picture box object on the main form named as “DrillPicture”. All the calculations 

and image processing jobs are realized by utilizing this picture box object methods 

(for example “Point” method is used for accessing the color map of a specific point). 

With this property of VB, it is possible to load all type of image files (gif, bmp, jpg, 

tiff, etc.).  

 

There are two critical points to set in the “Properties Window”. The 

“Scalemode” property should be changed to “Pixel” value since the drawings are in 

pixel unit format   and “Autoredraw” property should be set to “False” value to be 

able to digitize and obtain the whole points of the image even it is larger than the 

screen. 

 



 52

Note that before loading a new object in order to ensure proper operation, all 

of the critical variables are cleared by the “ResetAll()” function.  

    

4.1.4.2 Digitizing Two Dimensional Object 

“Digitize Min Distance” and “Digitize Top” items under “Digitizing” menu 

item are enabled after completing the image loading process successfully. The two 

dimensional object drawing that will be digitized should satisfy the requirements and 

limitations given section 4.1.1. For both types of digitizing, the “PaintDrill()” (See 

Appendix A) function is called with the corresponding parameter. At the end of the 

“PaintDrill()” function, the “ImageMatrix()” variable is filled with the proper values 

(See Appendix A). 

 

The image is scanned through the columns and after completing columns of a 

row, the scan row is incremented by one. The first black point met is the starting 

point for the “Digitize Top” type. For the other type, the starting point is determined 

after completing the full scan of the image where the starting point will be at the 

minimum distance with respect to origin. If a proper starting point is determined, 

then it is painted in red and a counter variable for determining the number of objects 

is set to one which shows that at least one object exists in the picture.  

 

After finding the first point of the object, the neighborhood points are scanned 

through “1” to “8” in the order given in Figure 4.13.  When a black point is found, 

the other points in the neighborhood are not scanned anymore. Note that the reason 

for stopping the scanning process when a proper point is found is speeding up the 

digitizing of the object. For example, if a proper point is found at the position “1” 

there is no need to scan the other seven neighbors that will spend unnecessary time. 

The process repeats itself until no black points exist in the neighborhood.   

 



 53

  

Figure 4.13 The neighborhood scanning order for a point for digitizing a two 

dimensional object. 

 

 After completing one object, the picture is scanned to determine if any other 

black point exists. If one is found, then the object number counter is incremented by 

one and the whole process is started from the beginning for this new object until no 

black points found.  

 
 Digitizing with either “Digitize Min Distance” or “Digitize Top” has a 

significant importance when the image is not a closed curve. An example of this 

situation is shown in  

 

Figure 4.14 where the image consists of two non closed curves. When the image is 

digitized with “Digitize Min Distance” the path for digitizing and also drilling will be 

as shown in the figure and so there will be three images detected instead of two. 

From the view of drilling, this is not only waste of time but as the number of images 

in the objects is not correct the problem of giving different depths for different 

images appears.  

1 2 3

4 5

6 7 8



 54

 
 

Figure 4.14 Digitizing and drilling path for a non closed curve with “Digitize Min 
Distance” and “Digitize Top” 

 
 

4.1.4.3 Digitizing Three Dimensional Object 

“3D Imaging” menu item under “3D Menu” is used for digitizing a three 

dimensional object whose drawing should satisfy the requirements and limitations 

given section 4.1.1. The image is scanned through the columns and after completing 

columns of a row, the scan row is incremented by one. The first black point met is 

the starting point. Then with a similar process in digitizing a two dimensional object, 

the black part, i.e. the contour, is digitized. For each point on the contour, a 

“PaintInner()” function is called in order to determine the following layer. The 

function searches the 4-neighbors (see Section 3.2.4.1) of the point and when a red 

An image consisting of two non 
closed curves. 

Path for “Digitize Min 
Distance”  

Path for “Digitize Top” 



 55

point is detected, it is painted to blue. As the contour is a closed one, searching for 

the 4-neighbors will ensure the existence of a red point. At the end of the closed 

contour, all of the blue points, which will allow all of the process to start from the 

beginning, are painted to black.  

 

The reason to use a different order for scanning the neighborhood (see Figure 

4.13 and Figure 4.15) is that as the number of digitized layers is increased, the 

contour starts to look like a rectangular shape. By application of this method, the 

motors will only move within the object not the rectangle that covers the object [5]. 

  

 

Figure 4.15 The neighborhood scanning order for a point for digitizing a three 

dimensional object. 

 

 
Figure 4.16 Digitizing process of a three dimensional object 

 

4.1.4.4 Saving / Loading the Digitized Object 

 Digitizing two- or three-dimensional objects creates an identical type of 

digitizing matrix which keeps the values of X’s and, Y’s with the corresponding Z 

7 1 6

4 2

8 3 5

(a) (b) (c) 

Black to Green
Blue to Black 



 56

values. These matrix values may be saved to a text file whose path and filename are 

user-selected. 

 

 Loading of a digitized image is in fact loading the digitizing matrix that is 

identical to digitizing the object. In order to use this property, the image should be 

loaded as described in Section 4.1.4.1 and after that “Load Digitized Image” menu 

item under “File” should be chosen. 

 

 The aim of using the “saving” and “loading” properties is saving the time of 

the digitizing process if the same object is desired to be drilled for more than one 

time.   

 

4.1.4.5 Drilling the Object 

 The (x, y, z) data in the digitizing matrix is transformed into a new matrix 

which is sorted with respect to the “Z-Depth” values (each value of the matrix 

corresponds to a layer of the object) with corresponding X and Y values. The drilling 

process starts from the smallest Z-depth value for two-dimensional objects and the Z 

value matching the first layer on the profile file (see Section 4.1.1) for the three-

dimensional objects.  



 57

 
Figure 4.17 Digitizing with two-dimensional method examples 

 

Delta Z Uniform=100 
OR 

Delta Z1=100 
X Step/Pixel – Y Step/Pixel =1 

100 pixels 

Delta Z1=100 
Delat Z2=25 

X Step/Pixel – Y Step/Pixel =1 

Top drawing of the two-
dimensional object 

Depth and step per pixel 
specifications for drilling 

Top drawing of the two-
dimensional object 

Depth and step per pixel 
specifications for drilling 

25 pixels

100 pixels 

Drilled object 

Drilled object 



 58

 
 

Figure 4.18 Digitizing with three-dimensional method example 

 

 The drilling process follows the exact path illustrated in digitizing process. It 

is clear that when a mismatching occurs in the digitizing process, the user should not 

attempt to drill the object. During the drilling process, the progress bar shows the 

percentage of the completed part to give an idea about the remaining time to the user. 

Also the time elapse and the current position information are given on the main 

module interface (see 4.1.4). 

 

 In the case of having a hard drilling material (see 3.1.3) or having a large 

depth, for not to damage the cutting tools it is better to use the “Repeat Drill” menu 

item under “Drilling” and drill the object step by step. Also the same object can be 

drilled again to some other position by shifting the coordinates with “Start At” (see 

4.1.2). 

 

 In drilling process, the “diagonal movement”, i.e. the movement of the x and 

y motors simultaneously as long as possible, is used where available as it is obvious 

that a diagonal movement takes shorter time than the movement of one motor to the 

Top drawing of the 
three-dimensional object

Depth function 

Drilled object 



 59

desired position first then the other. As it is seen in Figure 4.19, when the path for the 

consecutive movement is followed the total time needed is: 

delaytimexxyytime utivecon *)]()[( 0101sec −+−=                          (4.3) 
 
where the total time for simultaneous movement of the motors is: 
 

delaytimexxyytime eoussimul *)}(),max{( 0101tan −−=                          (4.4) 
 

 
Figure 4.19 Consecutive and simultaneous movement paths for X and Y motors 

 

 From the equations (4.3) and (4.4) and Figure 4.19, it is clear that the time  to 

be followed is shortened with the diagonal movement. 

 

 At the end of every drilling process, the cutter returns to its starting position 

i.e. the (0,0,0) point. 

 

4.1.5 “About” Module 

 The name and version of the program, copyright and contact e-mail address 

for support take place in the interface of “About” module. 

P0( x0,y0 )

P1( x1,y1 ) P1( x1,y1 )

P0( x0,y0 )



 60

 
 

Figure 4.20 About module of the drilling program 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 61

 

 

 

CHAPTER 5  

 

 

RESULTS 

 

 

5.1 Image Processing Performance 

 The drilling process follows the exact path illustrated in digitizing process. It 

is clear that when a mismatching occurs in the digitizing process, the user should not 

attempt to drill the object. Any kind of mismatch that can be occur in image 

processing, i.e. in the number of the images or dimensions, can be detected by 

observing the user information interface window that appears after digitizing the 

object (see 4.2.2).    

 

 Two different methods for digitizing, i.e. minimum distance and top distance 

options that are mentioned in 4.1.4.2, also improves image processing when the 

appropriate one is chosen.  

 

 Another method for saving time in digitizing process is to use “saving” and 

“loading” properties (see 4.1.4.4) if the same object is desired to be drilled for more 

than one time.   Thanks to this method there is no need to digitize an object again and 

again but it is enough to save the matrix that holds the coordinate data of the 

digitized object.  



 62

5.2 Drilling Performance 

 As the path of the drilling process follows the exact path illustrated in 

digitizing process, there is no time loss with tracing the points that will never be 

drilled and the resulting object is much smoother compared with the other algorithms 

for the elliptical objects.  

 

 The “diagonal movement” of the motors, in other word movement of the X 

and Y motors at the same time as long as possible shortens the drilling time up to 

%50 (see 4.1.4.5). The “Repeat Drill” option mentioned in 4.1.4.5 also improves the 

drilling time with holding the previous drilling option values.  

 

 The current position information in pixels and millimeters, pause program 

and drill tracking options, that take place in the “Start Up” module (see 4.2.1), are 

also the effective factors for time of drilling. As an example drilling time data for an 

elliptical object, whose top drawing is given in Figure 5.1 with the following drilling 

options, is given in Table 5.1. 

 

Maximum X Dimension = 286 pixel 
Maximum Y Dimension = 144 pixel 
 
Delay X-Y = 5 msec. 
Delay Z = 5 msec. 
 
Step/Pixel X-Y = 8 
Step/Pixel Z = 1 
 

 

 
 

Figure 5.1 Top drawing of an ellipse as a two-dimensional object 
 



 63

 
 As it can be observed from the data in Table 5.1, the minimum time required 

for this specified drilling process is the one with all options, including “Debug” 

which means that there will not be a real drilling process but only a simulation on the 

screen, are selected. When a comparison is made between the debug-off ones, it is 

seen that the most effective option is drill tracking which can be a trade of especially 

for drilling processes that are being repeated. 

 
Table 5.1  Comparison of the drilling process time with respect to selected options 
 
 

Debug Current 
Position 

(mm) 

Current 
Position 
(pixel) 

Pause At Track Time 
Elapsed 

(sec) 

     

 
418.0391 

     

 
427.0512 

     

 
447.1094 

     

 
443.0012 

     

 
439.6016 

     

 
441.0005 

     

 
439.8891 

     

 
465.7695 

 
 
 
 
 
 
 
 



 64

5.3 Drilled Samples 

 
 The samples given in Figure 5.2 through Figure 5.8 illustrate the drilled 

samples realized by 2D and 3D modeling methods. 2D modeling is more suitable for 

the objects that have smooth surfaces and for labeling applications where 3D 

modeling is preferred for the objects that have curved surfaces.  

  

 
 

Figure 5.2 A sample of a drilled object by 2D modelling  
 
 
 



 65

 
 

Figure 5.3 A gear realized by 2D modelling  
 

 

 
 

Figure 5.4 A pyramid realized by 3D modelling  



 66

 
 
 

 
 

Figure 5.5 A dome realized by 3D modelling  
 
 
 

 
 

Figure 5.6 A heart realized by 3D modelling  



 67

 
 

 
 

Figure 5.7 A stamp realized by 2D modelling  
 
 

 

 
 

Figure 5.8 An application of labelling by 2D modelling  
 

 

 

 

 



 68

 

 

 

 

CHAPTER 6  

 

 

CONCLUSIONS 

 

 

In this study, software for a specific CAD application has been developed 

under Microsoft Studio Visual Basic 6.0 environment for industrial prototyping. The 

software is packaged as an executable program so that it requires only the run-time 

libraries of Visual Basic therefore the licensing problem for a third party software is 

eliminated. 

 

 The software has ability to recognize and digitize two dimensional models of 

three dimensional objects. By this method the user can easily draw and model an 

object compared to the three view modeling which will result in saving of time and 

money consequently. A drawing technician without the skills or education of 

technical drawing can easily model the objects. But it is clear that objects similar to 

Figure 1.1 cannot be modeled. 

 

Besides the ease of modeling, the drilling process has been improved 

significantly. The motors do not scan the entire surface but only move on the 

contours. So that the motors never move on points that will never be drilled. This 

method introduces an improvement. Another improvement on the drilling time is 

achieved by deactivating visual properties such as showing the current position of the 

table. This brings an improvement about 10% in drilling time. Note that this 

improvement is tested under a relatively slower PC. The state-of-the-art computer 



 69

systems will decrease the benefit of this property because of their fast visual 

response.  

 

The elliptical objects are digitized and drilled like a spiral shape such as the 

same depth levels are drilled consequently. By this method the drilled objects are 

smoother with respect to the other scanning methods.    

 

The drawbacks of the software are clear. The drawings should strictly satisfy 

the requirements given in Section 4.1.1. After the digitizing process the user is 

informed of the properties of the digitized object. The user may comment on the 

information given and make proper corrections 

 

The parallel port of the PC has been used for digital signal generation for the 

drive circuit so that no extra hardware, that will cause an extra cost, has been 

introduced. The utilization of special interface software for the parallel port has 

enabled the program to run regardless of the OS. The previous applications could 

only run on Windows 95/98 platforms because of the restrictions of the OS. This 

software, which uses the ActiveX technology, eases the programming burden and 

handles the application versus OS communication. The demonstration version of IO 

ActiveX software can be found on the web.  

 

Finally, the implemented software and the hardware have been tested and 

various prototypes have been drilled. The results are quite satisfying. Especially, 

labels (names or words drilled on the materials), conical or spherical shapes are 

satisfactorily realized.  

  

The future work on this topic may be the introduction of a closed-loop control 

system for the stepping motors. By this method a further improvement of the drilling 

time may be achieved but the cost and the complexity of the system will obviously 

increase. Another improvement may be using additional motors on X- and Y-axis to 

be able to drill an object having the properties similar to Figure 1.1. It is clear that 



 70

such kind of an object will require more than one drilling axis and also more than 

one drawing views.  

 



 71

 

 

REFERENCES 

 

 

[1] Mustafa Bağcı, Prof. Dr. Cemil Bağcı, “Teknik Resim”, 1988.  

 

[2] P.P. Acarnley, “Stepping Motors: A guide to modern theory and practice”, 

Revised Second Edition, IEE Control Engineering Series 19, 1984.  

 

[3] Benjamin C. Kuo, “Theory and Applications of Step Motors”, West 

Publishing Co., 1974 

 

[4] SGS Thompson Microelectronics, “Stepper Motor Controllers”, August 1996 

 

[5]     Semih Mümin Ateş, “A PC Controlled Three Dimensional Machine Tool 

Control System”, METU MS Thesis, Dec. 2001.  

 

[6] www.jspayne.com 

 

[7]     Roger S. Pressman, ”Software Engineering ”, The McGraw-Hill Companies, 

 Inc., 4th  Edition, 1997. 

 

[8] http://mathforum.org 

 

[9] Oliver Faugeras, “Three Dimensional Computer Vision: A Geometric 

Viewpoint”, MIT Press, 1993. 

 



 72

[10] Berthold Klaus Paul Horn, “Robot Vision”, MIT Press, 1986. 

 

[11] Kemal Şen, “ A PC Based Industrial Position Control System”, ”, METU MS 

Thesis, May. 2000. 

 

[12] A.E. Fitzgerald, Charles Kingsley, Jr, Stephen D. Umans, “Electric 

Machinery”, Fifth Edition in SI Units, McGraw-Hill, 1992. 

 

[13]  http://www.dai.ed.ac.uk , web page of department of Artificial Intelligence of 

the University of Edinburg. 

 

[14] Microsoft MSDN Library,2000. 

 

[15] Microsoft Visual Basic 6.0 Language Reference, Microsoft Press, 1998. 

 

 

 



 73

 

 

 

APPENDIX A 
 

 

MODULES AND CRITICAL VARIABLES OF 

SOFTWARE 
 

 

PaintDrill(): 

 

Synopsis: 

 Boolean DigType 

Description: 

 Digitizes an image according to DigType parameter. See Section 3.2.4.1. 

Returns: 

 None. 

 

 

PaintInner(): 

  

Synopsis: 

Integer x, y 

Description: 

 Searches for 4-neighbors of the point(x, y) and if a red is detected, it is 

painted to blue. 

Returns: 

 None. 

 

 



 74

ResetAll(): 

  

Synopsis: 

None. 

Description: 

 Clears digitizing matrix and variables used for visual purposes. 

Returns: 

 None. 

 

 

space Type: 

Type: 

 x, y, z integer 

  

ImageMatrix: 

Type: 

 space 

Dimension: 

 (1600, 1600)  

First column implies the object number and the second one implies the points 

of the corresponding object. 



 75

 

 

 

APPENDIX B 
 

 

PARAMETERS/SELECTIONS IN THE SOFTWARE 

 

 
B.1 Parameters/Selections in “Start Up Options" 

Name Type Comment(s) 

Current Position (Pixel) Boolean Show/hide the current position 

information in pixels  

Current Position (mm) Boolean Show/hide the current position 

information in millimeters 

Pause Program Boolean Enable/disable “Pause Program” 

Drill Tracking Boolean Enable/disable  drill tracking 

 

 

B.2 Parameters/Selections in “Drilling Options” 

Name Type Comment(s) 

X Step/Pixel-Y Step/Pixel Integer Determines how many step will the 

motor moves for each pixel 

Z Step/Pixel Integer Determines how many step will the 

motor moves for each pixel 

Delta Z Profile Boolean Type of delta Z 

Delta Z Uniform Boolean Type of delta Z 

Delta Z Uniform Integer Determines uniform Z value 

Delta Z Boolean Type of delta Z 

DeltaZ1..DeltaZ20 Integer Determines non-uniform Z values 

 



 76

B.3 Parameters/Selections in “Go To Coordinates” 

Name Type Comment(s) 

X (Pixel) Integer The number of movements in X axis 

Y (Pixel) Integer The number of movements in Y axis 

Z (Pixel) Integer The number of movements in Z axis 

  Button Moves the X-axis by one (+) step 

 Button Moves the X-axis by one (-) step 

 Button Moves the Y-axis by one (+) step 

 Button Moves the Y-axis by one (-) step 

 Button Moves the Z-axis by one (+) step 

 Button Moves the Z-axis by one (-) step 

Go To Button Enabled only at “GoTo” operation 

Start At Button Enabled only at “StartAt” operation 

Pause At Button Enabled only at “PauseAt” 

programming  

 

 

B.4 Parameters/Selections in “Main” 

Name Type Comment(s) 

Message Text Textbox Messages to the user are given 

Debug Mode Boolean Enables/disables debug mode 

 

 

X+ 

X- 

Y+ 

Y- 

Z+ 

Z- 



 77

 

 

 

APPENDIX C 
 

 

MOTOR DRIVE CIRCUIT COMPONENTS 
 

 

C.1 L298 Dual Full-Bridge Driver 

 

The L298 is an integrated monolithic circuit which is a high voltage, high current 

dual full-bridge driver designed to accept standard TTL logic levels and drive 

inductive loads such as relays, solenoids, DC and stepping motors. Two enable 

inputs are provided to enable or disable the device independently of the input signals. 

The emitters of the lower transistors of each bridge are connected together and the 

corresponding external terminal can be used for the connection of an external sensing 

resistor. An additional supply input is provided so that the logic works at a lower 

voltage. 

 
Figure C.1 Block Diagram of L298 

 



 78

 
Table C.1 Absolute Maximum Ratings of  L298 
 

Symbol Parameter Value Unit 

VS Power Supply 50 V 

VSS Logic Supply Voltage 7 V 

Vl, Ven Input and Enable Voltage -0,3 to 7 V 

I0 Peak Output Current (each Channel) 

-Non Repetetive (t=100µs) 

-Repetetive (80% on -20% off; ton=10ms) 

-DC Operation 

 

3 

2,5 

2 

 

A 

A 

A 

Vsens Sensing Voltage -1 to 2,3 V 

Ptot Total Power Dissipation (Tcase = 75°C) 25 W 

Top Junction Operating Temperature -25 to 130 °C 

Tstg, Tj Storage and Junction Temperature -40 to 150 °C 

 

 

 

C.2 L297 Stepper Motor Controller 

 

The L297 Stepper Motor Controller IC generates four phase drive signals for two 

phase bipolar and four phase unipolar step motors in microcomputer controlled 

applications. The motor can be driven in half step, normal and wave drive modes and 

on chip PWM chopper circuits permit switch-mode control of the current in the 

windings. A feature of this device is that it requires only clock, direction and mode 

input signals. Since the phase are generated internally the burden on the 

microprocessor, and the programmer, is greatly reduced. L297 can be used with 

monolithic bridge drives such as the L298N or L293E, or with discrete transistors 

and darlingtons. 
 



 79

 

 
Figure C.2 Block Diagram of L297 

 

 

Table C.2 Absolute Maximum Ratings of L297 
 

Symbol Parameter Value Unit 

VS Supply Voltage 10 V 

Vi Input signals 7 V 

Ptot Total Power Dissipation (T amb = 70°C) 1 W 

Tstg, Tj Storage and Junction Temperature -40 to 150 °C 

 



 80

C.3 Two Phase Bipolar Stepper Motor Control Circuit with L297 and L298 

 

 L297 and L298 can be used as shown in Figure C.3 for various motor drive 

applications. In the figure, the diodes with 2A current rating are used. 

 
Figure C.3 Two Phase Bipolar Stepper Motor Control Circuit with L297 and L298 

 

 

 

 

 

 

 

 

 

 

 



 81

 

 

 

APPENDIX D 
 

 

DECLARATIONS AND RELATIONS OF FUNCTIONS 

AND SUBS OF THE SOFTWARE 
 

 

D.1 “Main” Form 

Declarations 

Dim XX, YY, ZZ As Integer 

Dim XXX, YYY As Integer 

Dim pausedrill As Boolean 

Dim StopDrill As Boolean 

Dim PauseDrillProgram As Boolean 

Dim lngTotalPoints As Long  'For the Progress Bar 

 

 

Function CreateMatrixFile() 

Declaration 

Dim fso, txtfile 

Dim count As Integer 

Called by 

Private Sub mnuRepeatDrill_Click() 

 

 

Function CalculateTotalPoints() 

Declaration 

Dim count As Integer 



 82

Called by 

Function PaintDrill3D(ByVal DigType As Boolean) 

 

 

Function LoadMatrixFile(ByVal strDataFile As String) 

Declaration 

Dim count As Integer 

Called by 

Private Sub mnuLoadDigitizedImage_Click() 

 

 

Function PaintDrill(ByVal DigType As Boolean) 

Declaration 

Dim x, y, z As Long 

Dim mapX(8), MapY(8) As Integer 

Dim found, Search As Boolean 

Dim xPrev, yPrev As Integer 

Dim count, counter As Long 

Dim distance As Double 

Dim xTemp, yTemp As Integer 

Dim EndOfPicture As Boolean 

Dim result As Integer 

Called by 

Private Sub mnuDrillImage_Click() 

 

 

Public Sub drill2D(x, y, z As Integer) 

Declaration 

Dim i As Integer 

Dim result As Integer 

Dim intDiff As Integer 

Dim intSimStep As Integer 



 83

Dim int1DStep As Integer 

Called by 

Private Sub cmdStartAtXYZ_Click() 

 

     

Private Sub cmdGotoOrigin_Click() 

Called by 

ButtonClick “GoToOrigin” 

 

 

Private Sub cmdGoToXYZ_Click() 

Called by 

ButtonClick “GoToXYZ” 

Private Sub mnuRepeatDrill_Click() 

 

 

Private Sub cmdPauseProgram_Click() 

Called by 

ButtonClick “PauseProgram” 

 

 

Private Sub cmdStartAtXYZ_Click() 

Calls 

ButtonClick “Drill Image” 

Called by 

ButtonClick “StartAtXYZ” 

 

 

Private Sub cmdStop_Click() 

Called by 

ButtonClick “Stop” 

 



 84

Private Sub DrillPicture_Paint() 

Calls 

PaintDrill3D 

 

 

Private Sub mnuDrillImage_Click() 

Declaration 

Dim count As Integer 

Dim xPrev, yPrev, zPrev As Integer 

Dim lngTemp As Long 'For Progress Bar 

Calls 

Function drillOrigin(x, y, z As Integer) 

cmdPauseResume_Click() 

ResetAll() 

Public Sub drill2D(x, y, z As Integer) 

Function drill(x, y, z As Integer) 

Called by 

Private Sub cmdStartAtXYZ_Click() 

Private Sub mnuRepeatDrill_Click() 

Private Sub tlbMain_ButtonClick(ByVal Button As ComctlLib.Button) 

ButtonClick “Drilling/Drill Image” 

 

 

Private Sub Form_Load() 

Called by 

 “Main” form when the form is loaded. 

 

 

Private Sub mnuDigitize_Click() 

Calls 

ResetAll() 

PaintDrill(boolean) 



 85

Called by 

ButtonClick “Digitize/Digitize Min” 

 

 

Private Sub mnuDigitizeTop_Click() 

Calls 

ResetAll() 

PaintDrill(boolean) 

Called by 

ButtonClick “Digitize/Digitize Top” 

 

 

Private Sub mnuDrillOptions_Click() 

Called by 

ButtonClick “Drilling/Drill Options” 

 

 

Private Sub mnuExit_Click() 

Called by 

ButtonClick “Exit” 

 

 

Private Sub mnuLoad3DMatrix_Click() 

Calls 

ResetAll() 

PaintDrill3D() 

 

 

Private Sub mnuLoadDigitizedImage_Click() 

Declaration 

Dim strDataFile As String 

 



 86

Calls 

LoadMatrixFile(strDataFile) 

Called by 

ButtonClick “File/Load Digitized Image” 

 

 

Private Sub mnuLoadImageFile_Click() 

Calls 

ResetAll() 

Called by 

Private Sub mnuRepeatDrill_Click() 

Private Sub tlbMain_ButtonClick(ByVal Button As ComctlLib.Button) 

ButtonClick “File/Load Digitized Image” 

 

 

Function drill(x, y, z As Integer) 

Declaration 

Dim i As Integer 

Dim result As Integer 

Called by 

Private Sub mnuDrillImage_Click() 

 

 

Function drillOrigin(x, y, z As Integer) 

Declaration 

Dim i As Integer 

Dim result As Integer 

Called by 

Private Sub mnuDrillImage_Click() 

 

 

 



 87

Private Sub mnuRepeatDrill_Click() 

Calls 

cmdGoToXYZ_Click() 

mnuDrillImage_Click() 

CreateMatrixFile() 

Called by 

ButtonClick “Drilling/Repeat Drill” 

 

 

Private Sub tlbMain_ButtonClick(ByVal Button As ComctlLib.Button) 

Calls 

mnuLoadImageFile_Click() 

mnuDrillImage_Click() 

Called by 

ButtonClick “Toolbar” 

 

 

Function ResetAll()   

Called by 

Private Sub cmdStartAtXYZ_Click() 

Private Sub mnuDigitizeTop_Click() 

Private Sub mnuLoad3DMatrix_Click() 

Private Sub mnuLoadImageFile_Click() 

 

 

Function Matrix6Converter() 

Declaration 

ReDim Matrix6Interface(188, width6, height6) 

ReDim ZValueMatrix(1600) 

Calls 

PaintDrill3D(1) 

 



 88

Function PaintDrill3D(ByVal DigType As Boolean) 

Declaration 

Dim x, y, z As Long 

Dim mapX(8), MapY(8) As Integer 

Dim found, Search As Boolean 

Dim xPrev, yPrev As Integer 

Dim count, counter As Long 

Dim distance As Double 

Dim xTemp, yTemp As Integer 

Dim EndOfPicture As Boolean 

Dim result As Integer 

Calls 

PaintInner(xPrev, yPrev) 

PaintInner(xPrev, yPrev) 

PaintBlueToBlack 

CalculateTotalPoints 

Called by 

Private Sub mnuLoad3DMatrix_Click() 

Function Matrix6Converter() 

 

 

Function PaintInner(ByVal x As Integer, ByVal y As Integer) 

Declaration 

Dim count As Integer 

Dim mapX(3), MapY(3) As Integer 

Called by 

Function PaintDrill3D(ByVal DigType As Boolean) 

 

 

Function PaintBlueToBlack() 

Called by 

Function PaintDrill3D(ByVal DigType As Boolean) 



 89

 D.2 “GoTo” Form 

 

Private Sub cmdCancelGoTo_Click() 

Called by 

ButtonClick “Cancel for Go To” 

 

 

Private Sub cmdOKGoTo_Click() 

Declaration 

Dim x, y, z As Integer 

Called by 

ButtonClick “OK for Go To” 

 

 

Private Sub cmdOKStartAt_Click() 

Declaration 

Dim x, y, z As Integer 

Called by 

ButtonClick “OK for Start At” 

 

 

Private Sub cmdPauseAtXYZ_Click() 

Called by 

ButtonClick “Pause At XYZ” 

 

 

Private Sub cmdXMinus_Click() 

Called by 

ButtonClick “X- (Decrease X)” 

 

 

 



 90

Private Sub cmdXPlus_Click() 

Called by 

ButtonClick “X+ (Increase X)” 

 

 

Private Sub cmdYMinus_Click() 

Called by 

ButtonClick “Y- (Decrease Y)” 

 

 

Private Sub cmdYPlus_Click() 

Called by 

ButtonClick “Y+ (Decrease Y)” 

 

 

Private Sub cmdZMinus_Click() 

Called by 

ButtonClick “Z- (Decrease Z)” 

 

 

Private Sub cmdZPlus_Click() 

Called by 

ButtonClick “Z+ (Decrease Z)” 

 

 

Private Sub Form_Activate() 

Called by 

“Go To” form when the form is activated. 

 

 

 

 



 91

Private Sub Form_Load() 

Called by 

 “Go To” form when the form is loaded. 

 

 

D.3 “Information” Form 

 

Private Sub cmdOK_Click() 

Called by 

ButtonClick “OK” 

 

 

Private Sub Form_Activate() 

Called by 

“Go To” form when the form is activated. 

 

 

Private Sub Form_Load() 

Called by 

 “Go To” form when the form is loaded. 

 

 

D.4 “Options” Form 

 

Private Sub btnCancel_Click() 

Called by 

ButtonClick “Cancel” 

 

 

Private Sub btnDefaults_Click() 

Called by 

ButtonClick “Defaults” 



 92

Private Sub btnOK_Click() 

Declaration 

Dim j, k As Integer 

Called by 

ButtonClick “OK” 

 

 

Private Sub chkDeltaZNonUniform_Click() 

Called by 

CheckClick “DeltaZNonUniform” 

 

 

Private Sub chkDeltaZProfile_Click() 

Called by 

CheckClick “DeltaZProfile” 

 

 

Private Sub chkDeltaZUniform_Click() 

Called by 

CheckClick “DeltaZUniform” 

 

 

Private Sub Form_Activate() 

Called by 

“Options” form when the form is activated. 

 

 

D.5 “Profile” Form 

 

Private Sub cmdOK_Click() 

Called by 

ButtonClick “OK” 



 93

Private Sub cmdSelectProfileFile_Click() 

Declaration 

Dim x, y, x0, y0 As Integer 

Dim result, count As Integer 

Dim found As Boolean 

Called by 

ButtonClick “Select Profile File” 

 

 

D.6 “Start Options” Form 

 

Private Sub chkCurrentPositionMm_Click() 

Called by 

CheckClick “Current Position (mm)” 

 

 

Private Sub chkCurrentPositionPixel_Click() 

Called by 

CheckClick “Current Position (pixel)” 

 

 

Private Sub chkDrillTrack_Click() 

Called by 

CheckClick “Drill Track” 

 

 

Private Sub chkPauseProgram_Click() 

Called by 

CheckClick “Pause Program” 

 

 

 



 94

Private Sub cmdOK_Click() 

Called by 

ButtonClick “OK” 

 

 

Private Sub Form_Load() 

Called by 

 “Start Options” form when the form is loaded. 

 

 

D.7 “Main” Module 

 

Declare Sub sleep Lib "kernel32" Alias "Sleep" (ByVal dwMilliseconds As Long) 

Public intXStep, intYStep, intZstep As Integer 

Public intPulseDelayXY, intPulseDelayZ As Integer 

Public intDeltaZUniform As Integer 

Public intDeltaZNonUniform(500) As Integer 

Public blnDeltaZType As Boolean  'True for Uniform-False for NonUniform 

Public XMax, YMax, ZMax, XMin, YMin, ZMin As Integer 

Public intNoOfImages As Integer 

Public Const intmmAccr As Integer = 0 

Public blnFrmClosed As Boolean 'used for frmGoToInfo form to be closed 

Public intCountImage As Integer 

'For "Start Options" 

Public blnShowCurrentPositionPixel As Boolean 

Public blnShowCurrentPositionMm As Boolean 

Public blnShowPauseProgram As Boolean 

Public blnShowDrillTrack As Boolean 

Public blnGotoOrigin As Boolean 

'For "Repeat Drill" action 

Public blnRepeatDrill As Boolean 

 



 95

Type space 

    x As Integer 

    y As Integer 

    z As Integer 

End Type 

 

Public ImageMatrix() As space 'Digitized Image 

Public ImagePoints() As Long 'Digitized Image shown on Picture 

Public curpos2D As space 

Public PausePosition As space 

Public Matrix6Interface() As Long 

Public ZValueMatrix() As Long 

'3D Options 

Declare Function ExtFloodFill Lib "Gdi32" (ByVal hdc%, ByVal i%, ByVal i%, 

ByVal w&, ByVal i%) As Integer 

Public Image1, Image2, Image3 As String 

Public crimageno, width1, height1, width2, height2, width3, height3, regions, 

pauseprog As Integer 

Public width4, width5, width6, width7, height4, height5, height6, height7 As Integer 

Public startcolred, startrowred, endcolred, endrowred, credx, credy, stepx As Integer 

Public matrix1() As Integer 

Public matrix2() As Integer 

Public matrix3() As Integer 

Public matrix4() As Integer 

Public matrix5() As Integer 

Public matrix6() As Integer 

Public matrix7() As Integer 

Public sum7() As Long 

Public regheight(), borders4(), borders5() As Integer 

Public stepsize As Double 

Public sumsum6, fcolor As Long 



 96

Public pixelstepx, pixelstepy, steppixelx, steppixely, steppixelz, drilltime, lastcolscan 

As Integer 

Public pulsedelayy, nextpos, corrected, subfinished, xdiameter, ydiameter As Integer 

Public paso, curpos, curdrill, drillno, steppixw6, steppixcol, pulsedelayx, 

pulsedelayz, lastcoldone As Integer 

Public xdist, ydist, zdist, cutter, maxpoint, todrill, state, startcol3, startrow3 As 

Integer 

Public pausex, pausey, pauselayer, curx, cury, curz As Integer 

Public pausedrill, fromgoto As Boolean 

Public starttime, endtime As Variant 


